高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海南岛东北海岸风沙沉积的光释光年代学意义

张文静 李志忠 靳建辉 郑斐 李志星 徐晓琳 程延

张文静, 李志忠, 靳建辉, 郑斐, 李志星, 徐晓琳, 程延. 海南岛东北海岸风沙沉积的光释光年代学意义[J]. 沉积学报, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
引用本文: 张文静, 李志忠, 靳建辉, 郑斐, 李志星, 徐晓琳, 程延. 海南岛东北海岸风沙沉积的光释光年代学意义[J]. 沉积学报, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
ZHANG WenJing, LI ZhiZhong, JIN JianHui, ZHENG Fei, LI ZhiXing, XU XiaoLin, CHENG Yan. Optically Stimulated Luminescence Dating of Aeolian Sand Deposits in the Northeast Coast of Hainan Island[J]. Acta Sedimentologica Sinica, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
Citation: ZHANG WenJing, LI ZhiZhong, JIN JianHui, ZHENG Fei, LI ZhiXing, XU XiaoLin, CHENG Yan. Optically Stimulated Luminescence Dating of Aeolian Sand Deposits in the Northeast Coast of Hainan Island[J]. Acta Sedimentologica Sinica, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033

海南岛东北海岸风沙沉积的光释光年代学意义

doi: 10.14027/j.issn.1000-0550.2020.033
基金项目: 

国家自然科学基金 41771020

详细信息
    作者简介:

    张文静,女,1996年出生,硕士研究生,风沙地貌与环境演变,E⁃mail: 2262662461@qq.com

    通讯作者:

    李志忠,男,教授,E⁃mail: lizz@fjnu.edu.cn

  • 中图分类号: P931

Optically Stimulated Luminescence Dating of Aeolian Sand Deposits in the Northeast Coast of Hainan Island

Funds: 

National Natural Science Foundation of China 41771020

  • 摘要: 选取海南岛东北部JSD2和PQR2两个典型海岸沙质沉积剖面进行研究,共采集10个测年样品和89个指标分析样品,在室内进行了光释光(OSL)测年和粒度分析。结果表明:1)JSD2和PQR2剖面砂样以中细沙为主,粒度众数在225~400 μm之间。风沙沉积后受化学风化作用呈现淡红棕色至红棕色;2)JSD2剖面OSL年龄范围为(2.20±1.09)~(9.89±1.65) ka,属于全新世风沙沉积;PQR2剖面年龄范围为(3.41±0.78)~(22.50±1.07) ka,上部为全新世风沙沉积,下部为末次冰期和晚冰期的老红砂层;3)综合海南岛和华南其他海岸沙丘、海岸风沙年龄数据分析,研究区全新世海岸风沙沉积年代序列可划分为10.5~6.0 ka B.P.和6.0 ka B.P.以来两个阶段,华南热带与亚热带海岸风沙活动趋势基本一致。
  • 图  1  研究区地理位置(据吴正等[18]修改)及剖面特征(c.锦山剖面;d.西坑剖面)

    Figure  1.  Location map and profile of the study area; (c) section of JSD2; (d) section of PQR2

    图  2  剖面样品JSD2⁃5预热坪实验(a)及剂量恢复实验(b)结果

    Figure  2.  Sample JSD2⁃5 tests: (a) Preheat plateau test; and (b) dose recovery test

    图  3  样品JSD2⁃5天然OSL释光信号衰减曲线(a)和生长曲线(b)及各组分信号比例随时间变化(c)

    Figure  3.  (a) Decay curve; (b) growth curve; and (c) relative contributions to the OSL signal for sample JSD2⁃5

    图  4  海南岛海岸典型风沙沉积剖面及绝对年龄对比

    (a)锦山剖面;(b)西坑剖面;(c)昌化中角剖面[20];(d)木堆剖面[19];(e)棋子湾剖面[20];(f)沙丘岩综合剖面[12]

    Figure  4.  Comparison of typical aeolian sedimentary profiles and absolute ages on the coast of Hainan Island

    (a) section JSD2; (b) section PQR2; (c) Changhuazhongjiao section [20]; (d) Mudui section [19]; (e) Qiziwan section [20]; and (f) dune rock section [12]

    图  5  海南岛东北海岸风沙沉积测年成果的比较

    (a)30°N夏季太阳辐射[34];(b)海南岛海平面变化[35];(c)海南岛昌化中角剖面和棋子湾剖面[20];(d)海南岛木堆剖面[19];(e)海南岛沙丘岩[12,35];(f)锦山剖面和西坑剖面

    Figure  5.  Comparison of dating results of aeolian sand deposits on the northeastern coast of Hainan Island

    (a) solar radiation at 30°N in summer[34]; (b) sea level change in Hainan Island[35]; (c) section of Changhuazhongjiao and Qiziwan[20], Hainan Island; (d) Mudui section[19], Hainan Island; (e) dune rocks[12,35] in Hainan Island; (f) sections JSD2 and PQR2

    表  1  JSD2和PQR2剖面光释光测年结果及其参数

    Table  1.   OSL dating results and parameters of JSD2 and PQR2 profiles

    剖面 样品 编号 埋深/m 含水量/% K/% U/(μg/g) Th/(μg/g) 环境剂量(Gy/ka) 等效剂量/(Gy) 年龄/ka
    锦山剖面 JSD2⁃1 1.80 3.7 0.20±0.019 1.12±0.063 3.32±0.041 0.85±0.04 1.88±0.93 2.20±1.09
    JSD2⁃2 2.70 5.4 0.19±0.018 0.9±0.042 7.96±2.028 1.08±0.05 3.59±0.51 3.34±0.49
    JSD2⁃3 3.80 5.4 0.23±0.021 0.94±0.047 3.86±0.536 0.84±0.04 4.97±0.84 5.95±1.05
    JSD2⁃4 4.50 5.9 0.24±0.022 1.1±0.061 6.27±1.297 1.03±0.05 7.17±0.83 6.98±0.87
    JSD2⁃5 5.20 2.8 0.15±0.014 1.43±0.098 5.69±1.101 1.00±0.05 5.63±0.65 5.61±0.70
    JSD2⁃6 6.20 4.2 0.17±0.016 0.68±0.028 3.85±0.534 0.69±0.03 6.87±1.10 9.89±1.65
    西坑剖面 PQR2⁃1 8.5 3.2 0.11±0.01 1.65±0.13 4.94±0.85 1.01±0.05 3.43±0.77 3.41±0.78
    PQR2⁃2 1.65 4.3 0.11±0.01 1.15±0.07 5.15±0.90 0.87±0.04 13.07±0.46 15.01±0.87
    PQR2⁃3 2.35 4.2 0.13±0.01 1.98±0.17 5.93±1.20 1.12±0.05 25.26±0.41 22.50±1.07
    PQR2⁃4 2.85 4.1 0.11±0.01 2.02±0.17 10.2±3.02 1.40±0.06 31.07±0.77 22.27±1.16
    下载: 导出CSV
  • [1] Clemmensen L B, Murray A, Heinemeier J, et al. The evolution of Holocene coastal dunefields, Jutland, Denmark: A record of climate change over the past 5000 years[J]. Geomorphology, 2009, 105(3/4): 303-313.
    [2] Clemmensen L B, Glad A C, Hansen K W T, et al. Episodes of Aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age[J]. Bulletin of the Geological Society of Denmark, 2015, 63: 17-28.
    [3] Van Vliet-Lanoë B, Goslin J, Hénaff A, et al. Holocene formation and evolution of coastal dunes ridges, Brittany (France)[J]. Comptes Rendus Geoscience, 2016, 348(6): 462-470.
    [4] Tamura T, Bateman M D, Kodama Y, et al. Building of shore-oblique transverse dune ridges revealed by ground-penetrating radar and optical dating over the last 500 years on Tottori coast, Japan Sea[J]. Geomorphology, 2011, 132(3/4): 153-166.
    [5] Tamura T, Kodama Y, Bateman M D, et al. Late Holocene aeolian sedimentation in the Tottori coastal dune field, Japan Sea, affected by the East Asian Winter monsoon[J]. Quaternary International, 2016, 397: 147-158.
    [6] Yu K B, Brook G A, Rhew H, et al. Episodic coastal dune development in the Taean Peninsula and Anmyeon Island, Korea, during the mid to Late Holocene[J]. Journal of Quaternary Science, 2009, 24(8): 982-990.
    [7] Thom B, Hesp P, Bryant E. Last glacial “coastal” dunes in eastern Australia and implications for landscape stability during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 111(3/4): 229-248.
    [8] Patton N R, Ellerton D, Shulmeister J. High-resolution remapping of the coastal dune fields of South East Queensland, Australia: A morphometric approach[J]. Journal of Maps, 2019, 15(2): 578-589.
    [9] Rink W J, López G I. OSL-based lateral progradation and Aeolian sediment accumulation rates for the Apalachicola Barrier Island Complex, North Gulf of Mexico, Florida[J]. Geomorphology, 2010, 123(3/4): 330-342.
    [10] Sawakuchi A O, Kalchgruber R, Giannini P C F, et al. The development of blowouts and foredunes in the Ilha Comprida barrier (southeastern Brazil): The influence of Late Holocene climate changes on coastal sedimentation[J]. Quaternary Science Reviews, 2008, 27(21/22): 2076-2090.
    [11] 董玉祥. 中国海岸风沙地貌的类型及其分布规律[J]. 海洋地质与第四纪地质,2006,26(4):99-104.

    Dong Yuxiang. The coastal aeolian geomorphic types and their distribution pattern in China[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 99-104.
    [12] 吴正,黄山,胡守真. 华南海岸风沙地貌研究[M]. 北京:科学出版社,1995:41-85.

    Wu Zheng, Huang Shan, Hu Shouzhen. Research on the landforms of the wind-drift sand in South China coast[M]. Beijing: Science Press, 1995: 41-85.
    [13] 王为,吴正. 华南海岸沙丘岩形成与全新世环境变化的关系[J]. 地理学报,2010,64(9):1126-1133.

    Wang Wei, Wu Zheng. Relationship between development of coastal dune rock and Holocene environmental changes in South China[J]. Acta Geographica Sinica, 2010, 64(9): 1126-1133.
    [14] 胡凡根,李志忠,靳建辉,等. 基于释光测年的福建晋江海岸沙丘粒度记录的风沙活动[J]. 地理学报,2013,68(3):343-356.

    Hu Fangen, Li Zhizhong, Jin Jianhui, et al. Coastal environment evolution record from Anshan coastal aeolian sand of Jinjiang, Fujian province, based on the OSL Dating[J]. Acta Geographica Sinica, 2013, 68(3): 343-356.
    [15] 徐晓琳,李志忠,靳建辉,等. 近2000年来福建南部海岸沙丘记录的风沙活动序列[J]. 海洋科学,2017,41(6):79-91.

    Xu Xiaolin, Li Zhizhong, Jin Jianhui, et al. Episodes of coastal dune development over the last 2000 years on the south coast of Fujian[J]. Marine Sciences, 2017, 41(6): 79-91.
    [16] 靳建辉,李志忠,胡凡根,等. 全新世中晚期福建海岸沙丘记录的海岸环境与人类活动[J]. 地理学报,2015,70(5):751-765.

    Jin Jianhui, Li Zhizhong, Hu Fangen, et al. Mid-Holocene coastal environment and human activities recorded by a coastal dune in Fujian province, China[J]. Acta Geographica Sinica, 2015, 70(5): 751-765.
    [17] 于晓莉,李志忠,靳建辉,等. 福建长乐海岸—海滩沙丘系统砂物质的粒度特征反映的海岸动力环境分异[J]. 亚热带资源与环境学报,2016,11(2):13-21.

    Yu Xiaoli, Li Zhizhong, Jin Jianhui, et al. Grain size characteristics reflecting coastal dynamic environment of sand material in the coast beach-dune system, Changle, Fujian[J]. Journal of Subtropical Resources and Environment, 2016, 11(2): 13-21.
    [18] 吴正,吴克刚. 海南岛东北部海岸沙丘的沉积构造特征及其发育模式[J]. 地理学报,1987,54(2):129-141.

    Wu Zheng, Wu Kegang. Sedimentary structure and developing model of coastal dunes along the northeastern coast of Hainan Island, China[J]. Acta Geographica Sinica, 1987, 54(2): 129-141.
    [19] 廖肖霞,李森,王贵勇,等. 38ka以来海南岛东海岸风成沙的粒度特征及其反映的沉积环境演变过程[J]. 中国沙漠,2009,29(6):1086-1092.

    Liao Xiaoxia, Li Sen, Wang Guiyong, et al. Grain-size features of Aeolian sands on eastern coast of Hainan Island and the reflected sedimentary environment since 38 ka B.P.[J]. Journal of Desert Research, 2009, 29(6): 1086-1092.
    [20] 李森,廖肖霞,王贵勇. 近40ka来海南岛海岸沙地气候与环境演变[J]. 地理研究,2009,28(5):1235-1242.

    Li Sen, Liao Xiaoxia, Wang Guiyong. Climatic and environmental changes in the coastal sandy land of Hainan Island in recent 40 ka[J]. Geographical Research, 2009, 28(5): 1235-1242.
    [21] 黎志伦. 38ka以来海南岛东海岸及以东海域气候与环境演变[D]. 广州:华南师范大学,2009.

    Li Zhilun. Climate and environmental changes on eastern coast of Hainan Island and sea areas east of eastern coast since 38ka[D]. Guangzhou: South China Normal University, 2009.
    [22] Yang X , Wei G , Yang J , et al. Paleoenvironmental shifts and precipitation variations recorded in tropical maar lake sediments during the Holocene in southern China[J]. The holocene, 2014, 24(10):1216-1225.
    [23] 汤文坤,王永,董进,等. 海南北部近2000年气候环境变化:来自双池玛珥湖高分辨率沉积记录[J]. 西北地质,2017,50(1):291-300.

    Tang Wenkun, Wang Yong, Dong Jin, et al. High resolution paleoenvironmental evolution revealed by a lacustrine sediment sequence in Shuangchi Maar Lake during past 2000 years in north Hainan Island[J]. Northwestern Geology, 2017, 50(1): 291-300.
    [24] 吴克刚. 海南岛现代风成岩(沙丘岩)的形成及其地貌意义[J]. 地理研究,1988,7(2):67-72.

    Wu Kegang. Diagenesjs of modern Aeolianite (dune-Roce) and its geomorphologic significance along the coast of Hainan Island[J]. Geographical Research, 1988, 7(2): 67-72.
    [25] 吴正,黄山,胡守真. 海南岛海岸风沙及其治理对策[J]. 华南师范大学学报(自然科学版),1992(2):103-107.

    Wu Zheng, Huang Shan, Hu Shouzhen. Coastal wind-drift sand in Hainan Island, China, and its harnessing measures[J]. Journal of South China Normal University (Natural Science), 1992(2): 103-107.
    [26] 赖忠平,欧先交. 光释光测年基本流程[J]. 地理科学进展,2013,32(5):683-693.

    Lai Zhongping, Xianjiao Ou. Basic procedures of Optically Stimulated Luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683-693.
    [27] 张克旗,吴中海,吕同艳,等. 光释光测年法:综述及进展[J]. 地质通报,2015,34(1):183-203.

    Zhang Keqi, Wu Zhonghai, Tongyan Lü, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183-203.
    [28] 张家富,袁宝印,周力平. 福建晋江“老红砂”的释光年代学及对南方第四纪沉积物释光测年的指示意义[J]. 科学通报,2007,52(22):2646-2654.

    Zhang Jiafu, Yuan Baoyin, Zhou Liping. Luminescence chronology of "old red sand" in Jinjiang and its implications for optical dating of sediments in South China[J]. Chinese Science Bulletin, 2007, 52(22): 2646-2654.
    [29] Kalińska-Nartiša E, Stivrins N, Grudzinska I. Quartz grains reveal sedimentary palaeoenvironment and past storm events: A case study from eastern Baltic[J]. Estuarine, Coastal and Shelf Science, 2018, 200: 359-370.
    [30] Udden J A. Mechanical composition of clastic sediments[J]. Geological Society of America Bulletin, 1914, 25(1): 655-744.
    [31] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
    [32] Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
    [33] Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41(4): 369-391.
    [34] Wang S Y, Lü H Y, Liu J Q, et al. The Early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China[J]. Chinese Science Bulletin, 2007, 52(20): 2829-2836.
    [35] 张仲英,刘瑞华. 海南岛沿海的全新世[J]. 地理科学,1987,7(2):129-138.

    Zhang Zhongying, Liu Ruihua. The Holocene along the coast of Hainan Island[J]. Scientia Geographica Sinica, 1987, 7(2): 129-138.
    [36] Dodson J, Li J Y, Lu F Y, et al. A Late Pleistocene and Holocene vegetation and environmental record from Shuangchi Maar, Hainan province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 89-96.
    [37] 李平日. 华南全新世海滩岩及其古地理意义[J]. 海洋地质与第四纪地质,1988,8(4):21-29.

    Li Pingri. Holocene beachrock in South China and its paleogeographic significance[J]. Marine Geology & Quaternary Geology, 1988, 8(4): 21-29.
    [38] Lin D C, Liu C H, Fang T H, et al. Millennial-scale changes in terrestrial sediment input and Holocene surface hydrography in the northern South China Sea (IMAGES MD972146)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1/2): 56-73.
    [39] Ouyang T P, Li M K, Zhao X, et al. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea[J]. Frontiers in Earth Science, 2016, 4: 54.
  • [1] 张振球, 张伟宏, 刘树双, 翟秀敏, 邵庆丰.  贵州石笋记录的中晚全新世东亚夏季风变化 . 沉积学报, 2023, 41(1): 196-205. doi: 10.14027/j.issn.1000-0550.2021.077
    [2] 张威, 马瑞丰, 刘亮, 杨蝉玉, 刘畅, 柴乐.  辽东半岛全新世沉积物记录的古气候变化研究进展 . 沉积学报, 2022, 40(5): 1355-1366. doi: 10.14027/j.issn.1000-0550.2021.009
    [3] 穆财能, 侯明才, 刘欣春, 张虹瑞, 范程华.  基于高精度碳酸盐岩微相的海平面变化曲线分析 . 沉积学报, 2021, 39(6): 1357-1370. doi: 10.14027/j.issn.1000-0550.2021.028
    [4] 王兆夺, 黄春长, 庞奖励, 刘安娜, 周亚利, 查小春.  甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建 . 沉积学报, 2020, 38(4): 781-789. doi: 10.14027/j.issn.1000-0550.2019.077
    [5] 温瑞艳, 庞奖励, 黄春长, 查小春, 周亚利, 雷晨, 炊郁达, 毛沛妮.  天水樊家城黄土剖面记录的全新世环境及人地关系变化研究 . 沉积学报, 2020, 38(2): 349-357. doi: 10.14027/j.issn.1000-0550.2019.016
    [6] 杨保明, 高抒, 周亮, 赵秧秧, 屠佳雨, 王成龙.  海南岛东南部海岸砂丘风暴冲越沉积记录 . 沉积学报, 2017, 35(6): 1133-1143. doi: 10.14027/j.cnki.cjxb.2017.06.005
    [7] 李育, 张成琦, 周雪花, 王岳.  我国西北夏季风边界千年尺度变化的证据——来自盐池和猪野泽盐类矿物分析结果 . 沉积学报, 2015, 33(3): 524-536. doi: 10.14027/j.cnki.cjxb.2015.03.010
    [8] 全新世以来巴里坤湖面积变化及气候环境记录 . 沉积学报, 2014, 32(1): 93-100.
    [9] 汉江上游尚家河段全新世古洪水事件光释光测年研究 . 沉积学报, 2014, 32(2): 306-313.
    [10] 王恒松, 黄春长, 周亚利, 熊康宁.  汉江上游全新世特大古洪水事件光释光测年研究 . 沉积学报, 2014, 32(6): 1100-1112.
    [11] 唐永忠.  南秦岭古生代沉积盆地构造活动—海平面变化与沉积响应 . 沉积学报, 2007, 25(5): 653-662.
    [12] 薛春汀.  关于江苏建湖庆丰剖面全新世沉积环境与海面变化关系的讨论 . 沉积学报, 2002, 20(1): 174-177.
    [13] 王成善, 李祥辉, 陈洪德, 覃建雄.  中国南方二叠纪海平面变化及升降事件 . 沉积学报, 1999, 17(4): 536-541.
    [14] 苏文博, 李志明, 陈建强, 龚淑云, 李全国, 高勇群.  海平面变化全球可比性的可靠例证——上扬子地台东南缘奥陶纪层序地层及海平面变化研究 . 沉积学报, 1999, 17(3): 345-354.
    [15] 薛莲花, 陈国俊, 王琪, 史基安, 肖立新, 杨军, 赵克斌.  塔里木盆地K2-E旋回层序与海平面变化 . 沉积学报, 1998, 16(3): 66-71.
    [16] 赵玉光.  论地质历史中区域构造沉降史与海平面变化 . 沉积学报, 1998, 16(4): 1-7.
    [17] 李玉成.  华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应 . 沉积学报, 1998, 16(3): 52-57,65.
    [18] 秦作栋, 冯起.  塔克拉玛干沙漠北部平原区全新世沉积与气候变化的关系——以肖塘剖面为例 . 沉积学报, 1997, 15(1): 168-171.
    [19] 于炳松.  塔里木盆地北部寒武纪海平面变化研究 . 沉积学报, 1996, 14(1): 33-39.
    [20] 全松青, 王国忠, 吕炳全, 蒋盘良.  海南岛排浦珊瑚礁区的现代沉积体系及其演化过程 . 沉积学报, 1993, 11(4): 56-66.
  • 加载中
图(5) / 表 (1)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  173
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 刊出日期:  2021-08-10

目录

    海南岛东北海岸风沙沉积的光释光年代学意义

    doi: 10.14027/j.issn.1000-0550.2020.033
      基金项目:

      国家自然科学基金 41771020

      作者简介:

      张文静,女,1996年出生,硕士研究生,风沙地貌与环境演变,E⁃mail: 2262662461@qq.com

      通讯作者: 李志忠,男,教授,E⁃mail: lizz@fjnu.edu.cn
    • 中图分类号: P931

    摘要: 选取海南岛东北部JSD2和PQR2两个典型海岸沙质沉积剖面进行研究,共采集10个测年样品和89个指标分析样品,在室内进行了光释光(OSL)测年和粒度分析。结果表明:1)JSD2和PQR2剖面砂样以中细沙为主,粒度众数在225~400 μm之间。风沙沉积后受化学风化作用呈现淡红棕色至红棕色;2)JSD2剖面OSL年龄范围为(2.20±1.09)~(9.89±1.65) ka,属于全新世风沙沉积;PQR2剖面年龄范围为(3.41±0.78)~(22.50±1.07) ka,上部为全新世风沙沉积,下部为末次冰期和晚冰期的老红砂层;3)综合海南岛和华南其他海岸沙丘、海岸风沙年龄数据分析,研究区全新世海岸风沙沉积年代序列可划分为10.5~6.0 ka B.P.和6.0 ka B.P.以来两个阶段,华南热带与亚热带海岸风沙活动趋势基本一致。

    English Abstract

    张文静, 李志忠, 靳建辉, 郑斐, 李志星, 徐晓琳, 程延. 海南岛东北海岸风沙沉积的光释光年代学意义[J]. 沉积学报, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
    引用本文: 张文静, 李志忠, 靳建辉, 郑斐, 李志星, 徐晓琳, 程延. 海南岛东北海岸风沙沉积的光释光年代学意义[J]. 沉积学报, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
    ZHANG WenJing, LI ZhiZhong, JIN JianHui, ZHENG Fei, LI ZhiXing, XU XiaoLin, CHENG Yan. Optically Stimulated Luminescence Dating of Aeolian Sand Deposits in the Northeast Coast of Hainan Island[J]. Acta Sedimentologica Sinica, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
    Citation: ZHANG WenJing, LI ZhiZhong, JIN JianHui, ZHENG Fei, LI ZhiXing, XU XiaoLin, CHENG Yan. Optically Stimulated Luminescence Dating of Aeolian Sand Deposits in the Northeast Coast of Hainan Island[J]. Acta Sedimentologica Sinica, 2021, 39(4): 995-1003. doi: 10.14027/j.issn.1000-0550.2020.033
      • 海岸沙丘演化和风沙沉积记录的海岸环境演变历史一直是国内外研究的热点领域。近年来,在欧洲[13]、东亚[46]、澳大利亚[78]、北美[9]和南美[10]等海岸地带,均有关于海岸沙丘发育年代、形成机制、环境演变的研究报道,这些研究主要利用光释光(OSL)测年技术建立海岸风沙沉积的年龄框架,通过OSL年龄的概率密度分布获取风沙活动变化的地质记录,并探讨大西洋风暴、东亚冬季风以及海平面变化与风沙活动的关系。我国海岸风沙地貌类型多样,是世界海岸风沙地貌发育较典型地区之一[11]。国内学者对我国华南海岸沙丘的形成年龄、发育机制、沉积特征以及古气候记录等方面进行了很多研究,并取得了有意义的研究结果[1221]

        海南岛是华南海岸沙丘集中分布的区域之一,在海南岛东北文昌海岸带,自沿海向内陆依次发育加积性横向沙丘、抛物线形沙丘、纵向沙丘和沙席等[12,18]。海南岛东北部海岸带分布的砂层,过去曾被认为是海岸阶地。吴正等[12,18],廖肖霞等[19],李森等[20],黎志伦[21]研究认为它们是风成砂质堆积,但在其形成时代方面,各个研究者的意见相去甚远。近年来,有关海南岛海岸沙丘的研究比较零星,缺乏厚度较大的、沉积相对连续的全新世海岸风沙记录,关于千年尺度上海南岛海岸风沙活动的驱动机制尚待深入探讨。为此,我们又做了一些实际工作,以海南文昌东北部锦山剖面(JSD2)和西坑剖面(PQR2)为研究材料进行了系统的采样,包括89个指标样和10个OSL测年样等,通过初步研究在海岸风成沉积的形成时代方面获得了一些新认识。本文结合前人在海南岛的海岸风沙测年资料,建立了区域风沙沉积序列的年代标尺,在此基础上探讨海南岛东北海岸全新世以来的风沙活动序列及气候环境意义。

      • 海南岛是中国第二大岛(图1a),海岸线总长1 725 km。海南岛东北部海岸,以NW—SE向断裂和其他地区分割,海岸岬角多由燕山期花岗岩组成,岬角之间发育砂砾质海滩,岸后为风成沙丘,海岸风成沙丘从铺前湾、木兰头至铜鼓岭,构成了长约100 km、宽3~5 km的海岸沙丘带,海岸沙丘高度一般在20~30 m[12]图1b)。

        图  1  研究区地理位置(据吴正等[18]修改)及剖面特征(c.锦山剖面;d.西坑剖面)

        Figure 1.  Location map and profile of the study area; (c) section of JSD2; (d) section of PQR2

        海南岛东北部地处热带北缘,为热带海洋性季风气候,年平均气温约23.8 ℃,年平均降水1 802.3 mm[2223]。海南岛多数月份盛行东北风,冬季为干冷的偏北气流,由于海南岛东北海岸线大致呈西北—东南走向,东北季风以较大的角度与岸线走向交汇,因此海岸风动力强度主要受东北向岸风的影响[2425]。夏季主要受西南季风和东南夏季风影响,但夏秋台风常在海南岛东北沿海登陆。因此,强劲的风力为海岸沙丘的形成提供了充足的动力条件。

        本文所选取的JSD2剖面(图1c),位于锦山镇北部坑坡村附近、环岛公路的西侧,地理坐标为20.07° N,110.69° E。根据野外观察,剖面顶部0~1 m为林草根系层,受根系扰动和人为影响较大,未采样;1~4 m为淡灰黄色细砂层,发育风成斜层理,层理倾向为SWW,倾角约为8°~10°;4~7.2 m为淡红棕色砂层夹棕黄色砂层,或两者互层出现,有红化现象,发育缓斜层理,倾向西南,倾角约为3°~5°,未见底。在不整合面附近,下段和上段在剖面上整体构成交错层理的接触关系。

        此外,在JSD2剖面西北侧约3 km的西坑村附近,选取了一个厚约3 m的PQR2剖面(图1d),剖面位置毗邻县道北侧,地理坐标为20.11° N,110.67° E。剖面顶部0.35 m为草灌丛根系层,为淡灰黄色细砂层;下部为均匀的红棕色细砂层,结构均匀,未见底。

      • 在野外,OSL测年样品按照通用方法采集。首先在开挖的剖面上清理出15~30 cm深度的新鲜刻槽,将长度25 cm、直径6 cm的不锈钢管垂直敲入剖面,待装满样品后避光取出,用黑色塑料袋密封。对样品按顺序编号,同时测量并记录每个样品的埋藏深度、岩性特征等。最后将样品带回实验室避光保存,以便开展后续实验。

        根据剖面的岩性和结构特征,JSD2剖面间隔约1 m采样,共计采集OSL测年样品6个,编号为JSD2⁃1~JSD2⁃6。PQR2剖面间隔约0.5 m采样,共计采得OSL样品4个。

        两个剖面的指标样,均按10 cm间隔等间距自上而下采样。JSD2剖面共计采集63个指标样品,编号为JSD2⁃01~JSD2⁃63。PQR2剖面共计采得26个指标样品,编号为PQR2⁃01~PQR2⁃26。

      • 所有OSL测年样品均在OSL暗室红光条件下打开,去除采样管两端3~5 cm可能曝光样品,取中间新鲜样品用做等效剂量测定,并从中取40 g用于计算含水量。首先用10%的盐酸(HCl)和30%的过氧化氢(H2O2)分别去除碳酸盐和有机物,剩余部分即为石英和长石的混合物,待样品反应完全后,用去离子水冲洗样品至中性,低温烘干。之后用40%的氢氟酸(HF)浸泡样品,去除长石,再用10%的HCl去除HF刻蚀过程中形成的氟化物,反应终止后用去离子水冲洗、低温烘干,筛分获得63~90 μm颗粒组分,最后磁选去除残余的磁性矿物,得到纯净的石英颗粒。根据长石对红外信号敏感而石英不敏感的特征,所得石英的纯度用红外信号(IRSL)方法检测。若IRSL/OSL信号>10%表明还有长石存在,须重新用HF浸泡,直至样品IRSL/OSL<10%[26]。将提纯的石英颗粒用硅油均匀粘在直径约9.7 mm、厚约0.5 mm的圆形不锈钢测片上,每个样品制备16个待测样片。

        本文等效剂量的测量采用石英单片再生剂量(Single aliquot regenerative⁃dose,SAR)法。仪器采用丹麦国家实验室生产的Risø TL/OSL⁃DA 20C/D型光释光测量仪。通过预热、辐照和激发等步骤完成测量,其中以7 mm的U⁃340滤波器检测得到OSL信号,人工辐照源为90Sr/90Y,其剂量率为0.095 6 Gy/s。

        样品的环境剂量率与样品中的238U、232Th 、40K 含量,及宇宙射线和样品含水率有关。因为自然界中的辐射主要来自放射性核素238U、232Th 、40K的α、β和γ衰变及宇宙射线产生的放射性剂量,矿物在埋藏期间吸收的辐射能量取决于这些放射性核素在沉积物和矿物颗粒本身中的含量[2728]。将样品倒入烧杯中称湿重,然后在烘箱中低温烘干,再称干重和烧杯重,最终计算出含水量。在计算完含水量的样品中,随机选取20~30 g砂样研磨成粒径<63 μm的粉砂状,再选取其中2 g左右装入小自封袋编号标记,送往中国原子能科学研究院、采用中子活化法(Neutron Activation Analysis,NAA)测得U、Th和K的含量。

      • 粒度测试的前处理,采用湿法粒度分析的一般程序完成[29]。完成前处理后样品的上机测试,采用英国马尔文仪器公司生产的Mastersizer 2000激光衍射粒度仪,其测量范围0.02~2 000 μm,重复测量三次取平均值,基本保证测量误差小于5%。

        从激光粒度仪中提取测量数据,采用乌登—温特沃思粒级[3031](Udden⁃Wentworth scale)进行粒度分级,共分为7级,黏土(<2 μm)、粉砂(2~63 μm)、极细砂(63~125 μm)、细砂(125~250 μm)、中砂(250~500 μm)、粗砂(500~1 000 μm)和极粗砂(1 000~2 000 μm)。采用Folk et al.[32]算法计算粒径分布的平均粒径(Mz)、中值粒径(Md)、分选系数(σ)、偏度(Sk)、峰态(Kg)等粒度参数。

        以上光释光等效剂量测试和粒度实验均在福建师范大学湿润亚热带山地生态国家重点实验室培育基地完成。

      • 预热温度对于年轻测年样品的影响是很重要的,因为在测量之前的热处理可能将电荷从光不敏感陷阱转移到光敏感的陷阱,所以合适的预热温度是获得可靠等效剂量值的前提。为此我们以样品JSD2⁃5为代表样品,选取180 ℃~280 ℃温度范围,以20 ℃为间隔,选择6个温度进行预热坪实验,以确定合适的预热温度。剂量恢复实验则是检验SAR方法是否适于等效剂量测试的有效方法,如果释光感量变化得到有效校正,剂量恢复比率(测量值与已知剂量的比值)应在0.9~1.1之间[33],本文同样以样品JSD2⁃5予以说明。结果见图2

        图  2  剖面样品JSD2⁃5预热坪实验(a)及剂量恢复实验(b)结果

        Figure 2.  Sample JSD2⁃5 tests: (a) Preheat plateau test; and (b) dose recovery test

        由预热坪实验(图2a)可以看出,等效剂量值在200 ℃~280 ℃出现较明显的坪区,因此采用200 ℃的预热温度,预热时间为10 s。由剂量恢复实验(图2b)可以看出,样品JSD2⁃5在200 ℃~280 ℃范围内的剂量恢复比率均在0.9~1.1之间,剂量能得到较好的恢复。由此确定,石英SAR法流程以及预热条件适合研究区样品的OSL测年。

        图3为代表样品JSD2⁃5的OSL信号衰减曲线(图3a)、生长曲线(图3b)及各组分变化(图3c)情况。可以看出,样品的OSL信号以快组分为主,在大约2 s左右信号可以快速衰减到本底值,衰减特征与典型石英特征相一致,表明长石去除完全,石英颗粒纯净,可以满足SAR法的测试要求。因此,本文采用SAR法所获得的等效剂量值应当是可靠的。

        图  3  样品JSD2⁃5天然OSL释光信号衰减曲线(a)和生长曲线(b)及各组分信号比例随时间变化(c)

        Figure 3.  (a) Decay curve; (b) growth curve; and (c) relative contributions to the OSL signal for sample JSD2⁃5

      • 从测得的年龄结果(表1)看,10个OSL年龄值分布在2.20±1.09~22.5±1.07 ka。自上而下,两个剖面样品OSL年龄基本随样品埋深增加而增加,具有上新下老的特点,基本符合地层层序律。仅有JSD2剖面埋深52 cm、PQR2剖面埋深285 cm的个别样品年龄存在倒置现象,但考虑到所测年龄的误差范围,其结果是可以接受的。JSD2剖面年龄分布在2.20±1.09~9.89±1.65 ka,为全新世的砂质沉积。PQR2剖面的测年值分布在3.41±0.78~22.5±1.07 ka,涵盖了末次冰期和全新世。

        表 1  JSD2和PQR2剖面光释光测年结果及其参数

        Table 1.  OSL dating results and parameters of JSD2 and PQR2 profiles

        剖面 样品 编号 埋深/m 含水量/% K/% U/(μg/g) Th/(μg/g) 环境剂量(Gy/ka) 等效剂量/(Gy) 年龄/ka
        锦山剖面 JSD2⁃1 1.80 3.7 0.20±0.019 1.12±0.063 3.32±0.041 0.85±0.04 1.88±0.93 2.20±1.09
        JSD2⁃2 2.70 5.4 0.19±0.018 0.9±0.042 7.96±2.028 1.08±0.05 3.59±0.51 3.34±0.49
        JSD2⁃3 3.80 5.4 0.23±0.021 0.94±0.047 3.86±0.536 0.84±0.04 4.97±0.84 5.95±1.05
        JSD2⁃4 4.50 5.9 0.24±0.022 1.1±0.061 6.27±1.297 1.03±0.05 7.17±0.83 6.98±0.87
        JSD2⁃5 5.20 2.8 0.15±0.014 1.43±0.098 5.69±1.101 1.00±0.05 5.63±0.65 5.61±0.70
        JSD2⁃6 6.20 4.2 0.17±0.016 0.68±0.028 3.85±0.534 0.69±0.03 6.87±1.10 9.89±1.65
        西坑剖面 PQR2⁃1 8.5 3.2 0.11±0.01 1.65±0.13 4.94±0.85 1.01±0.05 3.43±0.77 3.41±0.78
        PQR2⁃2 1.65 4.3 0.11±0.01 1.15±0.07 5.15±0.90 0.87±0.04 13.07±0.46 15.01±0.87
        PQR2⁃3 2.35 4.2 0.13±0.01 1.98±0.17 5.93±1.20 1.12±0.05 25.26±0.41 22.50±1.07
        PQR2⁃4 2.85 4.1 0.11±0.01 2.02±0.17 10.2±3.02 1.40±0.06 31.07±0.77 22.27±1.16

        从测年结果和剖面岩性特点看,剖面JSD2上段三个释光样品(埋深为1.80 m、2.70 m、3.80 m)年龄分别为2.20±1.09 ka、3.34±0.49 ka、5.95±1.05 ka,对应浅灰黄色、松散的砂层;下段三个释光样品(埋深4.50 m、5.20 m、6.20 m)年龄分别为6.98±0.87 ka、5.61±0.7 ka、9.89±1.65 ka,对应淡红棕色砂层夹棕黄色、略胶结的砂层,下段砂层年龄相对较老、颜色偏淡红色,表明经历了较强的化学风化作用、发生了一定程度的红化作用。

        PQR2剖面85 cm处样品的年龄为(3.41±0.78)ka,在1.65 m处样品的年龄为(15.01±0.87) ka,这两个年龄值大体上对应剖面上部的棕黄色砂层,说明大致在1.50 m以上属于全新世沉积。其他三个OSL年龄[(15.01±0.87) ka、(22.50±1.07) ka和(22.27±1.16) ka]对应于剖面中下部的棕红色砂层段,应属于末次冰期和晚冰期的老红砂层。

      • 综合JSD2和PQR2剖面上部的OSL测年结果可知,两个剖面风沙沉积的年龄范围为(2.20±1.09)~(9.89±1.65) ka,涵盖了全新世绝大部分时期。本文两个剖面的测年结果与前人研究的不同厚度的全新世海岸风沙沉积剖面的年龄范围基本一致[1921],而吴正等[12]早期所做的海岸沙丘岩则属于全新世晚期海岸风成沙的钙质胶结产物。从图4可知,本文获得的JSD2剖面,是海南岛东北海岸迄今为止发现的厚度较大、OSL绝对年龄控制点最多的海岸风沙沉积剖面。

        图  4  海南岛海岸典型风沙沉积剖面及绝对年龄对比

        Figure 4.  Comparison of typical aeolian sedimentary profiles and absolute ages on the coast of Hainan Island

      • 以JSD2和PQR2这两个剖面10个OSL测年数据为基础,综合木堆剖面[19]、昌化中角剖面[20]和棋子湾剖面[20]的释光测年数据,可以初步建立海南岛东北部全新世海岸风沙沉积序列的时间标尺。从海南岛海岸风沙沉积的释光年龄概率分布特点来看,研究区海岸风沙沉积呈现比较明显的多期性特点,这与国内外研究报道的海岸风沙沉积和风沙活动常见的阶段性特征是相一致的。

        综合对比分析发现,全新世中晚期以来,在海南岛适宜的海岸地貌部位和砂源供给条件下,在各个阶段均不同程度地发生了风沙沉积。其中,全新世以来北半球太阳辐射量变化、海平面变化及海岸风力作用可能是影响研究区海岸风沙活动变化趋势和阶段性的主要驱动因素(图5)。全新世以来,海南岛东北海岸的风沙活动大体分为两个阶段,即10.5~6.0 ka和6.0 ka以来。

        图  5  海南岛东北海岸风沙沉积测年成果的比较

        Figure 5.  Comparison of dating results of aeolian sand deposits on the northeastern coast of Hainan Island

        10.5~6.0 ka B.P.,早中全新世。相当于JSD2剖面深度约为4~7 m层段,平均粒径(Mz)为1.78 ϕ,以中砂为主;分选系数(σ)为0.61,分选较好,偏度(Sk)为-0.05,峰度为0.95。Mz在该阶段波动幅度较大。该层段极细沙(63~125 μm)含量增多,颜色偏红,可能由于该阶段太阳辐射总量大(图5a),温度高、化学风化作用较强导致。此阶段处于全新世早期海岸风力作用波动变化很强的时期,在9.8 ka和6.0 ka左右出现两个粗组分的峰值阶段,且前人研究的木堆剖面在约9.5 ka开始有风沙堆积,表明该阶段海岸带风力活动有所加强,风沙有所堆积。此时海南岛周边的海平面处于快速上升期(图5b),其中7.3~5.5 ka B.P.海平面持续高位,在6.0 ka B.P.出现全新世以来的最高海面[35]。高海面时期,气候温暖湿润,河流作用和海岸波浪作用为海岸风沙活动提供充足的沙源,在向岸风的作用下利于风沙堆积和海岸沙丘的形成。海南岛双池玛珥湖记录的全新世最暖时期为9.0~7.0 ka B.P.[36],JSD2和PQR2记录显示9.0~7.0 ka风沙活动较弱,应该是暖湿气候条件下总体上不利于风沙的输移,加上此时海岸带风力作用较弱,风沙搬运动力不足,因此风沙堆积减弱。

        6.0 ka B.P.以来,中全新世后期及晚全新世。对应JSD2剖面上段1~4 m以及PQR2剖面约1.5 m以上层段,Mz为1.79 ϕ,以中砂为主;分选系数(σ)为0.64,分选较好,偏度(Sk)为-0.06,峰度为1.05。Mz在此阶段波动幅度明显减弱,与此阶段北半球太阳辐射总体趋向减弱相联系。海南岛周边钻孔沉积的孢粉记录表明,晚全新世温度和湿度较早中全新世下降[34],气候特征为相对冷干;广东番禺菱扩孔部分岩芯样品的孢粉分析结果表明,在距今约4.4 ka,3.2 ka,2.9~2.3 ka为干燥气候期[37];南海北部钻孔磁化率和有孔虫记录也显示早全新世至晚全新世逐渐变冷,3.4 ka后气候变冷变干[3839]。本文剖面所记录到的4.0 ka以来的风沙活动与这些相对冷干期基本一致,海岸风沙主要由比较干燥的东北风向岸搬运堆积而成。该阶段温度趋向降低,海岸风力作用增强,同时海平面总体上处于相对下降时期(图5b),由于海滩面积增大,可以提供更多的砂源,从而有利于海岸风沙沉积。

        我国现代海岸沙丘形成年代主要分布在(7.44±1.1)~(0.51±0.09) ka B.P.,3.0 ka B.P.以来的全新世晚期为整个华南海岸风沙沉积比较活跃的时期[12]。这与JSD2和PQR2剖面风沙堆积年代基本吻合,说明华南沿海风沙堆积过程受到共同因素的驱动。从亚热带和热带海岸风沙沉积序列的空间差异来看,早全新世在亚热带福建海岸未检测到风沙沉积记录,全新世中期的记录也很少,除了海平面上升侵蚀的因素,还可能由于福建沿海较多山地丘陵,岸坡陡峭,平缓海岸带分布范围狭小,导致风沙记录不利于保存。总的来看,在全新世千年尺度上,华南热带与亚热带海岸风沙活动趋势基本一致,海岸风沙活动主要受太阳辐射变化、海平面变化和海岸风力作用的共同驱动。

      • 通过对海南岛东北部海岸JSD2和PQR2两个剖面风沙沉积的10个光释光测年结果以及89个指标样的粒度分析,综合对比华南海岸其他地区的风沙记录,初步得到以下结论:

        (1) JSD2和PQR2剖面砂样粒度以中细沙为主,粒度众数在225~400 μm之间,早期海岸风沙沉积后受低纬热带气候条件下强烈化学风化作用的影响,剖面下部风砂层发生红化作用而呈现淡红棕色—红棕色。

        (2) 两个剖面所获得的10个OSL年龄,基本符合上新下老的地层层序律。其中JSD2剖面的年龄范围为(2.20±1.09)~(9.89±1.65) ka,属于全新世风沙沉积;PQR2年龄范围为(3.41±0.78)~(22.50±1.07) ka,剖面约1.50 m以上为全新世风沙层,1.50 m以下为老红砂层。

        (3) 综合JSD2剖面、PQR2剖面与海南岛其他海岸风沙沉积的绝对年龄分析,海南岛全新世以来的海岸风沙沉积序列呈现多期次特点,大致划分为10.5~6.0 ka B.P.及近6.0 ka B.P.以来的两个主要风沙沉积期,在第一风沙期的9.0~7.0 ka B.P.全新世大暖期鼎盛期,海岸风沙活动较弱。

    参考文献 (39)

    目录

      /

      返回文章
      返回