-
通过沉积结构与构造来推断沉积环境是沉积学中的一种方法[160]。研究表明,不同蒸发岩相的蒸发盐类型多样,产状,沉积构造复杂多变,此外还有不同的盐类矿物组合沉积出现,因此不同的盐类构造和类型往往代表着不同的沉积环境和沉积相,可以作为沉积相和环境划分的重要标志。不同环境中可能有相同的蒸发矿物和结构,如纹层状石膏可以存在于深湖或远洋环境,滑塌构造可能是海相也可能是非海相,大部分原生石盐在内陆盐湖和海相萨布哈环境都可以沉积。因此单个岩相不能确定沉积环境,需要通过岩相组合判断环境动力条件推测沉积环境(表1)。梳理本文相类型、岩相、结构总结不同环境的相组合如下。
表 1 蒸发岩相组合与沉积环境的划分
相 亚相 岩相组合 海相 萨布哈 Ct,Dl,Mm/Mlb,Gm,Gbg,Gs,GSm,GSx,Alb,Gf/Gp,Gn/An,Gmn,SGl,SGn,Hc,Hh,Hpt,Hfb,Hk,Hog,Hs,Hbc,Sah,DG,Hht,PG 潮上带 Cp,Ct,Dl,Dal,De,Dc,Ml,Hs,Gr,Sm/Sag,Gs,Alb,Gn/An,Hc,Hh,Hr,Hrc,DG,GDc 潮间—潮下带 Smc,Scc,Co,Dg,Ds,DG,Sva,Gss,Ssl,Ss,Gg,Ai/Ac,Gef,Am,Aab 半深海—深海 Ga/Gr,Gt/Gb,GO,Gmb,Ab,Amn,Has,Apl 陆相 大陆萨布哈 Dl,Mm/Mlb,Trp,Tu,Gm,Gbg,Gf/Gp,GSm,GSx,Gn/An,Gmn,Gnl,SGn,SGm,SGa,Ml,Hh,Hr,Hpt,Hfb,Hk,Hog, Hs,Hbc,Sah,Hm,Hht,GLm,Glc-Ⅱ,MA,Db 滨湖 Slb,Ctc,Scd,Co,Dl,Aha,Hs,Tb,Tm,Tgl,Trp,Tu,Nl,Go,Sm/Sag,Ssl,Ss,Gbl, Gmn,GLc-Ⅰ,Glc-Ⅱ, Hc,Hh,Hr,Hrc,Ho,GDc,GLc-Ⅲ,GLm 浅湖 Cmt,Rsad,Nm,Gc,Gbl,Gg,GLc-Ⅲ,Tl 半深湖—深湖 Cmt,Cl,Atd,Glp,Gt/Gb,Gmb,Has,Apl,Ab,Ga/Gr,GO
Evaporite Sedimentary Characteristics and Environment: A review
-
摘要: 蒸发岩是由于蒸发作用从卤水中化学作用沉淀出来的一种含盐岩类,明显受控于沉积环境。蒸发岩是重要战略资源和优质的储层之一,中国的矿床和石油学界都在致力于寻找大型蒸发岩矿床。近几十年来国内外学者都对不同类型的蒸发岩做了地区性的研究,提供了丰富的实际资料,对蒸发岩成矿沉积环境理论也有相应的修正和补充,但是蒸发岩分类繁多,成因复杂,国内对蒸发岩岩相及其常见组合所对应的环境综合解释并未具体着墨。通过梳理国内外有关蒸发岩文献、应用Miall构架单元理论,从结构、构造整理了29种碳酸型、37种硫酸型、11种氯化物型以及13种混合蒸发盐型岩相与其对应的沉积环境与岩相组合。蒸发沉积环境按海相和陆相划分,亚相细分为萨布哈、潮上带、潮间带—潮下带和半深海—深海环境,以及陆内萨布哈(包括干盐湖)、滨湖、浅湖和半深湖—深湖,对每一个亚相出现的常见蒸发岩组合进行了概述,这对中国进一步寻找大型蒸发岩矿床具有重要的借鉴意义。Abstract: Evaporites are salt-bearing rocks precipitated from saline water, influenced by their sedimentary environment. They are among the most important strategic high-quality reservoirs of hydrocarbon resources. Regional studies of evaporites in China and globally have produced abundant observational data that gives a revised understanding of the sedimentary environments of evaporites; however, the origins of the many kinds of evaporites are complex, and in China no overall environmental interpretation of evaporite facies and associated common assemblages has previously been determined. The present conclusive study of the structure and texture of evaporites worldwide, adopting the architectural-element analysis approach proposed by Miall (1985), produced 29 classes of carbonate lithofacies, 37 sulfuric acid lithofacies, 11 chloride lithofacies and 13 mixed evaporite lithofacies, together with their sedimentary environments and associations in marine and terrestrial deposits. These are subdivided into marine sabkhas (supratidal mudflat or sandflat), supratidal zone, intertidal/subtidal zone, and semi-deep and deep-sea environments; and continental sabkhas, shore, shallow lake and semi-deep to deep lake environments. The common evaporite lithofacies association in each subfacies is summarized, providing an important reference for future evaporite deposit exploration in China.
-
表 1 蒸发岩相组合与沉积环境的划分
相 亚相 岩相组合 海相 萨布哈 Ct,Dl,Mm/Mlb,Gm,Gbg,Gs,GSm,GSx,Alb,Gf/Gp,Gn/An,Gmn,SGl,SGn,Hc,Hh,Hpt,Hfb,Hk,Hog,Hs,Hbc,Sah,DG,Hht,PG 潮上带 Cp,Ct,Dl,Dal,De,Dc,Ml,Hs,Gr,Sm/Sag,Gs,Alb,Gn/An,Hc,Hh,Hr,Hrc,DG,GDc 潮间—潮下带 Smc,Scc,Co,Dg,Ds,DG,Sva,Gss,Ssl,Ss,Gg,Ai/Ac,Gef,Am,Aab 半深海—深海 Ga/Gr,Gt/Gb,GO,Gmb,Ab,Amn,Has,Apl 陆相 大陆萨布哈 Dl,Mm/Mlb,Trp,Tu,Gm,Gbg,Gf/Gp,GSm,GSx,Gn/An,Gmn,Gnl,SGn,SGm,SGa,Ml,Hh,Hr,Hpt,Hfb,Hk,Hog, Hs,Hbc,Sah,Hm,Hht,GLm,Glc-Ⅱ,MA,Db 滨湖 Slb,Ctc,Scd,Co,Dl,Aha,Hs,Tb,Tm,Tgl,Trp,Tu,Nl,Go,Sm/Sag,Ssl,Ss,Gbl, Gmn,GLc-Ⅰ,Glc-Ⅱ, Hc,Hh,Hr,Hrc,Ho,GDc,GLc-Ⅲ,GLm 浅湖 Cmt,Rsad,Nm,Gc,Gbl,Gg,GLc-Ⅲ,Tl 半深湖—深湖 Cmt,Cl,Atd,Glp,Gt/Gb,Gmb,Has,Apl,Ab,Ga/Gr,GO -
[1] Warren J K. Evaporites: A geological compendium[M]. 2nd ed. Switzerland: Springer, 2016. [2] 刘成林,焦鹏程,王弭力. 盆地钾盐找矿模型探讨[J]. 矿床地质,2010,29(4):581-592. Liu Chenglin, Jiao Pengcheng, Wang Mili. A tentative discussion on exploration model for potash deposits in basins of China[J]. Mineral Deposits, 2010, 29(4): 581-592. [3] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268. [4] Peterson J A, Hite R J. Pennsylvanian evaporite-carbonate cycles and their relation to petroleum occurrence, southern Rocky Mountains[J]. AAPG Bulletin, 1969, 53(4): 884-908. [5] Middleton G V. Johannes Walther's law of the correlation of facies[J]. Geological Society of America Bulletin, 1973, 84(3): 979-988. [6] Zheng M, Hou X, Zhang Y, et al. Progress in the investigation of potash resources in western China[J]. China Geology, 2018, 1(3): 392-401. [7] Hsü K J, Montadert L, Bernoulli D, et al. History of the Mediterranean salinity crisis[J]. Nature, 1977, 267: 399-403. [8] Borchert H, Muir R O. Salt deposits: The origin, metamorphism and deformation of evaporites[M]. London: Van Nostrand, 1964. [9] Hsü K J, Ryan W B F, Cita M B. Late Miocene desiccation of the mediterranean[J]. Nature, 1973, 242(5395): 240-244. [10] Hsü K J. The Messinian salinity crisis: Evidence of Late Miocene eustatic changes in the world ocean[J]. Naturwissenschaften, 1978, 65(3): 151. [11] Cita M B, McRenzie J A. The terminal Miocene event[M]//Hsü K J. Mesozoic and Cenozoic oceans. Washington: American Geophysical Union, 1986: 123-140. [12] Martín J, Braga J C. Messinian events in the sorbas Basin in southeastern spain and their implications in the recent history of the mediterranean[J]. Sedimentary Geology, 1994, 90(3/4): 257-268. [13] [14] Kendall A C. Facies models 12. Subaqueous evaporites [M]// Walker R G. Facies models. Geoscience Canada, 1978, 5(3):124-139. [15] Warren J K. Evaporites: Sediments, resources and hydrocarbons[M]. Berlin, Heidelberg: Springer, 2006. [16] El Tabakh M, Schreiber B C, Warren J K. Origin of fibrous gypsum in the Newark rift Basin, eastern North America[J]. Journal of Sedimentary Research, 1998, 68(1): 88-99. [17] Stefano L, Vinicio M, Marco R. Charlotte S B. The primary Lower gypsum in the mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(1): 83-99. [18] Al Rajaibi I M, Hollis C, Macquaker J H. Origin and variability of a terminal Proterozoic primary silica precipitate, Athel Silicilyte, South Oman salt Basin, Sultanate of Oman[J]. Sedimentology, 2015, 62(3): 793-825. [19] Buick R, Dunlop J S R. Evaporitic sediments of early archaean age from the warrawoona group, North Pole, western Australia[J]. Sedimentology, 1990, 37(2): 247-277. [20] Ortí F, Rosell L. Evaporative systems and diagenetic patterns in the Calatayud Basin (Miocene, central Spain)[J]. Sedimentology, 2000, 47(3): 665-685. [21] Alonso‐Zarza A M, Sánchez‐Moya Y, Bustillo M A, et al. Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: An example of meteoric‐dominated diagenesis from the Triassic of central Spain[J]. Sedimentology, 2002, 49(2): 303-317. [22] Manzi V, Lugli S, Lucchi F R, et al. Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): Did the Mediterranean ever dry out?[J]. Sedimentology, 2005, 52(4): 875-902. [23] Tekin E, Varol B, Ayyıldız T. Sedimentology and paleoenvironmental evolution of Messinian evaporites in the Iskenderun–Hatay Basin complex, southern Turkey[J]. Sedimentary Geology, 2010, 229(4): 282-298. [24] Morsilli M, Bosellini F R, Pomar L, et al. Mesophotic coral buildups in a prodelta setting (Late Eocene, southern Pyrenees, Spain): A mixed carbonate–siliciclastic system[J]. Sedimentology, 2012, 59(3): 766-794. [25] Ortí F, Rosell L, Playà E, et al. Meganodular anhydritization: A new mechanism of gypsum to anhydrite conversion (Palaeogene–Neogene, Ebro Basin, North‐east Spain)[J]. Sedimentology, 2012, 59(4): 1257-1277. [26] Benavente C, Mancuso A, Cabaleri N, et al. Comparison of lacustrine successions and their palaeohydrological implications in two sub‐basins of the Triassic Cuyana rift, Argentina[J]. Sedimentology, 2015, 62(7): 1771-1813. [27] 张彭熹. 中国蒸发岩研究中几个值得重视的地质问题的讨论[J]. 沉积学报,1992,10(3):78-84. Zhang Pengxi. Discussion on some geological problems of the research of evaporite in China[J]. Acta Sedimentologica Sinica, 1992, 10(3): 78-84. [28] 宣之强,王连第. 中国钾盐50年[J]. 化工矿产地质,1999,21(3):181-187. Xuan Zhiqiang, Wang Liandi. 50 years of Chinese potassium industry[J]. Geology of Chemical Minerals, 1999, 21(3):181-187. [29] 袁见齐. 钾盐专辑第1辑[M]. 北京:中国工业出版社,1963. Yuan Jianqi. Potash album No.1[M]. Beijing: China Industrial Industry Press, 1963. [30] 袁见齐. 钾肥与钾盐矿床[M]. 北京:石油化学工业出版社,1977. Yuan Jianqi. Potash fertilizer and potash deposits[M]. Beijing: Petrochemical Industry Press, 1977. [31] Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308. [32] Bowlin E M, Klaus J S, Foster J S, et al. Environmental controls on microbial community cycling in modern marine stromatolites[J]. Sedimentary Geology, 2012, 263-264: 45-55. [33] Visscher P T, Reid R P, Bebout B M. Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites[J]. Geology, 2000, 28(10): 919-922. [34] Allen M A, Goh F, Burns B P, et al. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay[J]. Geobiology, 2009, 7(1): 82-96. [35] Reid R P, James N P, Macintyre I G, et al. Shark Bay stromatolites: Microfabrics and reinterpretation of origins[J]. Facies, 2003, 49(1): 299. [36] Jahnert R J, Collins L B. Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia[J]. Marine Geology, 2012, 303-306: 115-136. [37] Walter M R, Golubic S, Preiss W V. Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia[J]. Journal of Sedimentary Research, 1973, 43(4): 1021-1030. [38] Warren J K. Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia[J]. Journal of Sedimentary Research, 1990, 60(6): 843-858. [39] Halley R B. Textural variation within Great Salt Lake algal mounds[J]. Developments in Sedimentology, 1976, 20: 435-445. [40] Pedone V A, Folk R L. Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah[J]. Geology, 1996, 24(8): 763-765. [41] Pedone V A, Dickson J A D. Replacement of aragonite by quasi-rhombohedral dolomite in a Late Pleistocene tufa mound, Great Salt Lake, Utah, U.S.A.[J]. Journal of Sedimentary Research, 2000, 70(5): 1152-1159. [42] Farías M E, Poiré D G, Arrouy M J, et al. Modern stromatolite ecosystems at alkaline and hypersaline high-altitude lakes in the Argentinean Puna[M]//Tewari V, Seckbach J. STROMATOLITES: Interaction of microbes with sediments. Dordrecht: Springer, 2011: 427-441. [43] Laval B, Cady S L, Pollack J C, et al. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804): 626-629. [44] Gerdes G, Dunajtschik‐Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6): 1273-1294. [45] Mazzullo S J, Birdwell B A. Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings[J]. Journal of Sedimentary Research, 1989, 59(4): 605-611. [46] Williamson C R, Picard M D. Petrology of carbonate rocks of the Green River Formation (Eocene)[J]. Journal of Sedimentary Research, 1974, 44(3): 738-759. [47] Milroy P G, Wright V P. A highstand oolitic sequence and associated facies from a Late Triassic lake basin, south‐west England[J]. Sedimentology, 2000, 47(1): 187-209. [48] Husinec A, Read J F. Transgressive oversized radial ooid facies in the Late Jurassic Adriatic Platform interior: Low-energy precipitates from highly supersaturated hypersaline waters[J]. GSA Bulletin, 2006, 118(5/6): 550-556. [49] Winland H D, Matthews R K. Origin and significance of grapestone, Bahama Islands[J]. Journal of Sedimentary Research, 1974, 44(3): 921-927. [50] Hird K, Tucker M E. Contrasting diagenesis of two Carboniferous oolites from South Wales: A tale of climatic influence[J]. Sedimentology, 1988, 35(4): 587-602. [51] Lokier S, Steuber T. Large‐scale intertidal polygonal features of the Abu Dhabi coastline[J]. Sedimentology, 2009, 56(3): 609-621. [52] Garber R A, Levy Y, Friedman G M. The sedimentology of the Dead Sea[J]. Carbonates and Evaporites, 1987, 2(1): 43-57. [53] 华东石油学院岩矿教研室. 沉积岩石学[M]. 北京:石油工业出版社,1982:177-221. Department of Rock and Mineral Resources, East China Petroleum UniversityFeng Zengzhao. Sedimentary petrology (volume 1)-introduction to carbonate rocks [M]. Beijing: Petroleum Industry Press, 1982:, 177-221. [54] Purser B H, Tucker M E, Zenger D H. Problems, progress and future research concerning dolomites and dolomitization[M]//Purser B, Tucker M, Zenger D. Dolomites: A volume in honour of dolomieu. Hoboken: The International Association of Sedimentologists, 1994: 3-20. [55] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. [56] Braithwaite C J R, Rizzi G, Darke G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs[M]. Bath: Geological Society of London, 2004: 99-139. [57] 汤朝阳,王敏,姚华舟,等. 白云石化作用及白云岩问题研究述评[J]. 东华理工学院学报,2006,29(3):205-210. Tang Zhaoyang, Wang Min, Yao Huazhou, et al. Current topics about dolomitization and the problem of dolostones[J]. Journal of East China Institute of Technology, 2006, 29(3): 205-210. [58] 赫云兰,刘波,秦善. 白云石化机理与白云岩成因问题研究[J]. 北京大学学报(自然科学版),2010,46(6):1010-1020. He Yunlan, Liu Bo, Qin Shan. Study on the dolomitization and dolostone genesis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6): 1010-1020. [59] 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010:226-261. Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 226-261. [60] 廖静,董兆雄,翟桂云,等. 渤海湾盆地歧口凹陷沙河街组一段下亚段湖相白云岩及其与海相白云岩的差异[J]. 海相油气地质,2008,13(1):18-24. Liao Jing, Dong Zhaoxiong, Zhai Guiyun, et al. Feature of Oligocene shahejie Lower-1st member lacustrine Dolostone in qikou Depression, Bohaiwan Basin, and difference of it from marine dolostone[J]. Marine Origin Petroleum Geology, 2008, 13(1): 18-24. [61] 沈安江,郑剑锋,潘文庆,等. 塔里木盆地下古生界白云岩储层类型及特征[J]. 海相油气地质,2009,14(4):1-9. Shen Anjiang, Zheng Jianfeng, Pan Wenqing, et al. Types and the characteristics of Lower Paleozoic dolostone reservoirs in Tarim Basin[J]. Marine Origin Petroleum Geology, 2009, 14(4): 1-9. [62] 刘春,张惠良,张荣虎,等. 库车坳陷古近系白云岩地球化学特征及成因[J]. 沉积学报,2010,28(3):518-524. Liu Chun, Zhang Huiliang, Zhang Ronghu, et al. Geochemistry characteristic and origin of Paleogene dolomite in Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 518-524. [63] 张婷婷,刘波,秦善. 川东北二叠系—三叠系白云岩成因研究[J]. 北京大学学报(自然科学版),2008,44(5):799-809. Zhang Tingting, Liu Bo, Qin Shan. The origin of Permian and Triassic Dolostones in Northeastern Sichuan province, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(5): 799-809. [64] 顾家裕. 塔里木盆地下奥陶统白云岩特征及成因[J]. 新疆石油地质,2000,21(2):120-122. Gu Jiayu. Characteristics and origin analysis of dolomite in Lower Ordovician of Tarim Basin[J]. Xinjiang Petroleum Geology, 2000, 21(2): 120-122. [65] 陈永权,周新源,赵葵东,等. 塔里木盆地塔中1井藻纹层白云岩与竹叶状白云岩成因:基于岩石学、元素与同位素地球化学的厘定[J]. 地质学报,2008,82(6):826-834. Chen Yongquan, Zhou Xinyuan, Zhao Kuidong, et al. Geochemical research on straticulate dolostone and spatulate dolostone in Lower Ordovician strata of well Tazhong-1, Tarim Basin[J]. Acta Geologica Sinica, 2008, 82(6): 826-834. [66] Melezhik V A, Fallick A E, Medvedev P V, et al. Palaeoproterozoic magnesite: Lithological and isotopic evidence for playa/sabkha environments[J]. Sedimentology, 2001, 48(2): 379-397. [67] 由雪莲,孙枢,朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学:地球科学,2014,44(8):1777-1790. You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Scientia Sinica (Terrae), 2014, 44(8): 1777-1790. [68] 黄可可,胡作维,李小宁,等. 川东北飞仙关组储层结晶白云岩的形成机制与白云化模式[J]. 成都理工大学学报(自然科学版),2014,41(5):612-624. Huang Keke, Hu Zuowei, Li Xiaoning, et al. Forming mechanism and dolomitization model of Triassic crystalline dolomite in Northeast Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(5): 612-624. [69] Pohl W. Comparative geology of magnesite deposits and occurrences[J]// Möller P. Monograph Series on Mineral Deposits, 1989, 28: 1-13. [70] 陈从喜,倪培,蔡克勤,等. 辽东古元古代富镁质碳酸盐岩建造菱镁矿滑石矿床成矿流体研究[J]. 地质论评,2003,49(6):646-651. Chen Congxi, Ni Pei, Cai Keqin, et al. The minerogenic fluids of magnesite and talc deposits in the pal eoproterozoic mg-rich carbonate formations in eastern Liaoning province[J]. Geological Review, 2003, 49(6): 646-651. [71] von der Borch C. The distribution and preliminary geochemistry of modem carbonate sediments of the Coorong area, South Australia[J]. Geochimica et Cosmochimica Acta, 1965, 29(7): 781-799. [72] Coshell L, Rosen M R, McNamara K J. Hydromagnesite replacement of biomineralized aragonite in a new location of Holocene stromatolites, Lake Walyungup, western Australia[J]. Sedimentology, 1998, 45(6): 1005-1018. [73] Braithwaite C J R, Zedef V. Living hydromagnesite stromatolites from Turkey[J]. Sedimentary Geology, 1994, 92(1/2): 1-5. [74] Jagniecki E A, Lowenstein T K. Evaporites of the Green River Formation, bridger and Piceance Creek Basins: Deposition, diagenesis, paleobrine chemistry, and Eocene atmospheric CO2 [M]//Smith M E, Carroll A R. Stratigraphy and paleolimnology of the Green River Formation, western USA. Dordrecht: Springer, 2015: 277-312. [75] [76] Lowenstein T K, Jagniecki E A, Carroll A R, et al. The Green River salt mystery: What was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews, 2017, 173: 295-306. [77] García-Veigas J, Gündoğan İ, Helvacı C, et al. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazarı trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 2013, 294: 315-327. [78] Eugster H P. Geochemistry of evaporitic lacustrine deposits[J]. Annual Review of Earth and Planetary Sciences, 1980, 8: 35-63. [79] Fahey J J, Ross M, Axelrod J M. Loughlinite, a new hydrous sodium magnesium silicate[J]. American Mineralogist, 1960, 45(3/4): 270-281. [80] 陈小军,罗顺社,张建坤,等. 安棚地区天然碱矿沉积特征及成因研究[J]. 沉积与特提斯地质,2009,29(3):42-46. Chen Xiaojun, Luo Shunshe, Zhang Jiankun, et al. Deposition and genesis of the trona deposits in the Anpeng region, Henan[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(3): 42-46. [81] 周珍琦,董清水,厚刚福,等. 与盐碱矿共生的油页岩形成环境及沉积演化:以桐柏吴城盆地油页岩矿床为例[J]. 吉林大学学报(地球科学版),2006,36(6):1001-1005. Zhou Zhenqi, Dong Qingshui, Hou Gangfu, et al. The forming environment and sedimentary evolution of the oil shale intergrowthing with salt alkali mine- with the oil shale deposit of Wucheng, Tongbai Basin as an example[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 1001-1005. [82] Lowenstein T K, Demicco R V. Elevated Eocene atmospheric CO2 and its subsequent decline[J]. Science, 2006, 313(5795): 1928. [83] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920. [84] Shinn E A, Ginsburg R N, Lloyd R M. Recent supratidal dolomite from Andros Island Bahamas[M]//Pray L, Murray R. Dolomitization and limestone diagenesis. Tulsa: Society of Economic Paleontologists and Mineralogists, 1965. [85] Friedman G M. Occurrence and origin of Quaternary dolomite of Salt Flat, west Texas[J]. Journal of Sedimentary Research, 1966, 36(1): 263-267. [86] Ortí F, Rosell L, Anadón P. Deep to shallow lacustrine evaporites in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): An occurrence of pelletal gypsum rhythmites[J]. Sedimentology, 2003, 50(2): 361-386. [87] El Tabakh M, Schreiber B C, Utha‐Aroon C, et al. Diagenetic origin of basal anhydrite in the Cretaceous Maha Sarakham salt: Khorat Plateau, NE Thailand[J]. Sedimentology, 1998, 45(3): 579-594. [88] 彭勇民,张荣强,陈霞,等. 四川盆地南部中下寒武统石膏岩的发现与油气勘探[J]. 成都理工大学学报(自然科学版),2012,39(1):63-69. Peng Yongmin, Zhang Rongqiang, Chen Xia, et al. Discovery and significance of the Middle-Lower Cambrian gypsolith in the south of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1): 63-69. [89] Bąbel M, Kasprzyk A. Gypsum ooids from the Middle Miocene (Badenian) evaporites of southern Poland[J]. Acta Geologica Polonica, 1990, 40(3/4): 215-239. [90] Tekin E, Varol B, Ayyildiz T. A rare natural gypsum ooide (Gypsolites) in an evaporitic playa lake of Late Miocene (?) to Pliocene age in central Anatlia, Turkey[J]. Carbonates and Evaporites, 2008, 23(1): 50-59. [91] 刘庆,张林晔,宋国奇,等. 利用石膏产状研究汶东盐湖相沉积与烃源岩特征[J]. 高校地质学报,2009,15(3):371-379. Liu Qing, Zhang Linye, Song Guoqi, et al. Application of occurrences of gypsum minerals in saline lacustrine facies analysis and source rocks organic geochemistry evaluation: A case study of wendong subdepression[J] Geological Journal of China Universities, 2009, 15(3): 371-379. [92] Abrantes Jr F R, Nogueira A C R, Soares J L. Permian paleogeography of west-central Pangea: Reconstruction using sabkha-type gypsum-bearing deposits of Parnaíba Basin, northern Brazil[J]. Sedimentary Geology, 2016, 341: 175-188. [93] Rossi C, Vilas L, Arias C. The Messinian marine to nonmarine gypsums of Jumilla (northern Betic Cordillera, SE Spain): Isotopic and Sr concentration constraints on the origin of parent brines[J]. Sedimentary Geology, 2015, 328: 96-114. [94] Schreiber B C, El Tabakh M. Deposition and early alteration of evaporites[J]. Sedimentology, 2000, 47(Suppl.1): 215-238. [95] Bąbel M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins[J]. Acta Geologica Polonica, 2004, 54(2): 219-249. [96] Schreiber B C, Lugli S, Bąbel M. Evaporites through space and time[M]. London: Geological Society of London, 2007: 75-178. [97] Kasprzyk A. Sedimentary evolution of Badenian (Middle Miocene) gypsum deposits in the northern Carpathian Foredeep[J]. Kwartalnik Geologiczny, 1999, 43(4): 449-465. [98] Peryt T M, Yuan W, Min L. Palaeogeographical zonation of gypsum facies: Middle Miocene Badenian of Central Paratethys (Carpathian Foredeep in Europe)[J]. Journal of Palaeogeography, 2013, 2(3): 225-237. [99] Taj R J, Aref M A. Structural and textural characteristics of surface halite crusts of a supratidal, ephemeral halite pan, South Jeddah, Red Sea Coast, Saudi Arabia[J]. Facies, 2015, 61(2): 2. [100] Kasprzyk A. Sedimentological and diagenetic patterns of anhydrite deposits in the Badenian evaporite Basin of the Carpathian Foredeep, southern Poland[J]. Sedimentary Geology, 2003, 158(3/4): 167-194. [101] [102] Schreiber B C. Environments of subaqueous gypsum deposition[M]//Dean W E, Schreiber B C. Marine evaporites. Oklahoma City: Society of Economic Paleontologists and Mineralogists, 1978. [103] Warren J K. The hydrological setting, occurrence and significance of gypsum in Late Quaternary salt lakes in South Australia[J]. Sedimentology, 1982, 29(5): 609-637. [104] Ortí F, Salvany J M. Coastal salina evaporites of the Triassic-Liassic boundary in the Iberian Peninsula: The Alacón borehole[J]. Geologica Acta, 2004, 2(4): 291-304. [105] Kasprzyk A, Ortí F. Palaeogeographic and burial controls on anhydrite genesis: The Badenian Basin in the Carpathian Foredeep (southern Poland, western Ukraine)[J]. Sedimentology, 1998, 45(5): 889-907. [106] Kasprzyk A. Gypsum-to-anhydrite transition in the Miocene of southern Poland[J]. Journal of Sedimentary Research, 1995, 65(2a): 348-357. [107] Schreiber B C, Friedman G M, Decima A, et al. Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin[J]. Sedimentology, 1976, 23(6): 729-760. [108] De Putter T, Rouchy J M, Herbosch A, et al. Sedimentology and palaeo-environment of the Upper Visean anhydrite of the Franco—Belgian Carboniferous Basin (Saint-Ghislain borehole, southern Belgium)[J]. Sedimentary Geology, 1994, 90(1/2): 77-93. [109] Dean W E, Davies G R, Anderson R Y. Sedimentological significance of nodular and laminated anhydrite[J]. Geology, 1975, 3(7): 367-372. [110] Kendall A C, Harwood G M. Marine evaporites: Arid shorelines and basins[M]//Reading H G. Sedimentary environments: Processes, facies and stratigraphy. Blackwell: Blackwell Science, 1996: 281-324. [111] Hussain M, Warren J K. Nodular and enterolithic gypsum: The “sabkha-tization” of Salt Flat playa, west Texas[J]. Sedimentary Geology, 1989, 64(1/2/3): 13-24. [112] Escavy J I, Herrero M J. Enterolithic folds in evaporites as microbially induced sedimentary structures: New model of Formation and interpretation in the geological record[J]. Sedimentology, 2019, 66(6): 2214-2233. [113] Kirkland D W, Denison R E, Dean W E. Parent brine of the Castile evaporites (Upper Permian), Texas and New Mexico[J]. Journal of Sedimentary Research, 2000, 70(3): 749-761. [114] Peryt T M. Resedimentation of Basin centre sulphate deposits: Middle Miocene Badenian of Carpathian Foredeep, southern Poland[J]. Sedimentary Geology, 2000, 134(3/4): 331-342. [115] Yoshimura T, Kuroda J, Lugli S, et al. An X‐ray spectroscopic perspective on Messinian evaporite from Sicily: Sedimentary fabrics, element distributions, and chemical environments of S and Mg[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(4): 1383-1400. [116] Gindre‐Chanu L, Warren J K, Puigdefabregas C, et al. Diagenetic evolution of Aptian evaporites in the Namibe Basin (south‐west Angola)[J]. Sedimentology, 2015, 62(1): 204-233. [117] Playà E, Ortı́ F, Rosell L. Marine to non-marine sedimentation in the Upper Miocene evaporites of the eastern Betics, SE Spain: Sedimentological and geochemical evidence[J]. Sedimentary Geology, 2000, 133(1/2): 135-166. [118] Ortí F, Rosell L, Fallick A, et al. Chert in continental evaporites of the Ebro and Calatayud basins (Spain): Distribution and significance[M]//Ramos A, Bustillo M A. Siliceous rocks and culture. Granada: Universidad de Granada, 1997: 75-89. [119] [120] Testa G, Lugli S. Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy)[J]. Sedimentary Geology, 2000, 130(3/4): 249-268. [121] Kinsman D J J. Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites[J]. AAPG Bulletin, 1969, 53(4): 830-840. [122] Shearman D J, Mossop G, Dunsmore H, et al. Origin of gypsum veins by hydraulic fracture[J]. Transactions of the Institution of Mining and Metallurgy B, 1972, 81: 149-155. [123] Ortí F, Rosell L, Lascorz A. Fábricas cristalinas del yeso secundario de reemplazamiento de glauberita: Aplicación en prospección de sulfato sódico[J]. Geogaceta, 1995, 17: 49-52. [124] Bąbel M. Depositional environments of a salina-type evaporite Basin recorded in the Badenian gypsum facies in the northern Carpathian Foredeep[J]. Geological Society, London, Special Publications, 2007, 285(1): 107-142. [125] Ortí F, Gündogan I, Helvaci C. Sodium sulphate deposits of Neogene age: The Kirmir Formation, Beypazari Basin, Turkey[J]. Sedimentary Geology, 2002, 146(3/4): 305-333. [126] Smoot J P, Lowenstein T K. Depositional environments of non-marine evaporites[J]. Developments in Sedimentology, 1991, 50: 189-347. [127] 魏东岩. 盐类沉积中的钙芒硝及其成因[J]. 矿物岩石,1988, 8(2):92-98. Wei Dongyan. Glauberite in salt deposits and its genesis[J]. Mineralogy and Petrology Mineral Rock, 1988, 8(12): 92-98. [128] Mees F. Textural features of Holocene perennial saline lake deposits of the Taoudenni–Agorgott Basin, northern Mali[J]. Sedimentary Geology, 1999, 127(1/2): 65-84. [129] Salvany J M, García‐Veigas J, Ortí F. Glauberite–halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain)[J]. Sedimentology, 2007, 54(2): 443-467. [130] 刘成林,焦鹏程,陈永志,等. 罗布泊盐湖晚更新世末期芒硝岩沉积及其古气候意义[J]. 地球学报,2008,29(4):397-404. Liu Chenglin, Jiao Pengcheng, Chen Yongzhi, et al. Late Pleistocene mirabilite deposition in the lop Nur Saline Lake, Xinjiang, and its paleoclimate implications[J]. Acta Geoscientia Sinica, 2008, 29(4): 397-404. [131] 赵海彤,刘成林,焦鹏程,等. 罗布泊干盐湖钙芒硝形貌特征及生长影响因素[J]. 矿物学报,2014,34(1):97-106. Zhao Haitong, Liu Chenglin, Jiao Pengcheng, et al. Morphology characteristics and influential factors of glauberite growth from lop Nur Salt Lake, China[J]. Acta Mineralogica Sinica, 2014, 34(1): 97-106. [132] Salvany J M, Ortí F. Miocene glauberite deposits of Alcanadre, Ebro Basin, Spain: Sedimentary and diagenetic processes[M]//Renaut R W, Last W M. Sedimentology and geochemistry of modern and ancient saline lakes models. Tulsa: SEPM, 1994: 203-215. [133] Wang N A, Li Z L, Li Y, et al. Younger Dryas event recorded by the mirabilite deposition in Huahai lake, Hexi Corridor, NW China[J]. Quaternary International, 2012, 250: 93-99. [134] 袁见齐,霍承禹,蔡克勤. 高山深盆的成盐环境:一种新的成盐模式的剖析[J]. 地质论评,1983, 29(2):159-165. Yuan Jianqi, Huo Chengyu, Cai Keqin. The high mountain-deep Basin saline environment: A new genetic model of salt deposits[J]. Geological Review, 1983, 29(2): 159-165. [135] 钱自强,曲一华,刘群. 钾盐矿床[M]. 北京:地质出版社,1994. Qian Ziqiang, Qu Yihua, Liu Qun. Potash deposit[M]. Beijing: Geological Publishing House, 1994. [136] 刘群,杜之岳,陈郁华. 陕北奥陶系和塔里木石炭系钾盐找矿远景[M]. 北京:原子能出版社,1997:30-37. Liu Qun, Du Zhiyue, Chen Yuhua. Potash salt-searching prospects in northern Shanxi Ordovician and Tarim Carboniferous[M]. Beijing: Atomic Energy Press, 1997: 30-37. [137] 刘成林,王弭力,焦鹏程,等. 世界主要古代钾盐找矿实践与中国找钾对策[J]. 化工矿产地质,2006,28(1):1-8. Liu Chenglin, Wang Mili, Jiao Pengcheng, et al. The exploration experiences of potash deposits in the world and probing of countermeasures of China's future potash-deposits investigation[J]. Geology of Chemical Minerals, 2006, 28(1): 1-8. [138] Handford C R. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?[J]. Geology, 1990, 18(8): 691-694. [139] Logan B W. The MacLeod evaporite Basin, western Australia: Holocene environments, sediments and geological evolution[M]. Tulsa, Okla: American Association of Petroleum Geologists, 1987. [140] Benison K C, Goldstein R H. Permian paleoclimate data from fluid inclusions in halite[J]. Chemical Geology, 1999, 154(1/2/3/4): 113-132. [141] Zambito J J, Benison K C. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite[J]. Geology, 2013, 41(5): 587-590. [142] 张华, 刘成林, 赵艳军,等. 老挝他曲地区石盐流体包裹体特征、氢氧同位素组成及成盐物质补给方式[J]. 地质学报, 2015, 89(011):2134-2140. Zhang Hua, Liu Chenglin, Zhao Yanjunet al. Characteristics and hydrogen-oxygen isotopic compositions of halite fluid inclusions in the Thakhek Area, Lao, and the way of salt material supplies[J]. Acta Geological Sinica, 2015, 89(011):2134-2140. [143] Shearman D J. Recent halite rock, Baja California, Mexico[J]. Trans Min Metall, 1970, 79B: 155-162. [144] Rouchy J M, Bernet-Rollande M C, Maurin A F. Descriptive petrography of evaporites: Application in the field, subsurface and laboratory[M]//Majithia M. Evaporite sequences in petroleum exploration: Geological methods. Editions Technip, Paris: 1994. [145] Casas E, Lowenstein T K, Spencer R J, et al. Carnallite mineralization in the nonmarine, Qaidam Basin, China; Evidence for the early diagenetic origin of potash evaporites[J]. Journal of sedimentary Research, 1992, 62(5): 881-898. [146] Hovorka S. Depositional environments of marine‐dominated bedded halite, Permian San Andres Formation, Texas[J]. Sedimentology, 1987, 34(6): 1029-1054. [147] Schubel K A, Lowenstein T K. Criteria for the recognition of shallow-perennial-saline-lake halites based on recent sediments from the Qaidam Basin, western China[J]. Journal of Sedimentary Research, 1997, 67(1): 74-87. [148] Tekin E, Ayyildiz T, Gündoğan İ, et al. Modern halolites (halite oolites) in the Tuz Gölü, Turkey[J]. Sedimentary Geology, 2007, 195(3/4): 101-112. [149] Castanier S, Perthuisot J P, Matrat M, et al. The salt ooids of Berre salt works (Bouches du Rhône, France): The role of bacteria in salt crystallisation[J]. Sedimentary Geology, 1999, 125(1/2): 9-21. [150] Lowenstein T K, Hardie L A. Criteria for the recognition of salt‐pan evaporites[J]. Sedimentology, 1985, 32(5): 627-644. [151] Gornitz V M, Schreiber B C. Displacive halite hoppers from the Dead Sea; some implications for ancient evaporite deposits[J]. Journal of Sedimentary Research, 1981, 51(3): 787-794. [152] 王立成,刘成林,王延路. 前陆盆地钾盐矿床成因及模式:以西班牙北部埃布罗盆地为例[J]. 矿床地质,2016,35(6):1243-1256. Wang Licheng, Liu Chenglin, Wang Yanlu. Genesis and Formation model of potash deposits in foreland basins: A case study of Ebro Basin, northern Spain[J]. Mineral Deposits, 2016, 35(6): 1243-1256. [153] 马金元,胡生忠,田向东. 柴达木盆地马海钾盐矿床沉积环境与开发[J]. 盐湖研究,2010,18(3):9-17. Ma Jinyuan, Hu Shengzhong, Tian Xiangdong. Sedimentary environment and exploitation of maihai potash deposits in Qaidam Basin[J]. Journal of Salt Lake Research, 2010, 18(3): 9-17. [154] 郑剑锋,沈安江,刘永福,等. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报,2013,31(1):89-98. Zheng Jianfeng, Shen Anjiang, Liu Yongfu, et al. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 89-98. [155] Cornée J J, Münch P, Achalhi M, et al. The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: New insights from the Boudinar Basin, Morocco[J]. Sedimentary Geology, 2016, 333: 115-129. [156] Carrillo-Chávez A, Salas-Megchún E, Levresse G, et al. Geochemistry and mineralogy of mine-waste material from a “skarn-type” deposit in central Mexico: Modeling geochemical controls of metals in the surface environment[J]. Journal of Geochemical Exploration, 2014, 144: 28-36. [157] Taberner C, Cendón D I, Pueyo J J, et al. The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins[J]. Sedimentary Geology, 2000, 137(3/4): 213-240. [158] Holser W T. Diagenetic polyhalite in recent salt from Baja California[J]. American Mineralogist, 1966, 51(1/2): 99-109. [159] Perthuisot J P. Recent polyhalite from Sebkha el Melah (Tunisia)[J]. Nature Physical Science, 1971, 232(35): 186-187. [160] Liu Z F, Wang C S. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil Basin, northern Tibet[J]. Sedimentary Geology, 2001, 140(3/4): 251-270. [161] Walker R G, Plint A G. Wave- and storm-dominated shallow marine systems[M]//Walker R G, James N P. Facies models-response to sea level changes. St. John’s: Geological Association of Canada, 1992: 219-238. [162] Warren J K. Evaporite sedimentology: Importance in hydrocarbon accumulation[M]. Englewood Cliffs: Prentice Hall, 1989: 285. [163] 林耀庭,陈绍兰. 论四川盆地下、中三叠统蒸发岩的生成模式、成盐机理及找钾展望[J]. 盐湖研究,2008,16(3):1-10. Lin Yaoting, Chen Shaolan. Discussion on the evaporite generating modes, saltforming mechanism and potassium-hunting prospect of Lower-Middle Triassic in Sichuan Basin[J]. Journal of Salt Lake Research, 2008, 16(3): 1-10. [164] 刘成林,吴驰华,王立成,等. 中国陆块海相盆地成钾条件与预测研究进展综述[J]. 地球学报,2016,37(5):581-606. Liu Chenglin, Wu Chihua, Wang Licheng, et al. Advance in the study of forming condition and prediction of potash deposits of marine basins in China’s Small blocks: Review[J]. Acta Geoscientia Sinica, 2016, 37(5): 581-606. [165] 王春连,刘成林,王立成,等. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展,2013,28(9):976-987. Wang Chunlian, Liu Chenglin, Wang Licheng, et al. Reviews on potash deposit metallogenic conditions[J]. Advances in Earth Science, 2013, 28(9): 976-987.