Evaluation of Shale Pore Connectivity and Effectiveness in the Jiaoshiba Area, Sichuan Basin
-
摘要: 页岩孔隙连通性直接影响油气分子在储层内的运移,从而控制页岩气产出的难易程度,是评价页岩气勘探开发潜力的重要参数之一。以焦石坝地区两口关键井(JYA井和JYB井)五峰组—龙马溪组主力层段页岩为例,开展柱塞样的氦气孔隙度与饱和盐水后的核磁共振孔隙度实验,确定页岩储层孔隙连通性特征,探讨孔隙连通性对页岩气开发的影响。研究结果显示:1)氦气膨胀法主要识别页岩储层中的连通孔隙,而核磁共振法可有效反映样品整体的孔隙空间,两者的比值可量化表征页岩孔隙连通性;2)JYA井氦气孔隙度和核磁孔隙度差异较小,具有强烈的正相关关系,页岩样品整体以连通孔隙为主,连通孔隙占比为69.13%~94.94%,平均为85.12%;3)JYB井页岩孔隙连通性相对较差,连通孔隙占比为36.15%~81.71%,均值为58.19%,仅依靠连通孔隙无法充分反映页岩样品的真实孔隙度,导致氦气孔隙度和核磁孔隙度无明显线性关系。纳米CT三维成像技术模拟的孔隙连通性特征及研究样品的脉冲渗透率差异证实了研究结果的有效性。Abstract: Shale pore connectivity directly affects the migration of oil and gas in a reservoir, thus influencing the level of difficulty in shale gas production. It is an important consideration in the evaluation of exploration and development potential of shale gas. Samples from two key wells (JYA and JYB) in the Jiaoshiba area of the Sichuan Basin were tested by helium porosity of plunger samples and nuclear magnetic resonance (NMR) saturated brine porosity to determine the pore connectivity of shale in the reservoir; the influence of pore connectivity on shale gas development is discussed. The results show that the helium expansion method mainly identifies the connected pores in the shale, while the NMR test reflects the overall pore space of the sample. Thus, the ratio of helium porosity to NMR porosity quantitatively characterizes pore connectivity. Only a small difference was found between helium porosity and NMR porosity in well JYA, and they both have a strong positive correlation, suggesting that the pores are mainly connected (69.13%-94.94%, average 85.12%). Conversely, the pore connectivity of shale samples from well JYB was relatively poor (about 36.15%-81.71%, average 58.19%). Therefore, the proportion of connected pores does not fully reflect the true porosity of these samples, and no obvious linear relationship was evident in either the helium porosity or the NMR porosity. These findings were confirmed by nano-computed tomography (nano-CT) and pulse permeability difference tests.
-
Key words:
- shale gas /
- porosity /
- pore connectivity /
- Jiaoshiba area /
- Sichuan Basin
-
-
[1] Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346. [2] Xu S, Gou Q Y, Hao F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition?[J]. Marine and Petroleum Geology, 2020, 114: 104211. [3] 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发,2018,45(4):561-574. Ma Yongsheng, Cai Xunyu, Zhao Peirong. China’s shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. [4] 赵文智,贾爱林,位云生,等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探,2020,25(1):31-44. Zhao Wenzhi, Jia Ailin, Wei Yunsheng, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020, 25(1): 31-44. [5] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12. Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. [6] 吴松涛,朱如凯,李勋,等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘,2018,25(2):191-203. Wu Songtao, Zhu Rukai, Li Xun, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018, 25(2): 191-203. [7] Hu Q H, Zhou W, Huggins P, et al. Pore structure and fluid uptake of the Springer/Goddard shale formation in southeastern Oklahoma, USA[J]. Geofluids, 2018, 2018: 5381735. [8] 宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324. Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic⁃rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324. [9] Gao Z Y, Hu Q H, Liang H C. Gas diffusivity in porous media: Determination by mercury intrusion porosimetry and correlation to porosity and permeability[J]. Journal of Porous Media, 2013, 16(7): 607-617. [10] 苟启洋,徐尚,郝芳,等. 纳米CT页岩孔隙结构表征方法:以JY-1井为例[J]. 石油学报,2018,39(11):1253-1261. Gou Qiyang, Xu Shang, Hao Fang, et al. Characterization method of shale pore structure based on nano-CT: A case study of well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261. [11] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36. Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. [12] 苟启洋,徐尚,郝芳,等. 基于灰色关联的页岩储层含气性综合评价因子及应用:以四川盆地焦石坝区块为例[J]. 天然气地球科学,2019,30(7):1045-1052. Gou Qiyang, Xu Shang, Hao Fang, et al. A comprehensive evaluation index of gas-bearing property of shale reservoirs based on grey relation and its application: Case study of Jiaoshiba area, Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(7): 1045-1052. [13] 刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报,2015,33(4):817-827. Liu Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827. [14] Gou Q Y, Xu S, Hao F, et al. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan Basin, China[J]. Fuel, 2019, 253: 167-179. [15] Wang Y X, Xu S, Hao F, et al. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, Southwest China: Implications for organic matter differential accumulation[J]. Marine and Petroleum Geology, 2019, 102: 138-154. [16] 付永红,司马立强,张楷晨,等. 页岩岩心气测孔隙度测量参数初探与对比[J]. 特种油气藏,2018,25(3):144-148,174. Fu Yonghong, Sima Liqiang, Zhang Kaichen, et al. Preliminary study and comparison of shale core gas-porosity test parameters[J]. Special Oil and Gas Reservoirs, 2018, 25(3): 144-148, 174. [17] 杨巍,薛莲花,唐俊,等. 页岩孔隙度测量实验方法分析与评价[J]. 沉积学报,2015,33(6):1258-1264. Yang Wei, Xue Lianhua, Tang Jun, et al. Analysis and evaluation of different measuring methods for shale porosity[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1258-1264. [18] 姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报,2018,43(1):181-189. Yao Yanbin, Liu Dameng. Petrophysical properties and fluids transportation in gas shale: A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181-189. [19] 李新,刘鹏,罗燕颖,等. 页岩气储层岩心孔隙度测量影响因素分析[J]. 地球物理学进展,2015,30(5):2181-2187. Li Xin, Liu Peng, Luo Yanying, et al. Analysis of influencing factors on porosity measurement of shale gas reservoir core[J]. Progress in Geophysics, 2015, 30(5): 2181-2187. [20] Gou Q Y, Xu S, Hao F, et al. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation[J]. Energy, 2021, 219: 119579. [21] Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures[J]. Energy & Fuels, 2013, 27(6): 3039-3049. [22] 游利军,谢本彬,杨建,等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业,2018,38(12):61-69. You Lijun, Xie Benbin, Yang Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61-69. [23] 张海杰,蒋裕强,周克明,等. 页岩气储层孔隙连通性及其对页岩气开发的启示:以四川盆地南部下志留统龙马溪组为例[J]. 天然气工业,2019,39(12):22-31. Zhang Haijie, Jiang Yuqiang, Zhou Keming, et al. Connectivity of pores in shale reservoirs and its implications for the development of shale gas: A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 22-31. [24] 肖佃师,卢双舫,房大志,等. 海相高成熟页岩气储层孔隙连通关系:以彭水地区龙马溪组为例[J]. 油气藏评价与开发,2019,9(5):45-53. Xiao Dianshi, Lu Shuangfang, Fang Dazhi, et al. Pore connectivity of marine high-maturity shale gas reservoirs: A case study in Longmaxi Formation, Pengshui area[J]. Reservoir Evaluation and Development, 2019, 9(5): 45-53.