-
福山凹陷流沙港组砂岩碎屑组分主要由石英、长石和岩屑组成。按照Folk[45]分类原则,将硅质岩屑(燧石)归入岩屑中,流沙港组砂岩可分为岩屑砂岩、长石岩屑砂岩两类(图3b);按照McBride[46]砂岩分类原则,将燧石岩屑归入石英(Q)端元,流沙港组砂岩除了岩屑砂岩、长石岩屑砂岩,还存在亚岩屑砂岩、亚岩屑长石砂岩两类过渡类型(图3a)。
图 3 福山凹陷流沙港组砂岩碎屑成分三角图
Figure 3. Detrital compositional triangles of Liushagang Formation sandstone in Fushan Sag
流沙港组砂岩中石英包括单晶石英和多晶石英(燧石)(图4a),单晶石英以次棱—次圆状为主,包裹体发育,波状消光常见,含量一般为37%~77%(表1),美台地区单晶石英含量最高,平均含量达72%,其次是花场和白莲地区,单晶石英平均含量分别为59%和60%,永安地区最低,单晶石英平均含量为54%,同一地区流三段、流二段及流一段单晶石英含量相似或由下向上略有变小的趋势;燧石含量一般不超过5%,花场及美台、永安地区燧石含量相对较高,平均含量为2%~3%,白莲地区偏低,平均含量为1%~2%。
图 4 福山凹陷流沙港组砂岩碎屑组成及阴极发光特征
Figure 4. Cathodoluminescence characteristics and textures of sandstone from Liushagang Formation in Fushan Sag
表 1 福山凹陷流沙港组砂岩碎屑组成
地区 井号 层位 石英/% 燧石/% 长石 岩屑 钾长石/% 斜长石/% 岩浆岩/% 变质岩/% 沉积岩/% 云母/% 花场 H7-2 流一段 50~64/57.2 2~4/2.95 7~13/10 1~2/1.4 3~8/5.8 18~25/22 1~2/1.6 0~2/<1 H8 流一段 37~55/47.6 1~4/2.25 6~14/8.6 1~2/1.4 4~10/7.0 30~42/33.5 0~1/<1 0~1/<1 H1 流三段 58~68/62.4 1.2~3.9/2.3 2.0~4.9/2.7 0~1/<1.0 9.0~11.8/10.9 13~28/18.8 2.0~3.9/2.7 0~1/<1 H5 流三段 56~69/62.7 2~3/2.1 5~7/5.8 0~1/<1.0 12~17/12.95 11~15/12.6 2~4/2.7 0~1/<1 H117 流一段 55~59/56.7 1~2/1.0 7~8/7.67 1~2/1.0 5~7/6.0 22~29/26 1~2/1.5 0~1/<1 HD1-1 流二段 53~60/57.3 2~3/2.67 5~7/5.67 <1.0 14~17/15.0 13~14/13.8 2~6/4.0 0~1/<1 流三段 64~69/66.0 1~2/1.67 5~6/5.8 <1.0 10~13/11.7 10~12/10.8 2~3/2.3 0~1/<1 H2 流一段 60~66/62.7 1.8~2.6/2.0 11~13/12.2 0~1/<1.0 2~4/2.8 13~19/15.4 1.2~2.9/1.8 0.9~11./1.2 流三段 59~68/62.6 1.6~3.8/2.1 3.5~8.9/6.7 0~1/<1.0 4~9/6.5 20~23/21.4 1.2~2.7/1.5 0~1/<1 白莲 L2 流一段 58~68/61.5 1~2/1.5 6~9/7.25 0~1/<1.0 4~7/5.2 20~31/24.8 0~1/<1 0~1/<1 流三段 60~69/64.9 0~1/<1.0 5~9/6.8 0~1/<1.0 5~9/6.4 17~30/23.3 1~2/1.75 0~1/<1 L10 流二段 60~67/61.7 1~3/1.47 8~15/10.2 0~1/<1.0 3~6/4.59 17~23/21.2 1~2/1.46 0~1/<1 L11 流三段 60~69/64.5 1~2/1.54 7~10/8.42 0~1/<1.0 4~5/4.25 15~27/22.56 1~2/1.5 0~1/<1 L12 流二段 52~63/56.9 1~3/1.8 10~18/12.2 0~1/<1.0 4~8/5.9 22~36/25.4 0~1/<1.0 0~1/<1 L23 流二段 63~68/64.7 1~2/1.4 3~5/3.67 0~1/<1.0 4~5/4.3 22~28/25.4 1~2/1.5 0~1/<1 流三段 58~59/58.4 1~3/1.8 3~7/4 0~1/<1.0 4~6/5.0 26~32/29 1~2/1.2 0~1/<1 L25 流三段 55~63/58.9 1~2/1.7 2~5/3.5 0~1/<1.0 6~9/7.25 22~33/26.8 1~2/1.4 0~1/<1 L27 流二段 61~77/69 1~2/1.5 1.5~5/3.3 0~1/<1.0 3~9/6 11~23/17 2~3/2.75 0~1/<1 流三段 61~69/64.6 1~2/1.8 1~5/2.3 0~1/<1.0 5~9/7.6 15~29/21 2~3/2.3 0~1/<1 L103 流一段 45~55/49.4 1~3/1.4 6~10/8 1~3/2 10~12/10.8 20~34/26.7 1~3/1.8 0~1/<1 美台 M4 流三段 70~74/72 2~5/3.3 1~3/1.7 0~1/<1.0 3~6/4.27 15~18/16.9 2~3/2.4 0~1/<1 永安 J1 流一段 53~63/55.6 2~3/2.2 8~10/9.1 0~1/<1.0 5~10/7.6 18~32/24.3 0~1/<1 0~1/<1 流二段 50~57/53.8 2~3/2.3 5~9/6.8 0~1/<1.0 6~9/7.3 22~36/28.7 0~1/<1 0~1/<1 Y8 流一段 47~65/54.8 1~2/1.1 7~11/9.7 0~1/<1.0 4~7/5.0 19~38/28.6 0~1/<1 0~1/<1 长石碎屑主要为钾长石(图4b),石山—白莲—花场一线以南地区的钾长石碎屑含量一般为5%~18%,花场以北至永安一带钾长石含量一般为5%~10%,石山—白莲—花场一线以北地区及美台一带的钾长石碎屑含量一般为1%~5%,同一地区流三段、流二段及流三段钾长石碎屑含量相似;斜长石含量普遍偏低,一般小于1%。
岩屑主要为变质岩,少量的岩浆岩、沉积岩及云母,平均含量一般为15%~50%(表1)。变质岩岩屑主要为石英岩(图4c),少量千枚岩(图4d),含量一般为20%~30%,其含量在全区分布相对稳定,仅在花场附近流三段和流二段含量较低;火山岩岩屑主要为中—酸性喷出岩(图4e),含量一般小于10%。在变质岩岩屑含量较低的花场附近出现高值区,含量大于10%,并具流三段、流二段含量大于流一段;沉积岩岩屑(图4f,g)和云母(图4h),含量一般小于3%。
-
流沙港组砂岩中重矿物主要有锆石、电气石、白钛矿,金红石、绿泥石、赤褐铁矿次之,少量石榴石、绿帘石、黝帘石、磁铁矿(表2)。
表 2 福山凹陷流沙港组重矿物组成
地区 井号 层位 重 矿 物 锆石/% 电气石/% 石榴石/% 绿帘石/% 黝帘石/% 磁铁矿/% 赤褐铁矿/% 白钛矿/% 金红石/% 花场 H7-2 流一段 10~20 15~30 0.5~2 0.5~1 0.5~1.0 0.5~1.0 5~15 20~35 5~10 H8 流一段 10~20 15~30 0.5~2 <0.5 <0.5 05~1.0 1~5 20~30 5~10 H117 流一段 10~20 10~15 0.5~1 0 0 5~10 1~5 50~60 5~10 流二段 5~10 5~10 0 0 0 1~2 5~10 15~20 1~5 HD1~2 流三段 15~30 10~20 0 0 0 0.1~1 0~1 30~50 5~10 HD6~1 流二段 20~50 20~30 0 <0.5 <0.5 0.5~1 5~10 30~40 5~10 流三段 20~50 10~15 0 <0.5 <0.5 0.5~1 1~5 30~40 5~10 白莲 L2 流一段 10~20 15~20 0.5~1.0 0 0 <0.5 1~5 20~30 1~5 流三段 20~30 20~30 <0.5 <0.5 <0.5 <0.5 1~5 30~40 5~10 L10 流二段 10~20 10~15 0 0 <0.5 0 5~10 30~50 5~10 L11 流三段 15~25 5~15 0 0 0 <0.5 1~5 30~50 10~15 L12 流二段 10~20 15~25 <0.5 <0.5 0 0.5~1 1~5 25~50 5~10 L23 流二段 10~20 15~20 0 0 0 1~2 1~5 25~50 1~5 流三段 10~20 20~30 0 0 0 0.5~1 1~5 40~50 1~5 L25 流三段 20~30 15~25 0 <0.5 <0.5 1~2 1~5 30~50 1~5 L27 流二段 15~20 1~5 <0.5 <0.5 0 1~5 1~5 50~60 5~15 流三段 5~15 1~5 0 0 0 1~5 1~5 50~70 5~15 L102 流一段 10~20 10~20 1~2 0 0 1~2 1~5 50~60 5~10 L103 流一段 10~20 10~20 2~10 0 0 <0.5 5~15 40~60 5~10 L104 流一段 10~15 1~5 1~5 0 0 1~2 10~20 50~60 5~10 美台 M4 流三段 10~20 10~20 0.5~1 0 0 0 1~5 30~50 5~15 永安 Y2 流一段 10~20 20~30 1~2 <0.5 <0.5 0.5~1 1~5 20~30 5~10 Y8 流一段 10~20 10~20 0.5~1.5 <0.5 0 1~5 1~5 40~60 5~10 锆石多为圆角柱状及浑圆柱状,少数半滚圆粒状以及不规则状,偶见环带构造,含量一般为10%~20%。花场白莲以北的L2井—HD1-2井一带锆石含量高达20%~30%,最大可达50%,锆石主要来源于酸性岩浆岩及沉积岩,磨圆较好的锆石多来源于沉积岩[31],具有环带构造的锆石来源于岩浆岩[47]。电气石多色性较强,多呈柱状以及不规则状,个别圆形,其含量在研究区一般为10%~20%,白莲北部的L27井—L104井一带含量仅为1%~5%。电气石多来源于中酸性岩浆岩和沉积岩,圆粒状来源于沉积岩[31,48]。金红石以黄色为主,少数红棕色,多呈不规则状,少数柱状,个别圆粒状,大多半透明,其含量在研究区介于5%~10%,局部地区(L23井—L25井区)含量仅为1%~5%,金红石作为副矿物常见于酸性岩浆岩、沉积岩及中高级变质岩中。赤褐铁矿多呈不规则粒状,少数半滚圆粒状,颗粒大小不均匀,少数表面氧化,其含量主要介于1%~5%,局部地区(白莲以北地区)达到10%~20%。张英利等[22]研究发现赤褐铁矿主要由黄铁矿氧化形成,黄铁矿多为沉积过程中自生形成,不具有源区岩石类型的指示;操应长等[34]认为赤褐铁矿来源于中基性、中酸性岩浆岩及变质岩,流沙港组砂岩中赤褐铁矿呈不规则粒状、半滚圆状,不具有黄铁矿晶体外形,应来源于岩浆岩或变质岩。石榴石为淡绿色,呈不规则状,少数颗粒边缘呈鱼鳞状构造,其含量小于2%,主要分布在花场白莲以北及永安的流一段,石榴石主要赋存于变质岩和岩浆岩中。白钛矿反射光下多为白色,少数黄白色,多呈不规则粒状,少数半滚圆粒状,颗粒大小不均匀,个别表面被氧化,含量介于20%~40%,白莲地区普遍偏高,最高达70%,白钛矿来源于中基性岩浆岩、中酸性岩浆岩、中—低级变质岩及沉积岩[34,48-49]。绿帘石和黝帘石含量一般小于1%,主要来源于中酸性岩浆岩、中低级变质岩[49-50]。磁铁矿主要赋存于中低级变质岩及基性岩浆岩中[34,49],其含量小于5%。
重矿物自身具有稳定性,受风化、搬运和成岩作用影响小,因此来自同一母岩区的各种重矿物之间必然存在内在联系,即同一来源的沉积物往往具有相同的重矿物组合特征[34]。聚类分析是多元统计中的一种数字分类方法,是根据样本或变量之间的相似程度或亲疏把它们进行逐步分类的方法[34,51],分为Q型和R型聚类分析。本文首先对福山凹陷15口井按流三段、流二段及流一段进行Q型聚类,将某一层段特征相同或相近的样品视为同一期次物源,每一个样本群代表某一期次或某一母岩类型的沉积物供给[34],然后应用R型聚类将同一期次不同类型重矿物之间的亲疏关系进行组合,获得来自不同母岩区的重矿物组合类型(图5)。
图 5 福山凹陷流沙港组重矿物Q型聚类和R型聚类谱图
Figure 5. Q⁃and R⁃type cluster spectrograms of heavy minerals in Liushagang Formation, Fushan Sag
由流三段重矿物Q型聚类和R型聚类谱图可知,福山凹陷流三段沉积时,源区母岩岩性组合或物源区发生了一定的变化。美台地区流三段(以M4井为例,图5a)沉积期时,存在两期不同母岩类型的沉积供给或存在两期不同物源供给,第一期重矿物组合为Ⅰ3类和Ⅰ4类,第二期期重矿物组合为Ⅱ1类和Ⅰ4类;花东、白莲地区流三段沉积时源区母岩类型相似,仅为岩性组合的变化,均为Ⅰ类,但重矿物组合存在一定的差异,以HD1-2、HD6-1、L23为例(图5b~d),花东地区重矿物组合为Ⅰ1类、Ⅰ3类和Ⅰ4类;白莲地区重矿物组合为Ⅰ2类和Ⅲ4类。
流二段重矿物组合与流三段相比,白莲地区源区母岩性质发生了较大的变化,重矿物组合除了Ⅰ类,还存在Ⅲ类重矿物组合(图5e,f)。Ⅰ类重矿物也存在一定的差异,流二段Ⅰ类重矿物主要为Ⅰ3类和Ⅰ4类。
流一段重矿物组合与流三段、流二段存在较大的差异(图5g~i)。白莲地区流一段重矿物组合除具有流二段Ⅰ类重矿物组合,出现了Ⅱ、Ⅲ类重矿物组合,两期重矿物组合差异较大,说明白莲地区流一段沉积时存在两个物源区或同一物源区不同时期母岩岩石组合差别较大;花场东北部的H8井区具有与L2井区相似的重矿物组合特征,该地区可能与L2井区物源相同,花场北部的H7-2井区重矿物组合不仅具有H8、L2井区的特征,还具有永安地区重矿物组合特征,表明该地区受到永安地区和H8、L2井区物源区共同影响。
-
重矿物组合特征与母岩岩性有着密切的联系,能较好地反映物源区母岩的特征,是了解源区母岩岩性变化的有利线索和指示剂[69-71]。本文利用R型聚类将福山凹陷流沙港组重矿物划分为3大类组合,10个亚类组合,结合重矿物含量、形态、构造及赋存岩性,分析总结出10类母岩岩性组合,分布于流沙港组不同沉积时期不同物源区(表3)。
表 3 福山凹陷流沙港组重矿物组合及母岩
类 亚类 重矿物组合 母岩类型 分布层段 Ⅰ Ⅰ1 金红石+赤褐铁矿+磁铁矿 酸性岩浆岩+变质岩 流三段、流二段、流一段 Ⅰ2 白钛矿+赤褐铁矿+磁铁矿 中酸性岩浆岩+变质岩 流三段、流二段 Ⅰ3 电气石+金红石+赤褐铁矿 中酸性岩浆岩 流三段、流二段 Ⅰ4 锆石+白钛矿+赤褐铁矿 酸性、中酸性岩浆岩+沉积岩 流三段、流二段、流一段 Ⅱ Ⅱ1 金红石+赤褐铁矿+石榴石 变质岩 流三段、流一段 Ⅱ2 电气石+石榴石+磁铁矿 变质岩 流一段 Ⅲ Ⅲ1 金红石+石榴石+电气石+绿帘石+磁铁矿 沉积岩+变质岩 流一段 Ⅲ2 锆石+金红石+赤褐铁矿+石榴石+磁铁矿 沉积岩+中酸性岩浆岩+变质岩 流一段 Ⅲ3 锆石+金红石+电气石 沉积岩+中酸性岩浆岩 流二段 Ⅲ4 锆石+金红石+赤褐铁矿 沉积岩+酸性岩浆岩 流三段、流二段、流一段 流三段砂岩重矿物组合以Ⅰ、Ⅱ类组合为主,源区母岩为岩浆岩、变质岩及沉积岩。美台地区砂岩重矿物组合为Ⅰ3+Ⅰ4+Ⅱ1,源区母岩性组合为酸性—中酸性岩浆岩、变质岩及沉积岩;花东地区砂岩重矿物组合为Ⅰ1+Ⅰ3+Ⅰ4,源区母岩岩性为酸性—中酸性岩浆岩、变质岩及沉积岩;白莲地区砂岩重矿物组合为Ⅰ2+Ⅲ4,源区母岩岩性为沉积岩、酸性—中酸性岩浆岩及变质岩。
流二段沉积时,白莲地区重矿物组合发生了较大的变化。白莲南部重矿物组合为Ⅰ2+Ⅰ3+Ⅰ4+Ⅲ3,源区母岩为酸性—中酸性岩浆岩、沉积岩及变质岩;白莲北部重矿物组合为Ⅰ3+Ⅰ4,源区母岩为酸性—中酸性岩浆岩、沉积岩;花东地区重矿物组合为Ⅰ1 +Ⅰ2,源区母岩为酸性—中酸性岩浆岩、变质岩。
流一段沉积时,白莲地区重矿物组合除了Ⅰ和Ⅲ类外,出现了Ⅱ类组合;花场地区存在两种不同的重矿物组合,一类是花场北部H8井区Ⅰ+Ⅱ组合,与L2井区相似,其源区母岩为中酸性岩浆岩+变质岩;一类是花场北部的H7井区Ⅰ+Ⅲ组合,其源区母岩为沉积岩+中酸性岩浆岩及变质岩,不仅具有H8井区源区母岩特点,还兼顾了永安地区源区母岩特征。
Tectonic Environment, Parent Rock Type and Evolution of Source Area in Liushagang Period, Fushan Sag, Hainan
-
摘要: 通过对福山凹陷流沙港组砂岩碎屑组成及Dickinson三角图解分析,揭示了源区主要为稳定成熟陆块的混合造山带,火山弧造山带、碰撞缝合线及褶皱—逆掩带也有一定的贡献,与海南岛以外来峰的方式逆冲—推覆在不同岩片之上形成的岩片叠置堆垛系统的构造背景相吻合。利用Q型和R型聚类划分出源区及不同源区的重矿物组合,结合重矿物含量、形态、构造、岩屑成分及石英阴极发光特征等,认为源区母岩存在10类岩性组合。根据ZTR指数变化趋势及重矿物组合,研究区主要发育云龙凸起和海南隆起两个物源,海南隆起可划分多文—龙波及澄迈两个相对独立的物源。流三段沉积时,美台、花场及白莲地区分别接受来自多文—龙波、迈澄及云龙凸起沉积物,母岩主要为中酸性岩浆岩及变质岩,迈澄源区母岩缺乏变质岩;流二段沉积时,花东及白莲地区接受来自云龙凸起沉积物,母岩为中酸性岩浆岩及沉积岩;流一段沉积时,H7-2井区至永安一带主要由迈澄提供物源,母岩为中酸性岩浆岩、沉积岩及变质岩,H8井区受到澄迈、云龙凸起物源共同影响。Abstract: Through the analysis of sandstone clastic composition and Dickinson triangle diagram of Liushagang Formation in Fushan Sag, it is revealed that the source area is mainly a mixed orogenic belt of stable mature continental blocks, and the volcanic arc orogenic belt, collision suture and fold overthrust belt also contribute to a certain extent, It is consistent with the tectonic setting of the superimposed stacking system of rock sheets formed by thrusting and napping on different rock sheets in the form of external peaks in Hainan Island. According to the Q-type and R-type clustering, the heavy mineral assemblages in the source area and different source areas are divided. Combined with the heavy mineral content, morphology, structure, cuttings composition and quartz cathodoluminescence characteristics, it is considered that there are 10 types of lithologic assemblages in the source rock. According to the variation trend of ZTR index and heavy mineral assemblage, Yunlong uplift and Hainan uplift are mainly developed in the study area. Hainan uplift can be divided into two relatively independent provenances, Duowen-Longbo and Chengmai. During the deposition of the third member of Liuzhou Formation, Meitai, Huachang and Bailian areas received sediments from Duowen-Longbo, Maicheng and Yunlong uplift respectively. The parent rocks were mainly intermediate acid magmatic rocks and metamorphic rocks, while the parent rocks in Maicheng source area lacked metamorphic rocks; During the deposition of the second member of Liushagang Formation, Huadong and Bailian areas received sediments from Yunlong uplift, and the parent rocks were intermediate acid magmatic rocks and sedimentary rocks; During the deposition of the first member of Liushagang Formation, the provenance from well H7-2 to Yong'an is mainly provided by Maicheng, and the parent rock is intermediate acid magmatic rock, sedimentary rock and metamorphic rock. The provenance of well H8 is jointly affected by Chengmai and Yunlong uplift.
-
表 1 福山凹陷流沙港组砂岩碎屑组成
地区 井号 层位 石英/% 燧石/% 长石 岩屑 钾长石/% 斜长石/% 岩浆岩/% 变质岩/% 沉积岩/% 云母/% 花场 H7-2 流一段 50~64/57.2 2~4/2.95 7~13/10 1~2/1.4 3~8/5.8 18~25/22 1~2/1.6 0~2/<1 H8 流一段 37~55/47.6 1~4/2.25 6~14/8.6 1~2/1.4 4~10/7.0 30~42/33.5 0~1/<1 0~1/<1 H1 流三段 58~68/62.4 1.2~3.9/2.3 2.0~4.9/2.7 0~1/<1.0 9.0~11.8/10.9 13~28/18.8 2.0~3.9/2.7 0~1/<1 H5 流三段 56~69/62.7 2~3/2.1 5~7/5.8 0~1/<1.0 12~17/12.95 11~15/12.6 2~4/2.7 0~1/<1 H117 流一段 55~59/56.7 1~2/1.0 7~8/7.67 1~2/1.0 5~7/6.0 22~29/26 1~2/1.5 0~1/<1 HD1-1 流二段 53~60/57.3 2~3/2.67 5~7/5.67 <1.0 14~17/15.0 13~14/13.8 2~6/4.0 0~1/<1 流三段 64~69/66.0 1~2/1.67 5~6/5.8 <1.0 10~13/11.7 10~12/10.8 2~3/2.3 0~1/<1 H2 流一段 60~66/62.7 1.8~2.6/2.0 11~13/12.2 0~1/<1.0 2~4/2.8 13~19/15.4 1.2~2.9/1.8 0.9~11./1.2 流三段 59~68/62.6 1.6~3.8/2.1 3.5~8.9/6.7 0~1/<1.0 4~9/6.5 20~23/21.4 1.2~2.7/1.5 0~1/<1 白莲 L2 流一段 58~68/61.5 1~2/1.5 6~9/7.25 0~1/<1.0 4~7/5.2 20~31/24.8 0~1/<1 0~1/<1 流三段 60~69/64.9 0~1/<1.0 5~9/6.8 0~1/<1.0 5~9/6.4 17~30/23.3 1~2/1.75 0~1/<1 L10 流二段 60~67/61.7 1~3/1.47 8~15/10.2 0~1/<1.0 3~6/4.59 17~23/21.2 1~2/1.46 0~1/<1 L11 流三段 60~69/64.5 1~2/1.54 7~10/8.42 0~1/<1.0 4~5/4.25 15~27/22.56 1~2/1.5 0~1/<1 L12 流二段 52~63/56.9 1~3/1.8 10~18/12.2 0~1/<1.0 4~8/5.9 22~36/25.4 0~1/<1.0 0~1/<1 L23 流二段 63~68/64.7 1~2/1.4 3~5/3.67 0~1/<1.0 4~5/4.3 22~28/25.4 1~2/1.5 0~1/<1 流三段 58~59/58.4 1~3/1.8 3~7/4 0~1/<1.0 4~6/5.0 26~32/29 1~2/1.2 0~1/<1 L25 流三段 55~63/58.9 1~2/1.7 2~5/3.5 0~1/<1.0 6~9/7.25 22~33/26.8 1~2/1.4 0~1/<1 L27 流二段 61~77/69 1~2/1.5 1.5~5/3.3 0~1/<1.0 3~9/6 11~23/17 2~3/2.75 0~1/<1 流三段 61~69/64.6 1~2/1.8 1~5/2.3 0~1/<1.0 5~9/7.6 15~29/21 2~3/2.3 0~1/<1 L103 流一段 45~55/49.4 1~3/1.4 6~10/8 1~3/2 10~12/10.8 20~34/26.7 1~3/1.8 0~1/<1 美台 M4 流三段 70~74/72 2~5/3.3 1~3/1.7 0~1/<1.0 3~6/4.27 15~18/16.9 2~3/2.4 0~1/<1 永安 J1 流一段 53~63/55.6 2~3/2.2 8~10/9.1 0~1/<1.0 5~10/7.6 18~32/24.3 0~1/<1 0~1/<1 流二段 50~57/53.8 2~3/2.3 5~9/6.8 0~1/<1.0 6~9/7.3 22~36/28.7 0~1/<1 0~1/<1 Y8 流一段 47~65/54.8 1~2/1.1 7~11/9.7 0~1/<1.0 4~7/5.0 19~38/28.6 0~1/<1 0~1/<1 表 2 福山凹陷流沙港组重矿物组成
地区 井号 层位 重 矿 物 锆石/% 电气石/% 石榴石/% 绿帘石/% 黝帘石/% 磁铁矿/% 赤褐铁矿/% 白钛矿/% 金红石/% 花场 H7-2 流一段 10~20 15~30 0.5~2 0.5~1 0.5~1.0 0.5~1.0 5~15 20~35 5~10 H8 流一段 10~20 15~30 0.5~2 <0.5 <0.5 05~1.0 1~5 20~30 5~10 H117 流一段 10~20 10~15 0.5~1 0 0 5~10 1~5 50~60 5~10 流二段 5~10 5~10 0 0 0 1~2 5~10 15~20 1~5 HD1~2 流三段 15~30 10~20 0 0 0 0.1~1 0~1 30~50 5~10 HD6~1 流二段 20~50 20~30 0 <0.5 <0.5 0.5~1 5~10 30~40 5~10 流三段 20~50 10~15 0 <0.5 <0.5 0.5~1 1~5 30~40 5~10 白莲 L2 流一段 10~20 15~20 0.5~1.0 0 0 <0.5 1~5 20~30 1~5 流三段 20~30 20~30 <0.5 <0.5 <0.5 <0.5 1~5 30~40 5~10 L10 流二段 10~20 10~15 0 0 <0.5 0 5~10 30~50 5~10 L11 流三段 15~25 5~15 0 0 0 <0.5 1~5 30~50 10~15 L12 流二段 10~20 15~25 <0.5 <0.5 0 0.5~1 1~5 25~50 5~10 L23 流二段 10~20 15~20 0 0 0 1~2 1~5 25~50 1~5 流三段 10~20 20~30 0 0 0 0.5~1 1~5 40~50 1~5 L25 流三段 20~30 15~25 0 <0.5 <0.5 1~2 1~5 30~50 1~5 L27 流二段 15~20 1~5 <0.5 <0.5 0 1~5 1~5 50~60 5~15 流三段 5~15 1~5 0 0 0 1~5 1~5 50~70 5~15 L102 流一段 10~20 10~20 1~2 0 0 1~2 1~5 50~60 5~10 L103 流一段 10~20 10~20 2~10 0 0 <0.5 5~15 40~60 5~10 L104 流一段 10~15 1~5 1~5 0 0 1~2 10~20 50~60 5~10 美台 M4 流三段 10~20 10~20 0.5~1 0 0 0 1~5 30~50 5~15 永安 Y2 流一段 10~20 20~30 1~2 <0.5 <0.5 0.5~1 1~5 20~30 5~10 Y8 流一段 10~20 10~20 0.5~1.5 <0.5 0 1~5 1~5 40~60 5~10 表 3 福山凹陷流沙港组重矿物组合及母岩
类 亚类 重矿物组合 母岩类型 分布层段 Ⅰ Ⅰ1 金红石+赤褐铁矿+磁铁矿 酸性岩浆岩+变质岩 流三段、流二段、流一段 Ⅰ2 白钛矿+赤褐铁矿+磁铁矿 中酸性岩浆岩+变质岩 流三段、流二段 Ⅰ3 电气石+金红石+赤褐铁矿 中酸性岩浆岩 流三段、流二段 Ⅰ4 锆石+白钛矿+赤褐铁矿 酸性、中酸性岩浆岩+沉积岩 流三段、流二段、流一段 Ⅱ Ⅱ1 金红石+赤褐铁矿+石榴石 变质岩 流三段、流一段 Ⅱ2 电气石+石榴石+磁铁矿 变质岩 流一段 Ⅲ Ⅲ1 金红石+石榴石+电气石+绿帘石+磁铁矿 沉积岩+变质岩 流一段 Ⅲ2 锆石+金红石+赤褐铁矿+石榴石+磁铁矿 沉积岩+中酸性岩浆岩+变质岩 流一段 Ⅲ3 锆石+金红石+电气石 沉积岩+中酸性岩浆岩 流二段 Ⅲ4 锆石+金红石+赤褐铁矿 沉积岩+酸性岩浆岩 流三段、流二段、流一段 -
[1] Pettijohn F J, Potter P E, Siever R. Sand and sandstone[M]. 2nded. New York: Springer, 1987: 533. [2] Dickinson W R, Gehrels G E. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment[J]. GSA Bulletin, 2009, 121(3/4): 408-433. [3] Blum M, Pecha M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons[J]. Geology, 2014, 42(7): 607-610. [4] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139. [5] 汪正江,陈洪德,张锦泉. 物源分析的研究与展望[J]. 沉积与特提斯地质,2000,20(4):104-110. Wang Zhengjiang, Chen Hongde, Zhang Jinquan. Provenance analysis: Perspectives[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(4): 104-110. [6] 赵红格,刘池阳. 物源分析方法及研究进展[J]. 沉积学报,2003,21(3):409-415. Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. [7] 方世虎,郭召杰,贾承造,等. 准噶尔盆地南缘中—新生界沉积物重矿物分析与盆山格局演化[J]. 地质科学,2006,41(4):648-662. Fang Shihu, Guo Zhaojie, Jia Chengzao, et al. Meso-Cenozoic heavy minerals’ assemblages in the southern Junggar Basin and its implications for basin-orogen pattern[J]. Chinese Journal of Geology, 2006, 41(4): 648-662. [8] 徐亚军,杜远生,杨江海. 沉积物物源分析研究进展[J]. 地质科技情报,2007,26(3):26-32. Xu Yajun, Du Yuansheng, Yang Jianghai. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 2007, 26(3): 26-32. [9] 闫臻,边千韬, Korchagin O A,等. 东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据[J]. 岩石学报,2008,24(5):1068-1078. Yan Zhen, Bian Qiantao, Korchagin O A, et al. Provenance of Early Triassic Hongshuichuan Formation in the southern margin of the East Kunlun Mountains: Constrains from detrital framework, heavy mineral analysis and geochemistry[J]. Acta Petrologica Sinica, 2008, 24(5): 1068-1078. [10] 屈红军,马强,高胜利,等. 鄂尔多斯盆地东南部二叠系物源分析[J]. 地质学报,2011,85(6):979-986. Qu Hongjun, Ma Qiang, Gao Shengli, et al. On provenance of the Permian in the southeastern Ordos Basin[J]. Acta Geologica Sinica, 2011, 85(6): 979-986. [11] 雷刚林,廖林,师俊,等. 西昆仑中新世晚期—上新世早期隆升活动的沉积记录:来自塔西南棋北3井沉积物重矿物的证据[J]. 地质学报,2011,85(8):1334-1342. Lei Ganglin, Liao Lin, Shi Jun, et al. Sedimentary records of uplifting in West Kunlun during Late Miocene-Early Pliocene: Evidence from the heavy mineral assemblages of well Qibei-3 in the southwestern Tarim[J]. Acta Geologica Sinica, 2011, 85(8): 1334-1342. [12] 杨仁超,李进步,樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报,2013,31(1):99-107. Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rock[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107. [13] 马收先,孟庆任,曲永强. 轻矿物物源分析研究进展[J]. 岩石学报,2014,30(2):597-608. Ma Shouxian, Meng Qingren, Qu Yongqiang. Development on provenance analysis of light minerals[J]. Acta Petrologica Sinica, 2014, 30(2): 597-608. [14] 彭治超,付星辉,刘俊超,等. 沉积物源分析方法及研究进展[J]. 西安文理学院学报(自然科学版),2017,20(1):116-121. Peng Zhichao, Fu Xinghui, Liu Junchao, et al. Analysis methods and research progress of sediment source[J]. Journal of Xi’an University (Natural Science Edition), 2017, 20(1): 116-121. [15] Eriksson K A, Campbell I H, Palin J M, et al. Predominance of Grenvillian magmatism recorded in detrital zircons from modern appalachian rivers[J]. The Journal of Geology, 2003, 111(6): 707-717. [16] Yang J H, Du Y S, Cawood P A, et al. Silurian collisional suturing onto the southern margin of the North China Craton: Detrital zircon geochronology constraints from the Qilian Orogen[J]. Sedimentary Geology, 2009, 220(1/2): 95-104. [17] Gehrels G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 127-149. [18] Gehrels G, Pecha M. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America[J]. Geosphere, 2014, 10(1): 49-65. [19] Xu J, Snedden J W, Stockli D F, et al. Early Miocene continental-scale sediment supply to the gulf of Mexico Basin based on detrital zircon analysis[J]. GSA Bulletin, 2017, 129(1/2): 3-22. [20] 刘志慧,罗敏,陈龙耀,等. 南秦岭佛坪地区地层格架与物源分析:变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约[J]. 岩石学报,2018,34(5):1484-1502. Liu Zhihui, Luo Min, Chen Longyao, et al. Stratigraphic framework and provenance analysis in the Foping area,the South Qinling tectonic belt: Constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks[J]. Acta Petrologica Sinica, 2018, 34(5): 1484-1502. [21] 李佐臣,裴先治,魏立勇,等. 西秦岭临潭地区下白垩统—上新统陆相地层碎屑锆石U-Pb年代学及其物源分析[J]. 地质学报,2019,93(9):2171-2186. Li Zuochen, Pei Xianzhi, Wei Liyong, et al. Detrital zircon U-Pb age and provenance analysis of Lower Cretaceous-Pliocene continental strata at Lintan area in the West Qinling orogenic belt[J]. Acta Geologica Sinica, 2019, 93(9): 2171-2186. [22] 张英利,贾晓彤,王宗起,等. 米仓山地区早寒武世仙女洞组沉积物源新认识:沉积学、重矿物和碎屑锆石年代学的证据[J]. 地质学报,2018,92(9):1918-1935. Zhang Yingli, Jia Xiaotong, Wang Zongqi, et al. New insights into provenance of Early Cambrian Xiannüdong Formation in the Micangshan area: Evidence from sedimentology, heavy mineral and detrital zircon chronology[J]. Acta Geologica Sinica, 2018, 92(9): 1918-1935. [23] 张英利,贾晓彤,王宗起,等. 上扬子西南缘早三叠世嘉陵江组物源分析和构造环境:沉积学、重矿物电子探针和U-Pb年龄的限定[J]. 地质学报,2019,93(12):3197-3222. Zhang Yingli, Jia Xiaotong, Wang Zongqi, et al. Provenance analysis and tectonic setting of Early Triassic Jialingjiang Formation in the southwestern upper Yangtze area: Evidence from sedimentology, heavy mineral electron probe microanalysis and U-Pb dating[J]. Acta Geologica Sinica, 2019, 93(12): 3197-3222. [24] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396. Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396. [25] 刘丽军,佟彦明,纪云龙,等. 北部湾盆地福山凹陷流沙港组湖底扇沉积特征及发育背景[J]. 石油实验地质,2003,25(2):110-115. Liu Lijun, Tong Yanming, Ji Yunlong,et al. Sedimentary characteristics and developing background of the sublacustrine fan in the Liushagang Formation of the Fushan Depression, the Beibuwan Basin[J]. Petroleum Geology & Experiment, 2003, 25(2): 110-115. [26] 刘丽军,旷红伟,佟彦明,等. 福山凹陷下第三系流沙港组沉积体系及演化特征[J]. 石油与天然气地质,2003,24(2):140-145. Liu Lijun, Kuang Hongwei, Tong Yanming, et al. Sedimentary systems and evolution characteristics of Lower Tertiary Liushagang Formation in Fushan Sag[J]. Oil & Gas Geology, 2003, 24(2): 140-145. [27] 何幼斌,高振中. 海南岛福山凹陷古近系流沙港组沉积相[J]. 古地理学报,2006,8(3):365-376. He Youbin, Gao Zhenzhong. Sedimentary facies of the Liushagang Formation of Paleogene in Fushan Sag of Hainan Island[J]. Journal of Palaeogeography, 2006, 8(3): 365-376. [28] 李媛,刘菊,马庆林,等. 福山凹陷古近系流一段重力流沉积特征[J]. 特种油气藏,2010,17(5):30-32. Li Yuan, Liu Ju, Ma Qinglin, et al. Sedimentary characteristics of gravity flows in Paleogene Liu 1 Formation of the Fushan Sag[J]. Special Oil & Gas Reservoirs, 2010, 17(5): 30-32. [29] Sborne M J, Swarbrick R E. Diagenesis in North Sea HPHT clastic reservoirs—consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology, 1999, 16(4): 337-353. [30] Kim J C, Lee Y I, Hisada K I. Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic-Early Cretaceous), central Japan[J]. Sedimentary Geology, 2007, 195(3/4): 183-202. [31] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:1-483. Zhu Xiaomin. Sedimengtary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 1-483. [32] Morad S, Al-Ramadan K, Ketzer J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309. [33] 熊绍云,黄羚,程刚,等. 北部湾盆地福山凹陷花东—白莲北部地区流三段砂岩储层致密成因[J]. 地质学报,2013,87(10):1624-1633. Xiong Shaoyun, Huang Ling, Cheng Gang, et al. Origin mechanism of tightness from the third members of Liushagang Formation sandstone reservoir in the northern Huadong-Bailian area, Fushan Sag, Northern Bay Basin[J]. Acta Geologica Sinica, 2013, 87(10): 1624-1633. [34] 操应长,宋玲,王健,等. 重矿物资料在沉积物物源分析中的应用:以涠西南凹陷古近系流三段下亚段为例[J]. 沉积学报,2011,29(5):835-841. Cao Yingchang, Song Ling, Wang Jian, et al. Application of heavy mineral data in the analysis of sediment source: A case study in the Paleogene lower submember of the Third member of the Liushagang Formation, Weixinan Depression[J]. Acta Sedimentologica Sinica, 2011, 29(5): 835-841. [35] 余江浩,廖远涛,林正良,等. 福山凹陷古近系沉降特征时空差异性及其形成机制[J]. 油气地质与采收率,2012,19(5):34-38. Yu Jianghao, Liao Yuantao, Lin Zhengliang, et al. Research on temporal diversity of settlement characteristics of Paleogene, Fushan Sag[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(5): 34-38. [36] 张志强,詹文欢,汤民强,等. 北部湾盆地晚中新世以来沉降过程[J]. 海洋地质与第四纪地质,2013,33(3):9-13. Zhang Zhiqiang, Zhan Wenhuan, Tang Minqiang, et al. Subsidence of Beibuwan Basin since Late Miocene[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 9-13. [37] 马云,李三忠,张丙坤,等. 北部湾盆地不整合面特征及构造演化[J]. 海洋地质与第四纪地质,2013,33(2):63-72. Ma Yun, Li Sanzhong, Zhang Bingkun, et al. Unconformities in the Beibuwan Basin and their implications for tectonic evolution[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 63-72. [38] 张智武,刘志峰,张功成,等. 北部湾盆地裂陷期构造及演化特征[J]. 石油天然气学报(江汉石油学院学报),2013,35(1):6-10. Zhang Zhiwu, Liu Zhifeng, Zhang Gongcheng, et al. The chasmic stage and structural evolution features of Beibuwan Basin[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2013, 35(1): 6-10. [39] 李桂群,李学伦. 红河断裂构造带在东南亚的延伸特征及其大地构造意义[J]. 青岛海洋大学学报,1990,20(2):80-88. Li Guiqun, Li Xuelun. Extended characteristics in the Southeast Asia of the Honghe River fault tectonic zone and its geotectonic significance[J]. Journal of Ocean University of Qingdao, 1990, 20(2): 80-88. [40] Schärer U, Zhang L S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China[J]. Earth and Planetary Science Letters, 1994, 126(3): 379-397. [41] Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(1/2/3/4): 3-10, 13-84. [42] 魏春光,何雨丹,耿长波,等. 北部湾盆地北部坳陷新生代断裂发育过程研究[J]. 大地构造与成矿学,2008,32(1):28-35. Wei Chunguang, He Yudan, Geng Changbo, et al. Faulting mechanism in northern depression of the Beibuwan Basin, China[J]. Geotectonica et Metallogenia, 2008, 32(1): 28-35. [43] 赵迎冬,王华,甘华军,等. 海南福山凹陷盆地形态演化分析[J]. 中国矿业大学学报,2014,43(6):1078-1086. Zhao Yingdong, Wang Hua, Gan Huajun, et al. The analysis about evolution of basin morphology in Fushan Sag of Hainan province[J]. Journal of China University of Mining & Technology, 2014, 43(6): 1078-1086. [44] 马庆林,赵淑娥,廖远涛,等. 北部湾盆地福山凹陷古近系流沙港组层序地层样式及其研究意义[J]. 地球科学:中国地质大学学报,2012,37(4):667-678. Ma Qinglin, Zhao Shue, Liao Yuantao, et al. Sequence architectures of Paleogene Liushagang Formation and its significance in Fushan Sag of the Beibuwan Basin[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(4): 667-678. [45] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1974. [46] McBride E F. A classification of common sandstones[J]. Journal of Sedimentary Petrology, 1963, 33(3): 664-669. [47] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604. Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. [48] 付玲,关平,赵为永,等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报,2013,29(8):2867-2875. Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875. [49] 周天琪,吴朝东,袁波,等. 准噶尔盆地南缘侏罗系重矿物特征及其物源指示意义[J]. 石油勘探与开发,2019,46(1):65-78. Zhou Tianqi, Wu Chaodong, Yuan Bo, et al. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 65-78. [50] 赵康,柴明锐,朱锐,等. 准噶尔盆地玛湖凹陷夏子街扇区三叠系百口泉组绿帘石分布特征及成因[J]. 古地理学报,2019,21(6):925-938. Zhao Kang, Chai Mingrui, Zhu Rui, et al. Distribution characteristics and genesis of epidote from the Triassic Baikouquan Formation in Xiazijie fan area, Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography, 2019, 21(6): 925-938. [51] 武法东,陆永潮,阮小燕. 重矿物聚类分析在物源分析及地层对比中的应用:以东海陆架盆地西湖凹陷平湖地区为例[J]. 现代地质,1996,10(3):397-403. Wu Fadong, Lu Yongchao, Ruan Xiaoyan. Application of heavy minerals cluster analysis to study of clastic sources and stratigraphic correlation[J]. Geoscience, 1996, 10(3):397-403. [52] Dickinson W R, Beard L S, Brakenridge G R, et al. Provenance of north american Phanerozoic sandstones in relation to tectonic setting[J]. GSA Bulletin, 1983, 94(2): 222-235. [53] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 333-361. [54] 李忠,李任伟,孙枢,等. 合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性[J]. 岩石学报,1999,15(3):438-445. Li Zhong, Li Renwei, Sun Shu, et al. Detrital composition and provenance tectonic attributes of Jurassic sandstones, south Hefei Basin[J]. Acta Petrologica Sinica, 1999, 15(3): 438-445. [55] 魏玉帅,王成善,李祥辉,等. 藏南古近纪甲查拉组物源分析及其对印度—欧亚大陆碰撞启动时间的约束[J]. 矿物岩石,2006,26(3):46-55. Wei Yushuai, Wang Chengshan, Li Xianghui, et al. Provenance analysis of Paleogene Gyachala Formation in southern Tibet: Implication for the initiation of collision between India and Asia[J]. Journal of Mineralogy and Petrology, 2006, 26(3): 46-55. [56] 闫臻,王宗起,王涛,等. 秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束[J]. 岩石学报,2007,23(5):1023-1042. Yan Zhen, Wang Zongqi, Wang Tao, et al. Tectonic setting of Devonian sediments in the Qinling orogen: Constraints from detrital modes and geochemistry of clastic rocks[J]. Acta Petrologica Sinica, 2007, 23(5): 1023-1042. [57] 于振锋,程日辉,许中杰,等. 广东海丰地区下侏罗统长埔组浅海沉积与前陆构造背景[J]. 沉积学报,2012,30(2):251-263. Yu Zhenfeng, Cheng Rihui, Xu Zhongjie, et al. Shallow marine deposits and the foreland tectonic setting of Changpu Formation of Lower Jurassic in Haifeng, Guangdong[J]. Acta Sedimentologica Sinica, 2012, 30(2): 251-263. [58] 陈斌,李勇,王伟明,等. 晚三叠世龙门山前陆盆地须家河组物源及构造背景分析[J]. 地质学报,2016,90(5):857-872. Chen Bin, Li Yong, Wang Weiming, et al. The provenance and tectonic setting of Late Triassic Xujiahe Formation in the Longmenshan Foreland Basin, SW China[J]. Acta Geologica Sinica, 2016, 90(5): 857-872. [59] Ingersoll R V. Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks[J]. Geology, 1990, 18(8): 733-736. [60] 鲁宝亮,王璞珺,梁建设,等. 古南海构造属性及其与特提斯和古太平洋构造域的关系[J]. 吉林大学学报(地球科学版),2014,44(5):1441-1450. Lu Baoliang, Wang Pujun, Liang Jianshe, et al. Structural properties of Paleo-South China Sea and their relationship with the Tethys and the Paleo-Pacific tectonic domain[J]. Journal of Jilin University (Earth Science Edition), 2012, 44(5): 1441-1450. [61] Dickinson W R, Suczek C A. Plate tectonics and sandstone composition[J]. AAPG Bulletin, 1979, 63(12): 2164-2182. [62] Liang C Y, Liu Y L, Hu Z H, et al. Provenance study from petrography and geochronology of Middle Jurassic Haifanggou Formation in Xingcheng Basin, western Liaoning Province[J]. Geological Journal, 2020, 55(4): 2420-2446. [63] 晁会霞,韩孝辉,杨志华,等. 对海南岛大地构造特征的新探索[J]. 地学前缘,2016,23(4):200-211. Chao Huixia, Han Xiaohui, Yang Zhihua, et al. New exploration of geotectonic characteristics of Hainan Island[J]. Earth Science Frontiers, 2016, 23(4): 200-211. [64] Götte T, Richter D K. Cathodoluminescence characterization of quartz particles in mature arenites[J]. Sedimentology, 2006, 53(6): 1347-1359. [65] Owen M R. Application of Cathodoluminescence to sandstone provenance[M]//Barker C E, Burruss R C, Kopp O C, et al. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Tulsa: SEPM, 1991: 67-75. [66] Götze J, Plötze M, Habermann D. Origin, spectral characteristics and practical applications of the Cathodoluminescence (CL) of quartz-a review[J]. Mineralogy and Petrology, 2001, 71(3/4): 225-250. [67] Zinkernagel U. Cathodoluminescence of quartz and its application to sandstone petrology[M]. Stuttgart: Schweizerbart, 1978: 1-69. [68] 沈鹏飞. 南雄—丹霞盆地白垩纪沉积序列演化特征及其对南海构造转换的响应[D]. 北京:中国地质大学(北京),2014:1-100. Shen Pengfei. The evolution mirrored by the Cretaceous sedimentary sequences in the Nanxiong-Danxia Basin and its response to the tectonic transition at the SCS’s area[D]. Beijing: China University of Geosciences (Beijing), 2014: 1-100. [69] Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/2/3/4): 3-29. [70] von Eynatten H, Gaupp R. Provenance of Cretaceous synorogenic sandstones in the eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 1999, 124(1/2/3/4): 81-111. [71] 和钟铧,刘招君,张峰. 重矿物在盆地分析中的应用研究进展[J]. 地质科技情报,2001,20(4):29-32. He Zhonghua, Liu Zhaojun, Zhang Feng. Latest progress of heavy mineral research in the basin analysis[J]. Geological Science and Technology Information, 2001, 20(4): 29-32.