-
准噶尔盆地南缘侏罗系—白垩系储层以砂岩为主体,同时还包括一定比例的砂砾岩。通过对研究区下组合21口取心井的岩石薄片数据统计分析(表1),结果表明:砂岩类型以长石岩屑砂岩、长石质岩屑砂岩和岩屑砂岩为主(图2a),岩屑含量高,成分成熟度低平均在0.27~0.58之间,整体反映相对近物源的沉积环境。但相比而言,西山窑组成熟度最高,而清水河组成熟度最低(表1)。此外砂岩Dickinson Qt-F-L判别图解[26](Qt代表石英颗粒,包括单晶石英和多晶石英;F代表单晶长石颗粒;L代表不稳定岩屑颗粒)显示大部分样品点均落入再循环造山带物源区,但仍有部分样品位于火山弧物源区和陆块物源区(图2b)。由此可见,侏罗系—白垩系各组地层沉积期源区母岩成因较为多样,但仍以再循环的沉积岩物源为主。
表 1 准噶尔盆地南缘西段下组合侏罗系—下白垩统储层骨架碎屑成分、重矿物类型及相关分析参数特征
层位 石英 长石 岩屑 成分成熟度 稳定重矿物类 不稳定重矿物类 重矿物稳定系数 ZTR指数/% 清水河组 20.5 17 62.5 0~0.67(0.27) 石榴石、锆石、电气石、金红石、白钛石、 尖晶石、锐钛矿、磁铁矿、钛铁矿、铬铁矿、榍石 阳起石、磷灰石、重晶石、绿帘石、黑云母、角闪石 1~43.2(12.8) 0~86.3(36.4) 齐古组 24 19 57 0.01~0.72(0.33) 0.75~504(48.2) 0~72(28.2) 头屯河组 21 21 58 0~0.82(0.29) 0.1~903(193) 0~85.5(56.3) 西山窑组 35 20 46 0.02~1.22(0.58) 93.5~954(549.1) 43.4~84.9(57.6) 三工河组 28 17 55 0~2.18(0.45) 54.4~960(434.6) 29.5~87.5(63.1) 八道湾组 23 14 62 0.04~2.02(0.34) 4.2~510.3(125.1) 25~94.1(54.6) 注: 成分成熟度=石英相对含量/(长石相对含量+岩屑相对含量);重矿物稳定系数=各稳定重矿物之和/各不稳定重矿物含量之和;ZTR指数=(锆石含量+金红石含量+电气石含量)/透明重矿物总含量×100%,相关计算公式据文献[24]。图 2 准噶尔盆地南缘西段下组合侏罗系—白垩系各地层砂岩成分及成因判别三角图
Figure 2. Sandstone content and orign triangular diagram of different formations in the lower assemblage within the western part of the southern Junggar Basin
砾岩是临近物源区及其母岩性质的直观记录,其中砾岩砾石成分差异及其变化特征可反映不同基岩性质的山体可能发生的剥蚀和隆升过程[21,28]。通过对野外剖面和钻井砾岩砾石成分统计分析表明(表2):南缘西段下组合侏罗系—白垩系砾岩砾石成分整体以沉积岩系砾石为主,即包含泥岩、粉砂岩、中细砂岩、凝灰岩砾石,其平均含量至少占总体50%以上,最大可达90%以上,并以凝灰岩成分砾石为主(图3)。相比而言,结晶变质岩系砾石含量较少,但波动较大。上述现象说明南缘西段侏罗系—白垩系沉积期沉积岩物源区已构成物源的主体,其与由砂岩Dickinson源区判别图解所揭示的特征一致。值得注意的是,凝灰岩地层主要发育于石炭系内,因此砾岩中凝灰岩砾石含量的高低可从侧面反映早期石炭系地层被抬升剥蚀的剧烈程度,凝灰岩砾石含量越高则构造作用造成的石炭系隆升剥蚀程度越大。此外,结晶变质岩系砾石成分含量的高低可从侧面反映“老山”,特别是早古生代发育的岩浆岩及与构造有关的变质岩(如糜棱岩、脉石英等)山体,即中天山和扎伊尔山供源强度的大小。
表 2 准噶尔盆地南缘西段下组合各地层砾岩砾石各成分平均含量
层位 泥岩 粉砂岩 中细砂岩 凝灰岩 正长岩 钾长花岗岩 花岗糜棱岩 玄武安山岩 英安斑岩 长石石英岩 白云母石英片岩 脉石英 清水河组 1.67 — 4.5 77.44 1.24 10.31 0.67 0.67 — 1.44 — 2.06 齐古组 7.63 1.13 — 63.5 3.25 6.72 4.13 3.88 7.88 — 0.38 1.5 头屯河组 — — — 57.62 — — 32.28 2.5 5.04 1.73 — 0.83 西山窑组 8.25 2 1 52.34 — 2 22.01 11.4 — — — 1 三工河组 — — — — — — — — — — — — 八道湾组 28 15 6 21.5 — — 11 — 10 — — 8.5 -
重矿物类型及其组合可反映母岩岩性、搬运距离、区域构造及气候条件等信息。因此在盆地源—汇系统分析中得以广泛应用[10,16]。准南西段下组合侏罗—白垩系储层内部共可鉴定出20余种重矿物,包括:石榴石、锆石、电气石、金红石、磁铁矿、钛铁矿等。其中岩心观察可见黄铁矿常与碳酸盐胶结物伴生且晶体形态规则颗粒较大,属于成岩自生型重矿物因而不能反映物源条件[29-31]。此外,赤/褐铁矿多呈四方体或八面体粒状,并残存黄铁矿或磁铁矿假相,属再氧化成因,同样不能反映物源条件。在排除上述两类自生重矿物外,可将下组合储层陆源成因的重矿物按其稳定性差异进一步划分为稳定重矿物和不稳定重矿物两大类(表3)。
表 3 准噶尔盆地南缘西段下组合储层重矿物组合特征及潜在源区
序号 重矿物组合 母岩类型 潜在物源区 母岩岩性 1 重晶石、绿泥石、榍石、电气石、 磷灰石、锆石、尖晶石、白钛石 沉积岩(火山碎屑岩) 北天山、中天山 北天山:火山碎屑岩、凝灰岩、局部沉积岩中天山: 早古生代火山碎屑岩 2 石榴石、绿帘石、磁铁矿、十字石、 钛铁矿、电气石、白钛石、榍石、锆石 变质岩 中天山 花岗岩演变的变质岩、花岗糜棱岩、 花岗片麻岩等中高级变质岩、前寒武变质岩 3 锆石、电气石、磷灰石、黑云母、白钛石、 锐钛矿、白钛石、尖晶石、钛铁矿 中酸性岩浆岩 中天山、扎伊尔山 中天山:后碰撞A型花岗岩、早古生代花岗岩扎伊尔山: 花岗岩、钾长花岗岩、碱性花岗岩、正长斑岩 4 磁铁矿、钛铁矿、铬铁矿、钛磁铁矿、白钛石 基性岩浆岩 中天山、扎伊尔山 中天山:基性侵入岩、超基性岩、蛇绿岩扎伊尔山: 玄武岩、蛇绿岩、辉长岩 分别对准南西段21口井、3个野外剖面共计215个侏罗系—白垩系各组地层样品发育的陆源重矿物类型及含量进行R型聚类分析,得到各组地层重矿物树型聚类图谱(图4)。由图4可知,当距离系数为23时,准南西段下组合各组地层重矿物组合类型大致可区分为4大类,即:1)以重晶石+绿泥石+榍石+电气石+磷灰石等为主的重矿物组合类型,这一重矿物组合多反映的是沉积岩类(包含火山碎屑岩及凝灰岩)母岩类型[10,28];2)以石榴石+绿帘石+磁铁矿+十字石等为主的重矿物组合类型,这一重矿物组合多反映的是变质岩类母岩类型[10,16];3)以锆石+电气石+磷灰石+黑云母+白钛石+锐钛矿等为主的重矿物组合类型,这一重矿物组合多反映的是中酸性岩浆岩母岩类型[8,10];4)以(钛)磁铁矿+铬铁矿+钛铁矿等为主重矿物组合类型,这一重矿物组合多反映的是基性岩浆岩类母岩类型[16,30]。由此可见,准南西段侏罗系—白垩系沉积期源区条件较为复杂,而这一复杂性与研究区南部的北天山和中天山及西北部的扎伊尔山母岩类型具有较好可对比性(表3)。此外,沉积岩类母岩重矿物组合的出现反映下组合沉积期下伏沉积岩系地层的抬升剥蚀,构造造山运动较为活跃。
图 4 准噶尔盆地南缘西段下组合侏罗—白垩系沉积各类型重矿物含量R型聚类图
Figure 4. R⁃type cluster plot of heavy mineral content for deposits in the lower assemblage within the western part of the southern Junggar Basin
为进一步分析准南西段下组合不同组地层在区域上的潜在物源分区,在研究中首先利用不同井同一层位的全部样品各重矿物含量的算数平均值代表该层位重矿物组合类型和比重分配模式,绝大多数代表值的求取均有10个以上样品点数据控制,基本可反映其整体特征和各井间的变化趋势。在此定性对比基础上,再次通过Q型聚类方法对不同井同一层位重矿物类型及含量亲疏关系进行判断,确定区域可能的潜在物源分区(图5)。由图5可见,当距离系数为17时,下组合沉积期可能存在过三支物源体系,同时区域内可出现混源特征。其中北部地区以艾2井和四参1井为代表,在各组地层沉积期均处于同一潜在物源体系,而南部地区则以四棵树剖面及高101井区域和乌苏剖面区域为界可区分出两支潜在物源体系。相比而言,中部地区尽管缺少井资料,但推测可能为多支物源体系的混源区。值得注意的是,从八道湾组各井Q型聚类分析结果可见,乌苏剖面和卡8井位置可能处于同一潜在物源区,即卡8井与其距离更近的四参1井和艾2井重矿物组合反而存在更大差异,而在齐古组和清水河组沉积期整个北部地区均受控于同一潜在物源体系。上述现象除反映混源特征的存在外,还可从侧面反映下组合侏罗系—白垩系沉积期北部和南部物源体系可能存在此消彼长的关系。
Provenance and Depositional Setting of the Jurassic-Cretaceous Within the Western Part of the Southern Junggar Basin
-
摘要: 准噶尔盆地南缘西段侏罗系—白垩系储层油气勘探潜力巨大,但目前有关其物源条件及沉积背景认识极为有限,严重制约了后续储层的有效预测和勘探。据此,通过对侏罗系—白垩系储层碎屑矿物及砾石成分特征、重矿物类型及组合特征、古水流特征、地层岩性比例特征等进行深入对比分析,并在此基础上结合区域构造演化对各地层沉积物源体系及其演化进行详细探讨。研究结果表明:侏罗系—白垩系储层物源主体受控于北部和南部再循环沉积岩系山体,但仍受北部扎伊尔山和南部中天山结晶变质岩系山体源区的影响,其影响程度自早侏罗世到早白垩世逐渐降低。下组合沉积期南部、北部物源同时存在,且研究区存在混源特征,但不存在统一且稳定的沉积中心。早侏罗世沉积物源背景相对稳定,原始沉积边界距现今最远;自中侏罗世开始受控于车莫古隆起演化影响,北部物源得以加强,同时地层发育不均衡并存在剥蚀现象;自晚侏罗世开始直至早白垩世,周缘沉积岩系山体隆升范围和幅度不断加大,并阻隔结晶变质岩系山体供源路径,沉积边界也随之逐渐萎缩,但这一时期北部物源可为优势物源,且研究区整体处于“填平补齐”状态,即齐古组沉积期可存在沟谷—残丘地貌特征,而下白垩统清水河组沉积前研究区整体呈准平原化状态。Abstract: The lower assemblage reservoirs within the western part of the southern Junggar Basin have great hydrocarbon exploration potential. However, the current understanding of the provenance condition and sedimentary background of these reservoirs is extremely limited, which severely restricts the subsequent effective prediction and exploration processes. Therefore, based on the detailed analysis of sandstone detrital mineral composition and conglomerate gravel content, heavy mineral type and assemblage, paleocurrent direction, and strata lithology ratio with regional tectonic evolution research findings, this study fully discusses the provenance and sedimentary system characteristics and evolution histories of different formations in the lower assemblage. The research results show that the main provenance of the lower assemblage reservoir is controlled by the northern and southern recirculating sedimentary rock mountains, but it can be still affected by the crystalline metamorphic parent rock of the Zaire Mountains in the north and the central Tianshan Mountains in the south. However, the affects gradually decreased from the Early Jurassic to the Cretaceous. In particular, the southern and northern provenances existed at the same time; thus, the study area shows mixed provenance characteristics, with no unified and stable depocenter. The sedimentary background during the Early Jurassic was relatively stable, and the original sedimentary boundary may show the farthest distance away from the present basin boundary. During the Middle Jurassic, controlled by the evolution of the Chemo paleo-uplift, the northern provenance was strengthened, with uneven stratigraphic distribution and occurrence of denudation. However, from the Late Jurassic to the Early Cretaceous, the uplift range and amplitude of the peripheral sedimentary rock mountains continuously increased and blocked the supply path of the crystalline metamorphic rock mountains. The sedimentary boundary gradually shrank, and the northern provenance became dominant. Moreover, the study area may show valley-monadnock landforms before the deposition of the Qigu Formation, while peneplain characteristics are evident before the deposition of the Qingshuihe Formation.
-
表 1 准噶尔盆地南缘西段下组合侏罗系—下白垩统储层骨架碎屑成分、重矿物类型及相关分析参数特征
层位 石英 长石 岩屑 成分成熟度 稳定重矿物类 不稳定重矿物类 重矿物稳定系数 ZTR指数/% 清水河组 20.5 17 62.5 0~0.67(0.27) 石榴石、锆石、电气石、金红石、白钛石、 尖晶石、锐钛矿、磁铁矿、钛铁矿、铬铁矿、榍石 阳起石、磷灰石、重晶石、绿帘石、黑云母、角闪石 1~43.2(12.8) 0~86.3(36.4) 齐古组 24 19 57 0.01~0.72(0.33) 0.75~504(48.2) 0~72(28.2) 头屯河组 21 21 58 0~0.82(0.29) 0.1~903(193) 0~85.5(56.3) 西山窑组 35 20 46 0.02~1.22(0.58) 93.5~954(549.1) 43.4~84.9(57.6) 三工河组 28 17 55 0~2.18(0.45) 54.4~960(434.6) 29.5~87.5(63.1) 八道湾组 23 14 62 0.04~2.02(0.34) 4.2~510.3(125.1) 25~94.1(54.6) 注: 成分成熟度=石英相对含量/(长石相对含量+岩屑相对含量);重矿物稳定系数=各稳定重矿物之和/各不稳定重矿物含量之和;ZTR指数=(锆石含量+金红石含量+电气石含量)/透明重矿物总含量×100%,相关计算公式据文献[24]。表 2 准噶尔盆地南缘西段下组合各地层砾岩砾石各成分平均含量
层位 泥岩 粉砂岩 中细砂岩 凝灰岩 正长岩 钾长花岗岩 花岗糜棱岩 玄武安山岩 英安斑岩 长石石英岩 白云母石英片岩 脉石英 清水河组 1.67 — 4.5 77.44 1.24 10.31 0.67 0.67 — 1.44 — 2.06 齐古组 7.63 1.13 — 63.5 3.25 6.72 4.13 3.88 7.88 — 0.38 1.5 头屯河组 — — — 57.62 — — 32.28 2.5 5.04 1.73 — 0.83 西山窑组 8.25 2 1 52.34 — 2 22.01 11.4 — — — 1 三工河组 — — — — — — — — — — — — 八道湾组 28 15 6 21.5 — — 11 — 10 — — 8.5 表 3 准噶尔盆地南缘西段下组合储层重矿物组合特征及潜在源区
序号 重矿物组合 母岩类型 潜在物源区 母岩岩性 1 重晶石、绿泥石、榍石、电气石、 磷灰石、锆石、尖晶石、白钛石 沉积岩(火山碎屑岩) 北天山、中天山 北天山:火山碎屑岩、凝灰岩、局部沉积岩中天山: 早古生代火山碎屑岩 2 石榴石、绿帘石、磁铁矿、十字石、 钛铁矿、电气石、白钛石、榍石、锆石 变质岩 中天山 花岗岩演变的变质岩、花岗糜棱岩、 花岗片麻岩等中高级变质岩、前寒武变质岩 3 锆石、电气石、磷灰石、黑云母、白钛石、 锐钛矿、白钛石、尖晶石、钛铁矿 中酸性岩浆岩 中天山、扎伊尔山 中天山:后碰撞A型花岗岩、早古生代花岗岩扎伊尔山: 花岗岩、钾长花岗岩、碱性花岗岩、正长斑岩 4 磁铁矿、钛铁矿、铬铁矿、钛磁铁矿、白钛石 基性岩浆岩 中天山、扎伊尔山 中天山:基性侵入岩、超基性岩、蛇绿岩扎伊尔山: 玄武岩、蛇绿岩、辉长岩 -
[1] 陈建平,王绪龙,倪云燕,等. 准噶尔盆地南缘天然气成藏及勘探方向[J]. 地质学报,2019,93(5):1002-1019. Chen Jianping, Wang Xulong, Ni Yunyan, et al. The accumulation of natural gas and potential exploration regions in the southern margin of the Junggar Basin[J]. Acta Geologica Sinica, 2019, 93(5): 1002-1019. [2] 胡瀚文,张元元,卓勤功,等. 准噶尔盆地南缘下组合油气成藏过程:以齐古油田为例[J]. 天然气地球科学,2019,30(4):456-467. Hu Hanwen, Zhang Yuanyuan, Zhuo Qingong, et al. Hydrocarbon charging history of the lower petroleum system in the southern Junggar Basin: Case study of the Qigu oil field[J]. Natural Gas Geoscience, 2019, 30(4): 456-467. [3] 朱明,汪新,肖立新. 准噶尔盆地南缘构造特征与演化[J]. 新疆石油地质,2020,41(1):9-17. Zhu Ming, Wang Xin, Xiao Lixin. Structural characteristics and evolution in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 9-17. [4] 杜金虎,支东明,李建忠,等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发,2019,46(2):205-215. Du Jinhu, Zhi Dongming, Li Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215. [5] 何海清,支东明,雷德文,等. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探,2019,24(2):137-146. He Haiqing, Zhi Dongming, Lei Dewen, et al. Strategic breakthrough in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration, 2019, 24(2): 137-146. [6] 靳军,王飞宇,任江玲,等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质,2019,40(2):145-151. Jin Jun, Wang Feiyu, Ren Jiangling, et al. Genesis of high-yield oil and gas in well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 145-151. [7] 杨迪生,肖立新,阎桂华,等. 准噶尔盆地南缘四棵树凹陷构造特征与油气勘探[J]. 新疆石油地质,2019,40(2):138-144. Yang Disheng, Xiao Lixin, Yan Guihua, et al. Structural characteristics and petroleum exploration in Sikeshu Sag, southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 138-144. [8] 林潼,王东良,王岚,等. 准噶尔盆地南缘侏罗系齐古组物源特征及其对储层发育的影响[J]. 中国地质,2013,40(3):909-918. Lin Tong, Wang Dongliang, Wang Lan, et al. The provenance feature of Jurassic Qigu Formation and its effect on reservoir development in the southern margin of Junggar Basin[J]. Geology in China, 2013, 40(3): 909-918. [9] 高志勇,周川闽,冯佳睿,等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报,2016,34(3):415-435. Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Relationship between the Tianshan Mountains uplift and depositional environment evolution of the basins in Mesozoic-Cenozoic[J]. Acta Sedimentologica Sinica, 2016, 34(3): 415-435. [10] 胡鹏,鲍志东,于兴河,等. 碎屑重矿物差异与物源演化:以长岭凹陷乾北地区青三段—姚一段为例[J]. 中国矿业大学学报,2017,46(2):375-387. Hu Peng, Bao Zhidong, Yu Xinghe, et al. Detrital heavy mineral difference and its implication for provenance: A case study of the Third member of Qingshankou Formation and the First member of Yaojia Formation in Qianbei area, Changling Sag[J]. Journal of China University of Mining & Technology, 2017, 46(2): 375-387. [11] 吴孔友,查明,王绪龙,等. 准噶尔盆地构造演化与动力学背景再认识[J]. 地球学报,2005,26(3):217-222. Wu Kongyou, Zha Ming, Wang Xulong, et al. Further researches on the tectonic evolution and dynamic setting of the Junggar Basin[J]. Acta Geoscientica Sinica, 2005, 26(3): 217-222. [12] 邵雨,李学义,杨迪生,等. 准噶尔盆地南缘新生代构造特征及演化[M]. 北京:科学出版社,2016. Shao Yu, Li Xueyi, Yang Disheng, et al. The Cenozoic structural charateristics and evolution of the southern Junggar Basin[M]. Beijing: Science Press, 2016. [13] 肖立新,雷德文,魏凌云,等. 准南西段构造样式及逆冲推覆构造特征[J]. 天然气工业,2012,32(11):36-39. Xiao Lixin, Lei Dewen, Wei Lingyun, et al. Structural types and features in the west of south margin in the Junggar Basin[J]. Natural Gas Industry, 2012, 32(11): 36-39. [14] 方世虎,郭召杰,宋岩,等. 准噶尔盆地南缘侏罗纪沉积相演化与盆地格局[J]. 古地理学报,2005,7(3):347-356. Fang Shihu, Guo Zhaojie, Song Yan, et al. Sedimentary facies evolution and basin pattern of the Jurassic in southern margin area of Junggar Basin[J]. Journal of Palaeogeography, 2005, 7(3): 347-356. [15] 张健,崔琴,胡瀚文,等. 准噶尔盆地南缘四棵树凹陷下组合油气成藏条件与评价[J]. 新疆地质,2016,34(2):269-274. Zhang Jian, Cui Qin, Hu Hanwen, et al. Hydrocarbon accumulation conditions of the lower assemblage in Sikeshu Sag, the southern margin of Junggar Basin[J]. Xinjiang Geology, 2016, 34(2): 269-274. [16] 周天琪,吴朝东,袁波,等. 准噶尔盆地南缘侏罗系重矿物特征及其物源指示意义[J]. 石油勘探与开发,2019,46(1):65-78. Zhou Tianqi, Wu Chaodong, Yuan Bo, et al. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1): 65-78. [17] 李忠,汤望新,彭守涛,等. 准噶尔盆地南缘中—新生界碎屑锆石的U-Pb年代学和沉积学记录及其反映的盆山构造演化[J]. 地质科学,2012,47(4):1016-1040. Li Zhong, Tang Wangxin, Peng Shoutao, et al. Detrital zircon U-Pb geochronological and depositional records of the Mesozoic-Cenozoic profile in the southern Junggar Basin, northwest China, and their responses to basin-range tectonic evolution[J]. Chinese Journal of Geology, 2012, 47(4): 1016-1040. [18] 王家林,吴朝东,朱文,等. 准噶尔盆地南缘二叠纪—三叠纪构造—沉积环境与原型盆地演化[J]. 古地理学报,2016,18(4):643-660. Wang Jialin, Wu Chaodong, Zhu Wen, et al. Tectonic-depositional environment and prototype basin evolution of the Permian-Triassic in southern Junggar Basin[J]. Journal of Palaeogeography, 2016, 18(4): 643-660. [19] 纪友亮,周勇,况军,等. 准噶尔盆地车—莫古隆起形成演化及对沉积相的控制作用[J]. 中国科学(D辑):地球科学,2010,40(10):1342-1355. Ji Youliang, Zhou Yong, Kuang Jun, et al. The formation and evolution of Chepaizi-Mosuowan paleo-uplift and its control on the distributions of sedimentary facies in the Junggar Basin[J]. Science China (Seri.D):Earth Sciences, 2010, 40(10): 1342-1355. [20] 鲍志东,刘凌,张冬玲,等. 准噶尔盆地侏罗系沉积体系纲要[J]. 沉积学报,2005,23(2):194-202. Bao Zhidong, Liu Ling, Zhang Dongling, et al. Depositional system frameworks of the Jurassic in Junggar Basin[J]. Acta Sedimentologica Sinica, 2005, 23(2): 194-202. [21] 万延周,周立发,白斌,等. 准噶尔盆地南缘水西沟群物源分析[J]. 岩性油气藏,2009,21(2):35-41. Wan Yanzhou, Zhou Lifa, Bai Bin, et al. Provenance analysis of Shuixigou Group in southern margin of Junggar Basin[J]. Lithologic Reservoirs, 2009, 21(2): 35-41. [22] 武法东,陆永潮,阮小燕,等. 重矿物聚类分析在物源分析及地层对比中的应用:以东海陆架盆地西湖凹陷平湖地区为例[J]. 现代地质,1996,10(3):397-403. Wu Fadong, Lu Yongchao, Ruan Xiaoyan, et al. Application of heavy minerals cluster analysis to study of clastic sources and stratigraphic correlation[J]. Geoscience, 1996, 10(3): 397-403. [23] 杨勇强,邱隆伟,孙宝强,等. 微观组分聚类分析在物源体系恢复中的应用:以民丰洼陷沙三段中亚段为例[J]. 吉林大学学报(地球科学版),2012,42(1):30-38. Yang Yongqiang, Qiu Lonwei, Sun Baoqiang, et al. Application of clustering analysis of the micro components in provenance system recovery: A case study on the middle part of the Third member of the Shahejie Formation in the Minfeng Sag[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 30-38. [24] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008. Zhu Xiaomin. Sedimentology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008. [25] 高崇龙,纪友亮,高志勇,等. 准噶尔盆地腹部深层储层物性保存过程多因素耦合分析[J]. 沉积学报,2017,35(3):577-591. Gao Chonglong, Ji Youliang, Gao Zhiyong, et al. Multi-factor coupling analysis on property preservation process of deep buried favorable reservoir in hinterland of Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(3): 577-591. [26] Dickinson W R. Interpreting provenance relations from detrital modes of sandstones[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 333-361. [27] 孙海宁,夏景生,张丹锋. 准噶尔盆地南缘地区中新生代物源分析[J]. 特种油气藏,2008,15(4):33-38. Sun Haining, Xia Jingsheng, Zhang Danfeng. Mesozoic-Cenozoic provenance analysis for the south edge of Junggar Basin[J]. Special Oil & Gas Reservoirs, 2008, 15(4): 33-38. [28] 方世虎,贾承造,宋岩,等. 准噶尔盆地南缘中—新生界碎屑成份特征与构造期次[J]. 地质科学,2007,42(4):753-765. Fang Shihu, Jia Chengzao, Song Yan, et al. Meso-Cenozoic tectonic events and structural constraints in the southern Junggar Basin: Evidence from detrital compositions[J]. Chinese Journal of Geology, 2007, 42(4): 753-765. [29] Berner R A. Sedimentary pyrite formation: An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615. [30] 李忠,王道轩,林伟,等. 库车坳陷中—新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报,2004,20(3):655-666. Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-Cenozoic clastic composition in Kuqa Depression, northwest China: Implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666. [31] Gao C L, Ji Y L, Ren Y, et al. Geomorphology and sedimentary sequence evolution during the buried stage of paleo-uplift in the Lower Cretaceous Qingshuihe Formation, Junggar Basin, northwestern China: Implications for reservoir lithofacies and hydrocarbon distribution[J]. Marine and Petroleum Geology, 2017, 86: 1224-1251. [32] 高崇龙,纪友亮,任影,等. 准噶尔盆地石南地区清水河组沉积层序演化分析[J]. 中国矿业大学学报,2016,45(5):958-971. Gao Chonglong, Ji Youliang, Ren Ying, et al. Sedimentary sequence evolution analysis of Qingshuihe Formation in Shinan area of Junggar Basin[J]. Journal of China University of Mining & Technology, 2016, 45(5): 958-971. [33] 董大伟,李理,王晓蕾,等. 准噶尔盆地西缘车排子凸起构造演化及断层形成机制[J]. 吉林大学学报(地球科学版),2015,45(4):1132-1141. Dong Dawei, Li Li, Wang Xiaolei, et al. Structural evolution and dislocation mechanism of western margin Chepaizi uplift of Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 1132-1141. [34] Liu Y, Wang X, Wu K Y, et al. Late Carboniferous seismic and volcanic record in the northwestern margin of the Junggar Basin: Implication for the tectonic setting of the west Junggar[J]. Gondwana Research, 2019, 71: 49-75. [35] 梁则亮,庞志超,冀冬生,等. 四棵树凹陷超深层裂谷盆地的厘定及油气勘探意义[J]. 新疆石油地质,2020,41(1):18-24. Liang Zeliang, Pang Zhichao, Ji Dongsheng, et al. Discovery of ultra-deep rift basin and its petroleum exploration significance in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 18-24. [36] 张朝军,何登发,吴晓智,等. 准噶尔多旋回叠合盆地的形成与演化[J]. 中国石油勘探,2006,11(1):47-58. Zhang Chaojun, He Dengfa, Wu Xiaozhi, et al. Formation and evolution of multicycle superimposed basins in Junggar Basin[J]. China Petroleum Exploration, 2006, 11(1): 47-58. [37] 蔚远江,胡素云,雷振宇,等. 准噶尔西北缘前陆冲断带三叠纪—侏罗纪逆冲断裂活动的沉积响应[J]. 地学前缘,2005,12(4):423-437. Yu Yuanjiang, Hu Suyun, Lei Zhenyu, et al. Sedimentary response to Triassic-Jurassic thrust faulting in the foreland thrust belt of the northwestern Junggar Basin[J]. Earth Science Frontiers, 2005, 12(4): 423-437. [38] 梁宇生,何登发,甄宇,等. 准噶尔盆地沙湾凹陷构造—地层层序与盆地演化[J]. 石油与天然气地质,2018,39(5):943-954. Liang Yusheng, He Dengfa, Zhen Yu, et al. Tectono-stratigraphic sequence and basin evolution of Shawan Sag in the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 943-954. [39] 何登发,陈新发,况军,等. 准噶尔盆地车排子—莫索湾古隆起的形成演化与成因机制[J]. 地学前缘,2008,15(4):42-55. He Dengfa, Chen Xinfa, Kuang Jun, et al. Development and genetic mechanism of Chepaizi-Mosuowan uplift in Junggar Basin[J]. Earth Science Frontiers, 2008, 15(4): 42-55. [40] 杨帆,侯连华,卫延召,等. 准噶尔盆地腹部石南21油藏、石南31油藏新认识[J]. 中国矿业大学学报,2015,44(4):696-703. Yang Fan, Hou Lianhua, Wei Yanzhao, et al. New perspective on Shinan 21 and Shinan 31 reservoirs in the central Junggar Basin[J]. Journal of China University of Mining & Technology, 2015, 44(4): 696-703. [41] 高崇龙,纪友亮,靳军,等. 古隆起埋藏期沟谷残丘地貌下沉积体系及油气藏发育模式:以准噶尔盆地腹部石南地区清水河组一段为例[J]. 天然气地球科学,2018,29(8):1120-1137. Gao Chonglong, Ji Youliang, Jin Jun, et al. Development model of sedimentary system and reservoir under valley-monadnock paleotopography during buried stage of paleouplift: Case study of 1st member of K1 q in Shinan area, hinterland of Junggar Basin[J]. Natural Gas Geoscience, 2018, 29(8): 1120-1137. [42] 邓胜徽,王思恩,杨振宇,等. 新疆准噶尔盆地中、晚侏罗世多重地层研究[J]. 地球学报,2015,36(5):559-574. Deng Shenghui, Wang Sien, Yang Zhenyu, et al. Comprehensive study of the Middle-Upper Jurassic strata in the Junggar Basin, Xinjiang[J]. Acta Geoscientica Sinica, 2015, 36(5): 559-574.