-
使用常规和AMS14C测年技术对XL02孔岩心的8个样品进行了14C年代测定(表1),实验过程在兰州大学和北京大学的放射性碳十四年代测定实验室完成,详细的年代数据在Xue et al.[17]中已有报道。在本次研究中,使用最新的IntCal20校正曲线[21]对原有的年代数据重新进行了校正,并使用OxCal4.4软件的泊松分布方法建立了新的年代—深度模型(图2)。最终结果显示,XL02泥炭沉积物年代跨度为40~6.9 cal ka B.P.,平均沉积速率约为5.4 cm/ka,该年代—深度模型的计算结果与此前报道的结果[18]在年代误差允许范围内基本一致。
表 1 XL02孔岩心测年数据
实验室编号 样品深度/cm 14C年龄/a B.P. 校正年龄/cal a B.P. 测年材料 LUG12-111 30~35 7 232 ± 99 8 168~7 981 泥炭 LUG06-20 50~60 10 789 ± 106 12 814~12 635 泥炭 LAMS0728 65~66 14 000 ± 55 17 122~16 895 植物残体 LUG06-21 70~80 17 822 ± 151 21 550~21 096 泥炭 LAMS0741 120~121 25 585 ± 135 30 001~29 523 植物残体 LUG06-23 130~140 29 930 ± 351 33 445~32 729 泥炭 LUG12-106 180~185 33 636 ± 224 38 528~38 095 泥炭 LUG06-24 200~210 35 942 ± 398 41 471~40 832 泥炭 -
XL02岩心中的汞浓度和其他气候环境代用指标随深度变化情况如图3所示。总体来看,该岩心中汞浓度变化范围为0.80~6.57 µg/g,均值为2.72 µg/g。根据岩心中汞的分布情况,大致可将其划分为以下三个阶段:1)约40~29.5 cal ka B.P.,该时期汞浓度水平相对较低,介于1.30~3.40 µg/g,平均为2.38 µg/g;2)约29.5~21 cal ka B.P.,该时期汞浓度整体上呈现为高值阶段,介于1.354~6.565 µg/g,平均为4.568 µg/g;3)约6.9 cal ka B.P.,该时期汞浓度介于0.795~1.604 µg/g,处于整根岩心汞分布的最低水平,且没有较大波动。除了上述三个阶段性变化之外,XL02岩心中的汞浓度在约40 cal ka B.P.、28.5 cal ka B.P.、25 cal ka B.P.、22 cal ka B.P.等几个时期也表现出明显的高值。另外,同一岩心的孢粉、炭屑、有机碳同位素等结果此前均已有详细报道,本文在此不再赘述。
Deposition and Possible Influence Mechanism of Mercury in Northern Leizhou Peninsula over Past 40000 Years
-
摘要: 雷州半岛地处热带北缘,受东亚季风影响强烈。以取自雷州半岛北部下录地区的埋藏泥炭沉积作为研究材料,测试分析了该岩心的汞浓度及其分布情况,将测试结果与其他气候环境代用指标如孢粉、炭屑、烧失量(LOI)以及有机碳同位素(δ13Corg)等进行对比分析,讨论自MIS(Marine Isotope Stages)-3晚期(约40 cal ka B.P.)至全新世早期(约6.9 cal ka B.P.)区域气候与环境变化影响下的汞沉积过程及可能的影响机制。结果显示:近4万年以来,沉积物的汞浓度与乔木类孢粉浓度的变化较吻合,两者之间显示出较高的相关性,揭示了晚更新世晚期以来,森林群落作为重要的地表汞库,在地区汞沉积过程中起到固定、储存和传输作用。此外,汞浓度与岩心中炭屑沉积通量(指示了区域性野火发生状况)的变化存在相反趋势,反映了区域性野火活动对地表植被以及土壤有机质的焚毁破坏,造成地表汞向大气的释放,不利于汞在地表和沉积物中的沉积与保存。对比不同区域的汞沉积记录发现,晚更新世晚期以来,下录泥炭汞浓度记录与全球其他地区汞记录、粉尘记录等具有较高的相似度,特别是MIS-2时期均存在明显峰值,反映了全球气候变化影响下,大气粉尘沉降对地表汞的输送和沉积具有较大贡献。Abstract: Leizhou Peninsula is located in the northern tropics of China, which is strongly affected by the East Asian monsoon. A peat sediment core was drilled in Xialu, northern Leizhou Peninsula and the mercury concentration in the core was measured. Comparison and analysis are discussed regarding pollen concentration, charcoal concentration, loss on ignition (LOI) and organic carbon isotope (δ13Corg) in the core, the mercury deposition process and its possible impact mechanism driven by regional climate change from the late Marine Isotope Stages-3 (MIS-3) (~40 cal ka B.P.) to Early Holocene (~6.9 cal ka B.P.). The results show a high correlation between the mercury concentration and tree pollen concentration in the core, which may indicate that the forest community was the main mercury pool on the ground surface, storing and transporting atmospheric mercury during its deposition. Conversely, the opposite trend was evident for concentration of mercury compared to charcoal content (which indicates regional paleofire events), an indication that wildfires had burnt and destroyed forest and surface soil organic matter, causing the emission of mercury from the surface to the atmosphere, thus tending to prevent its deposition and storage in surface sediment. A comparison of mercury deposition records in different regions shows a close similarity between mercury records in Xialu peat sediments and those in other parts of the world. Records from the MIS-2 period in particular show synchronous typical peaks, indicating that atmospheric dust deposition contributed greatly to the transportation and deposition of surface mercury under the influence of global climate change.
-
Key words:
- peat deposition /
- mercury concentration /
- environment change /
- Leizhou Peninsula
-
图 3 XL02孔晚更新世晚期气候环境指标对比
(a)XL02孔汞浓度记录,蓝色虚线表示汞浓度平均水平;(b)有机碳同位素(δ13Corg)组成[19];(c)烧失量[22];(d)乔木类孢粉浓度[18];(e)炭屑沉积通量[17];(f)锶同位素比值(87Sr/86Sr)[23]
Figure 3. Late Pleistocene environment and climate indices for core XL02
(a) mercury concentration record for core XL02 (blue dotted line = average concentration); (b) organic carbon isotope (δ13Corg) composition[19]; (c) percentage loss on ignition (LOI)[22]; (d) tree pollen concentration[18]; (e) charcoal accumulation flux[17]; (f) 87Sr/86Sr ratios[23]
图 4 XL02岩心汞浓度与其他区域古气候记录对比
(a)三宝洞石笋δ18O记录所反映的降水强弱变化[35];(b)洛川黄土剖面的石英中值粒径(QMD)记录[36];(c)NGRIP大气粉尘记录[37];(d)XL02岩心汞记录;(e)XL02岩心汞浓度与烧失量标准化之比(Hg/LOI);(f),(g)均为南极冰芯Dome C汞记录[7,34]
Figure 4. Comparison of Hg concentration in core XL02 with paleoclimate records from other regions
(a) changes in precipitation intensity from δ18O record from stalagmite in Sanbao cave[35]; (b) quartz median diameter (QMD) record from Luochuan loess profile[36]; (c) NGRIP dust concentration record[37]; (d) Hg concentration record in core XL02; (e) ratio of standardized Hg concentration to loss on ignition in core XL02; (f, g) Hg concentration records in Dome C for Antarctic ice core[7,34]
表 1 XL02孔岩心测年数据
实验室编号 样品深度/cm 14C年龄/a B.P. 校正年龄/cal a B.P. 测年材料 LUG12-111 30~35 7 232 ± 99 8 168~7 981 泥炭 LUG06-20 50~60 10 789 ± 106 12 814~12 635 泥炭 LAMS0728 65~66 14 000 ± 55 17 122~16 895 植物残体 LUG06-21 70~80 17 822 ± 151 21 550~21 096 泥炭 LAMS0741 120~121 25 585 ± 135 30 001~29 523 植物残体 LUG06-23 130~140 29 930 ± 351 33 445~32 729 泥炭 LUG12-106 180~185 33 636 ± 224 38 528~38 095 泥炭 LUG06-24 200~210 35 942 ± 398 41 471~40 832 泥炭 -
[1] Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics, 1998, 29: 543-566. [2] Selin N E. Global biogeochemical cycling of mercury: A review[J]. Annual Review of Environment and Resources, 2009, 34(1): 43-63. [3] Shen J, Algeo T J, Chen J B, et al. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters, 2019, 511: 130-140. [4] Shen J, Feng Q L, Algeo T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J]. Earth and Planetary Science Letters, 2020, 543: 116333. [5] Pérez-Rodríguez M, Horák-Terra I, Rodríguez-Lado L, et al. Long-term (~57 ka) controls on mercury accumulation in the souther hemisphere reconstructed using a peat record from pinheiro mire (minas gerais, brazil)[J]. Environmental Science & Technology, 2015, 49(3): 1356-1364. [6] Fadina O A, Venancio I M, Belem A, et al. Paleoclimatic controls on mercury deposition in northeast Brazil since the Last Interglacial[J]. Quaternary Science Reviews, 2019, 221: 105869. [7] Jitaru P, Gabrielli P, Marteel A, et al. Atmospheric depletion of mercury over Antarctica during glacial periods[J]. Nature Geoscience, 2009, 2(7): 505-508. [8] Obrist D. Atmospheric mercury pollution due to losses of terrestrial carbon pools?[J]. Biogeochemistry, 2007, 85(2): 119-123. [9] Wang X, Yuan W, Lin C J, et al. Climate and vegetation as primary drivers for global mercury storage in surface soil[J]. Environmental Science & Technology, 2019, 53(18): 10665-10675. [10] Wang X, Luo J, Yin R S, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau[J]. Environmental Science & Technology, 2017, 51(2): 801-809. [11] Wang X, Yuan W, Lin C J, et al. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence[J]. Environmental Science & Technology, 2020, 54(13): 8083-8093. [12] Mailman M, Bodaly R A. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in northwestern Ontario[J]. Environmental Pollution, 2005, 138(1): 161-166. [13] Campos I, Vale C, Abrantes N, et al. Effects of wildfire on mercury mobilisation in eucalypt and pine forests[J]. CATENA, 2015, 131: 149-159. [14] 侍文芳,冯新斌,张干,等. 150年以来红原雨养型泥炭中高分辨的汞同位素沉积记录[J]. 科学通报,2011,56(8):583-588. Shi Wenfang, Feng Xinbin, Zhang Gan, et al. High-precision measurement of mercury isotope records of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan province, China[J]. Chinese Science Bulletin, 2011, 56(8): 583-588. [15] 李远平,马春梅,朱诚,等. 大九湖泥炭地距今16000年以来Hg沉积记录及影响因子[J]. 中国环境科学,2017,37(3):1103-1110. Li Yuanping, Ma Chunmei, Zhu Cheng, et al. Long-term (16000yr) controls on mercury accumulation reconstructed using a peat record from Dajiuhu mire, central China[J]. China Environmental Science, 2017, 37(3): 1103-1110. [16] Zaarur S, Stein M, Adam O, et al. Late Quaternary climate in southern China deduced from Sr-Nd isotopes of Huguangyan Maar sediments[J]. Earth and Planetary Science Letters, 2018, 496: 10-19. [17] Xue J B, Zhong W, Xie L C, et al. Millennial-scale variability in biomass burning covering the interval ~41,000-7050 cal BP in the tropical Leizhou Peninsula (south China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 344-351. [18] Xue J B, Zhong W, Xie L C, et al. Vegetation responses to the last glacial and Early Holocene environmental changes in the northern Leizhou Peninsula, south China[J]. Quaternary Research, 2015, 84(2): 223-231. [19] Xue J B, Zhong W, Cao J Y. Changes in C3 and C4 plant abundances reflect climate changes from 41,000 to 10,000 yr ago in northern Leizhou Peninsula, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 396: 173-182. [20] Sanei H, Grasby S E, Beauchamp B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66. [21] Reimer P J, Austin W E N, Bard E, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757. [22] 钟巍,薛积彬,甄治国,等. 雷州半岛北部晚更新世晚期气候环境变化的泥炭沉积记录[J]. 海洋地质与第四纪地质,2007,27(6):97-104. Zhong Wei, Xue Jibin, Zhen Zhiguo, et al. The climatic changes during late Late-Pleistocene indicated by peat deposit in the north Leizhou peninsula[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 97-104. [23] 钟巍,陈援翰,魏志强,等. 近50ka以来雷州半岛北部泥炭序列87Sr/86Sr比值变化的环境意义研究[J]. 华南师范大学学报(自然科学版),2018,50(5):89-97. Zhong Wei, Chen Yuanhan, Wei Zhiqiang, et al. The paleoenvironmental significance of 87Sr/86Sr derived from peat successions over the Past ~50 000 years on northern Leizhou Peninsula, North Tropic China[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(5): 89-97. [24] Friedli H R, Radke L F, Lu J Y, et al. Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements[J]. Atmospheric Environment, 2003, 37(2): 253-267. [25] Enrico M, Roux G L, Marusczak N, et al. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition[J]. Environmental Science & Technology, 2016, 50(5): 2405-2412. [26] 黄银晓,林舜华,姚依群,等. 植物对汞的吸收和反应[J]. 植物学通报,1983(1):47-49. Huang Yinxiao, Lin Shunhua, Yao Yiqun, et al. The absorption and response of plants to mercury[J]. Botany Bulletin, 1983(1): 47-49. [27] Obrist D, Johnson D W, Lindberg S E, et al. Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils[J]. Environmental Science & Technology, 2011, 45(9): 3974-3981. [28] Leonard T L, Taylor G E, Gustin M S, et al. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere[J]. Environmental Toxicology and Chemistry, 1998, 17(10): 2063-2071. [29] Leonard T L, Taylor G E, Gustin M S, et al. Mercury and plants in contaminated soils: 2. Environmental and physiological factors governing mercury flux to the atmosphere[J]. Environmental Toxicology and Chemistry, 1998, 17(10): 2072-2079. [30] Burke M P, Hogue T S, Ferreira M, et al. The effect of wildfire on soil mercury concentrations in southern California watersheds[J]. Water, Air, & Soil Pollution, 2010, 212(1): 369-385. [31] Certini G. Effects of fire on properties of forest soils: A review[J]. Oecologia, 2005, 143(1): 1-10. [32] 刘发林,陈小伟,曾素平,等. 火干扰对森林土壤斥水性的影响研究进展[J]. 生态学报,2019,39(5):1846-1852. Liu Falin, Chen Xiaowei, Zeng Suping, et al. Progress of the effects of fire disturbance on forest soil water repellency[J]. Acta Ecologica Sinica, 2019, 39(5): 1846-1852. [33] Obrist D, Kirk J L, Zhang L, et al. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use[J]. Ambio, 2018, 47(2): 116-140. [34] Vandal G M, Fitzgerald W F, Boutron C F, et al. Variations in mercury deposition to Antarctica over the past 34,000 years[J]. Nature, 1993, 362(6421): 621-623. [35] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. [36] Xiao J L, An Z S, Liu T S, et al. East Asian monsoon variation during the last 130,000 years: Evidence from the Loess Plateau of central China and Lake Biwa of Japan[J]. Quaternary Science Reviews, 1999, 18(1): 147-157. [37] Ruth U, Bigler M, Röthlisberger R, et al. Ice core evidence for a very tight link between North Atlantic and East Asian glacial climate[J]. Geophysical Research Letters, 2007, 34(3): L03706. [38] Charbonnier G, Adatte T, Föllmi K B, et al. Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic‐rich sediments and its Implications for deep‐time investigations[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008707. [39] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. [40] 程海,艾思本,王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究,2005,25(2):157-163. Cheng Hai, Edwards R L, Wang Xianfeng, et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Sciences, 2005, 25(2): 157-163. [41] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77. [42] 刘毅,孙立广,罗宇涵,等. 南海湖泊沉积物中的陆源粉尘记录[J]. 海洋地质与第四纪地质,2013,33(3):1-8. Liu Yi, Sun Liguang, Luo Yuhan, et al. Records of terrigenous dust in lacustrine sediments from Dongdao Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 1-8. [43] Pérez-Rodríguez M, Margalef O, Corella J P, et al. The role of climate: 71 ka of atmospheric mercury deposition in the southern hemisphere recorded by Rano Aroi Mire, Easter Island (Chile)[J]. Geosciences, 2018, 8(10): 374. [44] Figueiredo T S, Santos T P, Costa K B, et al. Effect of deep Southwestern Subtropical Atlantic Ocean circulation on the biogeochemistry of mercury during the last two glacial/interglacial cycles[J]. Quaternary Science Reviews, 2020, 239: 106368. [45] Goodsite M E, Plane J M C, Skov H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere[J]. Environmental Science & Technology, 2004, 38(6): 1772-1776. [46] Martı́nez-Cortizas A, Pontevedra-Pombal X, Garcı́a-Rodeja E, et al. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition[J]. Science, 1999, 284(5416): 939-942. [47] Stern G A, Macdonald R W, Outridge P M, et al. How does climate change influence arctic mercury?[J]. Science of the Total Environment, 2012, 414: 22-42.