-
实验样品须满足2个条件:一是样品成分尽量保持一致,有助于溶蚀对比实验;二是样品渗透率须达到1×10-3 μm2以上,保证实验流体能顺利通过样品内部。本次实验样品取自AH1和M18井(图1a),利用岩心钻机获取长约3 cm、直径约2.5 cm的柱塞样用于溶蚀实验,同时在同一柱塞上切取薄片进行岩矿分析。取样深度分别为AH1井3 854.2 m,3 855.6 m,M18井3 856.5 m,岩性均为砂砾岩。横向上,取样井间隔较近,处于同一物源体系下的扇三角洲前缘沉积环境,纵向上取样间隔较近,可以约束三块样品岩矿成分具一致性。薄片鉴定结果表明,实验样品岩性均为岩屑砂砾岩,AH1井3 854.2 m样品石英含量12%,长石含量16%,岩屑72%,泥质含量8%,碳酸盐胶结物含量4%,为高泥杂基含量砂砾岩(图2a,b);M18井3 856.5 m样品石英含量10%,长石含量17%,岩屑含量73%,泥质含量2%,碳酸盐胶结物含量1%,为低泥杂基含量砂砾岩(图2c,d)。实验样品物性,AH1井3 854.2 m样品孔隙度5.85%,渗透率2.45×10-3 μm2;3 855.6 m样品孔隙度8.43%,渗透率11.89×10-3 μm2;M18井3 856.5 m样品孔隙度7.58%,渗透率6.58×10-3 μm2(表1)。
图 2 玛西斜坡区百口泉组实验样品特征
Figure 2. Features of dissolution experiment samples from Baikouquan Formation, western slope of the Mahu Sag
表 1 溶蚀实验样品信息表
井号 深度/m 岩性 石英/% 长石/% 岩屑/% 泥质含量/% 孔隙度/% 渗透率/×10-3 μm2 AH1 3 855.6 砂砾岩 15 18 67 1 8.43 11.89 AH1 3 854.2 砂砾岩 12 16 72 8 5.85 2.45 M18 3 856.5 砂砾岩 10 17 73 2 7.58 6.58 -
碎屑岩的埋藏溶蚀作用与深部有机质热演化释放有机酸溶蚀铝硅酸盐岩有关,以往溶蚀模拟多为单矿物的表面溶蚀实验,对碎屑岩内部溶蚀实验模拟方面研究的不够,本次实验着重研究溶蚀后储层物性、孔隙结构的变化,以及埋藏环境下温度和泥质含量对碎屑岩储层有机酸溶蚀效应的影响。
本次水—岩模拟实验是在开放条件下进行的。根据玛西斜坡区28件覆盖侏罗系和三叠系储层的地层水分析数据,71%的地层水样品为NaHCO3型,约29%的地层水为CaCl2型。从浅层向深层,地层水总矿化度变化不大,整体介于2.69~25.12 g/L。同时Ca2+、Mg2+、K++Na+、Cl-等多种离子浓度随深度增加没有显著的变化(图4)。在发生强烈长石溶蚀且仅有少量次生矿物沉淀的情况下,地层水矿化度和离子浓度应急剧升高。玛西地区这种矿化度随深度增加无明显变化的特点表明不同来源的地层水发生了强烈的混合作用,表明百口泉组水—岩反应处于开放体系下。
图 4 玛西斜坡区不同深度地层水矿化度及离子浓度垂向分布特征
Figure 4. Salinity and concentration of different ions in porewaters in the western slope of the Mahu Sag
玛西斜坡区百口泉组储层铸体薄片下长石普遍发生溶蚀,且溶蚀程度很高,常见钾长石溶蚀成窗棂状,部分钾长石溶蚀形成铸模孔(图5),这种溶蚀特征表明长石溶蚀发生在压实作用将颗粒调整到现今接触状态之后,即深埋藏期,否则这些溶蚀的长石及铸模孔必然受到压实作用的破坏而不能保存下来,埋藏期的溶蚀流体介质最可能是有机酸。康逊等研究表明[23],玛西斜坡区百口泉组烃类充注强度和长石溶蚀程度具有强相关性,这一证据表明酸性含烃流体与岩石发生相互作用并产生次生孔隙。油田水所含有机酸主要以乙酸为主,处于排酸高峰时期的油田水pH值可达3.8~6[29]。前人研究表明,有机酸溶蚀铝硅酸盐岩速率慢,为了加快反应速率,减少反应时间,本次实验用纯乙酸试剂和去离子水配置成质量浓度为2%、pH值约为2.4的强乙酸溶液,以缩短实验周期。前人研究表明,压力对有机酸溶蚀硅酸盐岩的影响较小[30],因此此次实验采用恒定压力10 MPa。设计了2种流体连续流动的开放体系溶蚀模拟方案(表2):①针对砂砾岩溶蚀增孔效率,孔隙结构变化特征;实验过程为同一样品(AH1井,3 855.6 m),固定温压条件下进行酸蚀实验,对比实验前后矿物形貌、物性、孔隙结构变化特征。反应流体为浓度2%乙酸溶液,流体流速为1 mL/min,实验温度120 ℃,压力10 MPa,反应时间共计23 h。②针对温度、泥质含量对长石溶蚀的影响;取两块泥质含量不同的样品(AH1井,3 854.2 m,M18井3 856.5 m)进行变温度下的酸蚀实验,对比长石溶蚀量的大小。反应流体为浓度2%乙酸溶液,流体流速为1 mL/min,实验温度分别为80 ℃、100 ℃、120 ℃、140 ℃,压力恒定为10 MPa,反应时间为每个温度点2 h。
图 5 玛西斜坡区百口泉组铸体薄片长石溶蚀特征
Figure 5. Thin section showing features of feldspar dissolution, Baikouquan Formation, western slope of the Mahu Sag
表 2 高温高压溶蚀模拟实验条件设计表
实验编号 井号 深度/m 孔隙度/% 渗透率/(×10-3 μm2) 流体 流速/(mL/min) 温度/℃ 压力/MPa 检测内容 ① AH1 3 855.6 8.43 11.89 2%乙酸 1 120 10 孔渗、CT扫描、电镜矿物形态 ② AH1 3 854.2 5.85 2.45 2%乙酸 1 变温度 10 反应后溶液阳离子浓度 M18 3 856.5 7.58 6.58 -
一组低泥质含量和一组高泥质含量砂砾岩在变温度、10 MPa压力开放体系下,受到1 mL/min流速、2%质量浓度的乙酸溶蚀,每个温度点反应2 h,采集到的生成液中检测出Ca2+、Mg2+、Si4+、Al3+、Na+、K+离子(表3),建立各离子浓度随温度变化图(图9)。可以看到随着反应温度的升高,除低泥质样品Al3+浓度先增加后降低之外,二组样品反应溶液中Si4+、Na+、K+离子浓度均增加。Mg2+表现为随着反应温度升高浓度持续降低,Ca2+则表现为随着反应温度升高浓度先降低后升高。低泥质样品溶蚀生成液中Al3+、Si4+、K+、Na+均明显高于高泥质样品。
表 3 不同泥质含量样品不同温度下溶蚀生成液中主要阳离子浓度表
井号 深度/m 泥质含量/% 温度/℃ Ca2+/mmol·L-1 Mg2+/mmol·L-1 Si4+/mmol·L-1 Al3+/mmol·L-1 Na+/ mmol·L-1 K+/mmol·L-1 AH1 3 854.2 8 80 1.57 13.5 0.32 0.45 0.9 0.16 100 1.44 10.3 0.35 0.69 1.21 0.15 120 1.52 7.88 0.46 0.77 1.55 0.16 140 1.78 7.61 0.52 0.81 2.21 0.16 M18 3 856.5 2 80 0.97 8.73 0.51 3.72 1.52 0.39 100 0.93 6.49 0.61 4.53 2.09 0.42 120 0.94 4.96 0.71 4.24 2.63 0.49 140 1.03 4.29 0.83 3.86 3.54 0.50
Experimental Simulation of Burial Dissolution of Conglomerate Reservoir in Baikouquan Formation in Western Slope of Mahu Sag, Junggar Basin
-
摘要: 准噶尔盆地玛湖凹陷西斜坡区百口泉组发育低孔、低渗强非均质性砂砾岩储层,溶蚀作用显著,但溶蚀作用影响因素不明确。采用质量浓度2%的乙酸溶液代替埋藏条件下的有机酸,开展开放体系、高温高压溶蚀物理模拟实验。为研究有机酸溶蚀砂砾岩后储层物性、孔隙结构的变化,以及温度和泥质含量对溶蚀作用的影响,开展了两组溶蚀实验。结果表明:1)开放体系高温高压条件下,有机酸溶蚀砂砾岩中长石组分可以有效提高储层孔隙度以及渗透率,溶蚀显著增加半径10 μm左右的小孔隙和小喉道,对渗透率的改善效果尤为显著;2)有机酸溶蚀模拟实验反应后溶液中析出的主要阳离子(Al3+、Si4+、Na+、K+、Ca2+)表明斜长石和钾长石发生溶蚀,并且温度越高,泥质含量越低,长石溶蚀量越大。综合分析认为,在开放体系下,较高地温、较低泥杂基含量的砂砾岩有机酸溶蚀增孔效率更高,这一认识可为下一步寻找有利储层发育区提供理论支撑。Abstract: The Baikouquan Formation in the western slope of the Mahu Sag of the Junggar Basin is a conglomerate reservoir characterized by low porosity, low permeability and strong heterogeneity. The dissolution is significant, but the factors influencing dissolution are not very clear. The present simulation experiment of dissolution in an open-flow system at high temperatures and pressures was carried out using an acetic acid solution with mass concentration of 2% to simulate organic acid action under burial conditions. Two groups of dissolution experiments were carried out to study the changes of reservoir physical properties and pore structure of the conglomerate after organic acid dissolution, and the influence of temperature and matrix content on dissolution. The results show that: (1) In a high-temperature and pressure open-flow system, organic acid effectively improves the porosity and permeability of the reservoir, and increases the number of pores and throats with radius of about 10 μm. The permeability improvement was particularly significant. (2) The main cations (Al3+, Si4+, Na+, K+, Ca2+) precipitated from the organic acid solution indicate the dissolution of plagioclase and potash feldspars. Samples with lower matrix content experienced more feldspar dissolution at higher temperatures. This result is helpful in providing theoretical support for finding favorable reservoir development areas in the future.
-
Key words:
- burial dissolution /
- simulation experiment /
- Baikouquan Formation /
- Mahu Sag /
- Junggar Basin
-
表 1 溶蚀实验样品信息表
井号 深度/m 岩性 石英/% 长石/% 岩屑/% 泥质含量/% 孔隙度/% 渗透率/×10-3 μm2 AH1 3 855.6 砂砾岩 15 18 67 1 8.43 11.89 AH1 3 854.2 砂砾岩 12 16 72 8 5.85 2.45 M18 3 856.5 砂砾岩 10 17 73 2 7.58 6.58 表 2 高温高压溶蚀模拟实验条件设计表
实验编号 井号 深度/m 孔隙度/% 渗透率/(×10-3 μm2) 流体 流速/(mL/min) 温度/℃ 压力/MPa 检测内容 ① AH1 3 855.6 8.43 11.89 2%乙酸 1 120 10 孔渗、CT扫描、电镜矿物形态 ② AH1 3 854.2 5.85 2.45 2%乙酸 1 变温度 10 反应后溶液阳离子浓度 M18 3 856.5 7.58 6.58 表 3 不同泥质含量样品不同温度下溶蚀生成液中主要阳离子浓度表
井号 深度/m 泥质含量/% 温度/℃ Ca2+/mmol·L-1 Mg2+/mmol·L-1 Si4+/mmol·L-1 Al3+/mmol·L-1 Na+/ mmol·L-1 K+/mmol·L-1 AH1 3 854.2 8 80 1.57 13.5 0.32 0.45 0.9 0.16 100 1.44 10.3 0.35 0.69 1.21 0.15 120 1.52 7.88 0.46 0.77 1.55 0.16 140 1.78 7.61 0.52 0.81 2.21 0.16 M18 3 856.5 2 80 0.97 8.73 0.51 3.72 1.52 0.39 100 0.93 6.49 0.61 4.53 2.09 0.42 120 0.94 4.96 0.71 4.24 2.63 0.49 140 1.03 4.29 0.83 3.86 3.54 0.50 -
[1] 远光辉,操应长,贾珍臻,等. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学,2015,26(1):28-42. Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 2015, 26(1): 28-42. [2] Dutton S P, Loucks R G. Diagenetic controls on evolution of porosity and permeability in Lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700 m) burial, Gulf of Mexico Basin, U.S.A.[J]. Marine and Petroleum Geology, 2010, 27(1): 69-81. [3] Lai J, Wang G W, Chai Y, et al. Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim Basin of China[J]. AAPG Bulletin, 2017, 101(6): 829-862. [4] Schmidt V, McDonald D A. Role of secondary porosity in sandstone diagenesis[J]. AAPG Bulletin, 1977, 61(8): 1390-1391. [5] Schmidt V, McDonald D A. Texture and recognition of secondary porosity in sandstones[M]//Scholle P A, Schluger P R. Aspects of diagenesis. Tulsa: SEPM, 1979: 209-225. [6] Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[M]//Gautier D L. Roles of organic matter in sediment diagenesis. Tulsa: SEPM, 1986: 123-128 [7] Kawamura K, Tannenbaum E, Huizinga B J, et al. Volatile organic acids generated from kerogen during laboratory heating[J]. Geochemical Journal, 1986, 20(1): 51-59. [8] Barth T, Andresen B, Iden K, et al. Modelling source rock production potentials for short-chain organic acids and CO2— a multivariate approach[J]. Organic Geochemistry, 1996, 25(8): 427-438. [9] 曾溅辉,朱志强,吴琼,等. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报,2007,25(6):847-851. Zeng Jianhui, Zhu Zhiqiang, Wu Qiong, et al. Experimental study on the generation of organic acids from source rocks and its effect factors[J]. Acta Sedimentologica Sinica, 2007, 25(6): 847-851. [10] Loucks R G, Dutton S P. Insights into deep, onshore Gulf of Mexico Wilcox sandstone pore networks and reservoir quality through the integration of petrographic, porosity and permeability, and mercury injection capillary pressure analyses[J]. AAPG Bulletin, 2019, 103(3): 745-765. [11] Yuan G H, Cao Y C, Schulz H M, et al. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs[J]. Earth-Science Reviews, 2019, 191: 114-140. [12] 苏奥,陈红汉,贺聪,等. 控制储层中异常高孔带发育的成岩作用:以琼东南盆地西部崖城区为例[J]. 中国矿业大学学报,2017,46(2):345-355. Su Ao, Chen Honghan, He Cong, et al. Digenesis controlling development of abnormal high porosity zones: A case from Yacheng area in the western Qiongdongnan Basin, South China Sea[J]. Journal of China University of Mining & Technology, 2017, 46(2): 345-355. [13] 远光辉,操应长,杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘,2013,20(5):207-219. Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219. [14] 钟大康,朱筱敏,张枝焕,等. 东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J]. 石油勘探与开发,2003,30(6):51-53. Zhong Dakang, Zhu Xiaomin, Zhang Zhihuan, et al. Origin of secondary porosity of Paleogene sandstone in the Dongying Sag[J]. Petroleum Exploration and Development, 2003, 30(6): 51-53. [15] 陈传平,梅博文,毛治超. 二元羧酸对硅酸盐矿物溶解的实验初步研究[J]. 矿物岩石,1993,13(1):103-107. Chen Chuanping, Mei Bowen, Mao Zhichao. The initial experimental study for dissolving silicate mineral by dicarboxylic acid in aqueous systems[J]. Journal of Mineralogy and Petrology, 1993, 13(1): 103-107. [16] 黄思静,杨俊杰,张文正,等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报,1995,13(1):7-17. Huang Sijing, Yang Junjie, Zhang Wenzheng, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7-17. [17] 杨俊杰,黄月明,张文正,等. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995,22(4):82-86,113-114. Yang Junjie, Huang Yueming, Zhang Wenzheng, et al. Experimental approach of dissolution of feldspar sand stone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4): 82-86, 113-114. [18] 向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004,22(4):597-602. Xiang Tingsheng, Cai Chunfang, Fu Hua’e. Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Al anion with carboxylic acid in aqueous solution[J]. Acta Sedimentologica Sinica, 2004, 22(4): 597-602. [19] 季汉成,徐珍. 深部碎屑岩储层溶蚀作用实验模拟研究[J]. 地质学报,2007,81(2):212-219. Ji Hancheng, Xu Zhen. Experimental simulation for dissolution in clastic reservoirs of the deep zone[J]. Acta Geologica Sinica, 2007, 81(2): 212-219. [20] 曾庆鲁,张荣虎,王力宝,等. 库车坳陷白垩系深层致密砂岩储层溶蚀作用实验模拟研究[J]. 沉积学报,2018,36(5):946-956. Zeng Qinglu, Zhang Ronghu, Wang Libao, et al. Experimental simulation for dissolution of Cretaceous tight sand rocks as deep reservoir in Kuqa Depression[J]. Acta Sedimentologica Sinica, 2018, 36(5): 946-956. [21] 支东明,唐勇,郑孟林,等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践[J]. 新疆石油地质,2018,39(1):1-8,22. Zhi Dongming, Tang Yong, Zheng Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above- source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 9(1): 1-8, 22. [22] 肖萌,袁选俊,吴松涛,等. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素[J]. 地学前缘,2019,26(1):212-224. Xiao Meng, Yuan Xuanjun, Wu Songtao, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019, 26(1): 212-224. [23] 康逊,胡文瑄,曹剑,等. 钾长石和钠长石差异溶蚀与含烃类流体的关系:以准噶尔盆地艾湖油田百口泉组为例[J]. 石油学报,2016,37(11):1381-1393. Kang Xun, Hu Wenxuan, Cao Jian, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite: A case study of Baikouquan Formation in Aihu oilfield, Junggar Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1381-1393. [24] 张昌民,尹太举,唐勇,等. 准噶尔盆地西北缘及玛湖凹陷沉积储集层研究进展[J]. 古地理学报,2020,22(1):129-146. Zhang Changmin, Yin Taijü, Tang Yong, et al. Advances in sedimentological reservoir research in Mahu Sag and northwest margin of Junggar Basin[J]. Journal of Palaeogeography, 2020, 22(1): 129-146. [25] 单祥,陈能贵,郭华军,等. 基于岩石物理相的砂砾岩储层分类评价:以准噶尔盆地玛131井区块百二段为例[J]. 沉积学报,2016,34(1):149-157. Shan Xiang, Chen Nenggui, Guo Huajun, et al. Reservoir evaluation of sand-conglomerate reservoir based on peteophysical facies: A case study on Bai 2 reservoir in the Ma131 region, Junggar Basin[J]. Acta Sedimentologica Sinica, 2016, 34(1): 149-157. [26] 陈波,王子天,康莉,等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版),2016,46(1):23-35. Chen Bo, Wang Zitian, Kang Li, et al. Diagenesis and pore evolution of Triassic Baikouquan Formation in Mabei region, Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1): 23-35. [27] 何登发,尹成,杜社宽,等. 前陆冲断带构造分段特征:以准噶尔盆地西北缘断裂构造带为例[J]. 地学前缘,2004,11(3):91-101. He Dengfa, Yin Cheng, Du Shekuan, et al. Characteristics of structural segmentation of foreland thrust belts: A case study of the fault belts in the northwestern margin of Junggar Basin[J]. Earth Science Frontiers, 2004, 11(3): 91-101. [28] 唐勇,徐洋,瞿建华,等. 玛湖凹陷百口泉组扇三角洲群特征及分布[J]. 新疆石油地质,2014,35(6):628-635. Tang Yong, Xu Yang, Qu Jianhua, et al. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 628-635. [29] 蔡春芳,邱利瑞. 塔里木盆地油田水有机配合物的模拟计算[J]. 新疆石油地质,1998,19(1):33-35,88. Cai Chunfang, Qiu Lirui. Simulation and calculation of organic complex compound in oilfield water, Tarim Basin[J]. Xinjiang Petroleum Geology, 1998, 19(1): 33-35, 88. [30] 佘敏,寿建峰,沈安江,等. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验[J]. 中国石油大学学报(自然科学版),2014,38(3):10-17. She Min, Shou Jianfeng, Shen Anjiang, et al. Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir[J]. Journal of China University of Petroleum, 2014, 38(3): 10-17. [31] 吕成福,陈国俊,张功成,等. 珠江口盆地白云凹陷珠海组碎屑岩储层特征及成因机制[J]. 中南大学学报(自然科学版),2011,42(9):2763-2773. Chengfu Lü, Chen Guojun, Zhang Gongcheng, et al. Reservoir characteristics of detrital sandstones in Zhuhai Formation of Baiyun Sag, Pearl River Mouth Basin[J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2763-2773.