高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析

郭沫贞 吕福亮 邵大力 侯福斗 杨涛涛 李东

郭沫贞, 吕福亮, 邵大力, 侯福斗, 杨涛涛, 李东. 东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析[J]. 沉积学报, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
引用本文: 郭沫贞, 吕福亮, 邵大力, 侯福斗, 杨涛涛, 李东. 东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析[J]. 沉积学报, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
GUO MoZhen, LÜ FuLiang, SHAO DaLi, HOU FuDou, YANG TaoTao, LI Dong. Ichnofossils in Globigerinid Limestone and Their Sedimentary Environments, East Java Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
Citation: GUO MoZhen, LÜ FuLiang, SHAO DaLi, HOU FuDou, YANG TaoTao, LI Dong. Ichnofossils in Globigerinid Limestone and Their Sedimentary Environments, East Java Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028

东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析

doi: 10.14027/j.issn.1000-0550.2020.028
基金项目: 

中国石油天然气集团公司科学研究与技术开发项目 2019D⁃4309

详细信息
    作者简介:

    郭沫贞,男,1974年出生,硕士,高级工程师,油气储层地质,E⁃mail: guomz_hz@petrochina.com.cn

  • 中图分类号: P618.13

Ichnofossils in Globigerinid Limestone and Their Sedimentary Environments, East Java Basin

Funds: 

Scientific Research and Technological Development Program of China National Petroleum Corporation 2019D⁃4309

  • 摘要: 抱球虫灰岩是印尼东爪哇盆地已发现油气藏的主要储层岩性之一,是该盆地重要的勘探目的层。该套发育于上新世的抱球虫灰岩,其储层性质优,为高孔中高渗型性储层。但对该类灰岩储层的形成条件、沉积环境因缺乏可靠的相标志而认识不一,从而影响了对该类储层的油气勘探。通过对该套灰岩发育的遗迹化石研究,共识别出OphiomorphaAsterosomaPalaeophycusThalassinoidesPhycosiphonZoophycos,TeichichnusTerebellina等8个遗迹属。按其古生态和及其宿主岩性沉积学特征,将其划分出三类遗迹组合:1)Ophiomorpha⁃Asterosoma遗迹组合,主要发育于抱球虫颗粒岩和泥质抱球虫颗粒岩中,代表中低等水动力能量的下临滨沉积环境,以颗粒滩沉积为主;2)Zoophycos⁃Palaeophcus遗迹组合,主要发育于泥质抱球虫颗粒岩和抱球虫颗粒质泥岩中,代表远滨过渡带和棚内洼地沉积环境,主要为正常浪基面以下正常海洋沉积夹风暴作用沉积,以抱球虫灰泥沉积为主;3)Zoophycos⁃Phycisophon遗迹组合,主要发育于抱球虫颗粒质泥岩中,代表滨外陆棚沉积环境,为风暴浪基面以下正常的海洋灰泥和泥岩沉积。综合岩石类型、岩石序列组合及遗迹化石组合,提出研究区该套抱球虫灰岩下临滨至滨外陆棚的沉积模式。这对研究区该类储层的沉积和成因有重要意义,为此类储层控制因素及展布的研究奠定了基础,并对该类海域储层的油气勘探有重要指导意义。
  • 图  1  东爪哇盆地地理位置及其构造背景简图[2728]

    Figure  1.  Geographical location and tectonic setting of the East Java Basin[2728]

    图  2  X⁃1井抱球虫灰岩岩矿组成及孔隙类型

    (a)抱球虫颗粒体腔孔(Intra)、粒间孔(IP)发育,少量海绿石(Gl)及基质(Mx),916.30 m,单偏;(b)抱球虫颗粒体腔孔(Intra)、粒间孔(IP)发育,海绿石(Gl)、白云石(D)及海胆碎片(Ech),928.60 m,单偏

    Figure  2.  Lithological compositions and pore types of Globigerinid limestone in well X⁃1

    图  3  东爪哇盆地X⁃1井抱球虫灰岩孔隙度和渗透率分布图[28]

    Figure  3.  Porosity and permeability distribution chart of Globigerinid limestone in well X⁃1[28]

    图  4  东爪哇盆地X⁃1井抱球虫灰岩中的遗迹化石

    (a)抱球虫颗粒岩,910.95 m,发育Ophiomorpha(Oph),Phycisophon (Phy);(b)抱球虫颗粒岩/泥质抱球虫颗粒岩,932.65 m,发育Palaeophycus(Pa),Asterosoma(Ast);(c)抱球虫颗粒岩/泥质抱球虫颗粒岩,933.70 m,发育Ophiomorpha(Oph);(d)抱球虫颗粒质泥岩,936.95 m,发育Zoophycos(Z);(e)泥质抱球虫颗粒岩,938.30 m,发育Teichichnus(Teich),Asterosoma(Ast);(f)泥质抱球虫颗粒岩,950.2 m,发育Ophiomorpha(Oph),Phycisophon(Phy),Palaeophycus(Pa);(g)抱球虫颗粒质泥岩,952.85 m,发育Zoophycos(Z),Palaeophycus heberti(Pa.heb);(h)泥质抱球虫颗粒岩/抱球虫颗粒质泥岩,955.35 m,发育Palaeophycus(Pa),Thalassinoides(Thal)

    Figure  4.  Ichnofossils in Globigerinid limestone in well X⁃1, East Java Basin

    图  5  东爪哇盆地X⁃1井遗迹化石及沉积相柱状图

    Figure  5.  Comprehensive column of ichnofossils and facies in well X⁃1, East Java Basin

    图  6  东爪哇盆地抱球虫灰岩沉积环境模式图

    Figure  6.  Sedimentary environments of Globigerinid limestone, East Java Basin

  • [1] Mudjiono R, Pireno G E. Exploration of the north Madura platform, offshore East Java, Indonesia[C]//Proceedings of the 28th annual convention. Jakarta: Indonesian Petroleum Association, 2002: 707-726.
    [2] Triyana Y, Harris G I, Basden W A, et al. The Maleo field: An example of the Pliocene Globigerina bioclastic limestone play in the East Java basin-Indonesia[C]//Proceedings of the 31st annual convention. Jakarta: Indonesian Petroleum Association, 2007: 61-77.
    [3] Sutadiwiria G, Prasetyo H. Uncertainty in Geophysic-geology-reservoir modelling for globigerinid sand carbonate in NE-Java Basin, Indonesia; Case Study: Planning vs. Actual of fields development at Madura Strait, Indonesia[C]//Proceedings of SPE Asia pacific oil & gas conference and exhibition. Adelaide, Australia: SPE, 2006: 1-5.
    [4] Iriska D M, Sharp N C, Kueh S. The Mundu Formation: Early production performance of an unconventional limestone reservoir, East Java Basin-Indonesia[C]//Proceedings of the 34th annual convention. Jakarta: Indonesian Petroleum Association, 2010: 174-189.
    [5] 吴梦霜,邵磊,庞雄,等. 南海北部深水区白垩的发现及其储层意义[J]. 石油学报,2013,34(增刊2):32-38.

    Wu Mengshuang, Shao Lei, Pang Xiong, et al. Discovery of chalk in deep-water area of the northern South China Sea and its significance of reservoirs[J]. Acta Petrolei Sinica, 2013, 34(Suppl. 2): 32-38.
    [6] Bransden P J E, Matthews S J. Structural and stratigraphic evolution of the East Java sea, Indonesia[C]//Proceedings of the 21st annual convention. Jakarta: Indonesian Petroleum Association, 1992: 417-453.
    [7] Sribudiyani, Muchsin N, Ryacudu R, et al. The collision of the East Java microplate and its implication for hydrocarbon occurrences in the East Java Basin[C]//Proceedings of the 29th annual convention & exhibition. Jakarta: Indonesian Petroleum Association, 2003: 335-346.
    [8] 倪军娥,孙立春,何娟,等. 印尼马都拉海峡A气田底流沉积-抱球虫灰岩储层特征[J]. 石油与天然气地质,2016,37(5):773-778.

    Ni Jun’e, Sun Lichun, He Juan, et al. Characteristics of globigerinid limestone reservoirs of bottom current deposition in gas field A of Madura Strait, Indonesia[J]. Oil & Gas Geology, 2016, 37(5): 773-778.
    [9] Matthews S J, Bransden P J E. Late Cretaceous and Cenozoic tectono-stratigraphic development of the East Java Sea Basin, Indonesia[J]. Marine and Petroleum Geology, 1995, 12(5): 499-510.
    [10] Schiller D M, Seubert B W, Musliki S, et al. The reservoir potential of Globigerinid sands in Indonesia[C]//Proceedings of the 23rd annual convention. Jakarta: Indonesian Petroleum Association, 1994: 189-212.
    [11] 童金南,殷鸿福. 古生物学[M]. 北京:高等教育出版社,2007:16-17.

    Tong Jinnan, Yin Hongfu. Paleontology[M]. Beijing: Higher Education Press, 2007: 16-17.
    [12] 杨式溥,张建平,杨美芳. 中国遗迹化石[M]. 北京:科学出版社,2004:1-353.

    Yang Shipu, Zhang Jianping, Yang Meifang. Trace fossils of China[M]. Beijing: Science Press, 2004: 1-353.
    [13] Hofmann R, Goudemand N, Wasmer M, et al. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3/4): 216-226.
    [14] Jensen S, Droser M L, Gehling J G. Trace fossil preservation and the early evolution of animals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 19-29.
    [15] 施振生,杨威,郭长敏,等. 遗迹化石在层序地层学研究中的应用[J]. 地层学杂志,2008,32(1):79-84.

    Shi Zhensheng, Yang Wei, Guo Changmin, et al. The application of trace fossils to the research of sequence stratigraphy[J]. Journal of Stratigraphy, 2008, 32(1): 79-84.
    [16] 龚一鸣. 中国的遗迹化石研究[J]. 矿物岩石,2001,21(3):205-207.

    Gong Yiming. Study of trace fossils in China[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 205-207.
    [17] 杨式溥. 遗迹化石及其对古环境分析的意义[J]. 沉积学报,1984,2(4):8-18.

    Yang Shipu. Trace fossils and their significance for interpretation of the paleoenvironments[J]. Acta Sedimentologica Sinica, 1984, 2(4): 8-18.
    [18] 杨式溥. 遗迹化石的古环境和古地理意义[J]. 古地理学报,1999,1(1):7-19.

    Yang Shipu. Palaeoenvironmental and palaeogeographic significance of trace fossils[J]. Journal of Palaeogeography, 1999, 1(1): 7-19.
    [19] Taylor A, Goldring R, Gowland S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3/4): 227-259.
    [20] McIlroy D. The application of ichnology to palaeoenvironmental and stratigraphic analysis[M]. London: Geological Society Special Publications, 2004: 157-178.
    [21] Seilacher A. Trace fossil analysis[M]. Berlin, Heidelberg: Springer, 2007: 1-226.
    [22] 牛永斌,单婷婷,董小波,等. 豫西北奥陶系马家沟组遗迹化石及其沉积环境[J]. 沉积学报,2015,33(2):211-225.

    Niu Yongbin, Shan Tingting, Dong Xiaobo, et al. Trace fossils and their sedimentary environment of Ordovician Majiagou Formation in the north-west of Henan province[J]. Acta Sedimentologica Sinica, 2015, 33(2): 211-225.
    [23] 吴贤涛,张国成,吴渤,等. 东濮凹陷古近系沙河街组三段河口湾沉积亚相之沉积学与痕迹学识别与油气储层[J]. 沉积学报,2014,32(4):744-753.

    Wu Xiantao, Zhang Guocheng, Wu Bo, et al. Sedimentological and Ichnological recognition of estuarine subfacies and its reservoir implications in Palaeogene Shahejie Formatiom from Subdivision Three Dongpu Depression, Henan, China[J]. Acta Sedimentologica Sinica, 2014, 32(4): 744-753.
    [24] 荆锡贵,陈政安,李凤杰,等. 龙门山地区中泥盆统养马坝组风暴沉积中的遗迹化石及其环境意义[J]. 沉积学报,2019,37(4):749-757.

    Jing Xigui, Chen Zheng’an, Li Fengjie, et al. Ichnofossils and their environmental significance in storm deposit from the Middle Devonian Yangmaba Formation in Longmenshan area[J]. Acta Sedimentologica Sinica, 2019, 37(4): 749-757.
    [25] 宋慧波,王芳,胡斌. 晋中南地区上石炭统—下二叠统太原组碳酸盐岩中遗迹组构及其沉积环境[J]. 沉积学报,2015,33(6):1126-1139.

    Song Huibo, Wang Fang, Hu Bin. Ichnofabrics and their sedimentary environments in carbonate rocks of the Upper Carboniferous-Lower Permian Taiyuan Formation in Middle South Shanxi province[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1126-1139.
    [26] 陈浩,黄继新,常广发,等. 基于全岩心CT的遗迹化石识别及沉积环境分析:以加拿大麦凯Ⅲ油砂区块为例[J]. 古地理学报,2018,20(4):703-712.

    Chen Hao, Huang Jixin, Chang Guangfa, et al. Ichnology identification and sedimentary environment analysis based on CT scanning: A case study from Mackay III oil sands, Canada[J]. Journal of Palaeogeography, 2018, 20(4): 703-712.
    [27] 杨福忠,罗良,贾东,等. 印尼东爪哇盆地新生代构造演化[J]. 高校地质学报,2011,17(2):240-248.

    Yang Fuzhong, Luo Liang, Jia Dong, et al. Cenozoic tectonic evolution of the East Java basin, Indonesia[J]. Geological Journal of China Universities, 2011, 17(2): 240-248.
    [28] 郭沫贞,吕福亮,侯福斗,等. 东爪哇盆地抱球虫灰岩浮游有孔虫组成及指相意义[J]. 沉积学报, 2020,38(4):747-758.

    Guo Mozhen, Fuliang Lü, Hou Fudou, et al. Microbial composition and significance of Lower Pliocene sedimentary globigerinid limestone facies in the East Java Basin[J]. Acta Sedimentologica Sinica, 2020,38(4):747-758
    [29] Knaust D, Bromley R G. Trace fossils as indicators of sedimentary environments[M]. Amsterdam: Elsevier, 2012: 563-750.
    [30] Seilacher A. Paleontological studies on turbidite sedimentation and erosiona[J]. The Journal of Geology, 1962, 70(2): 227-234.
    [31] Wetzel A. Biogenic structures in modern slope to deep-sea sediments in the Sulu Sea Basin (Philippines)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1983, 42(3/4): 285-304.
    [32] 朱伟林,胡平,江文荣. 南亚—东南亚含油气盆地[M]. 北京:科学出版社,2012:1-379.

    Zhu Weilin, Hu Ping, Jiang Wenrong. South Asia - Southeast Asia petroleum-bearing basins[M]. Beijing: Science Press, 2012: 1-379.
    [33] Bann K L, Fielding C R, MacEachern J A, et al. Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia[C]//McIlroy D. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Bath: Geological Society Publishing House, 2004, 228: 179-211.
    [34] Gingras M K, MacEachern J A, Pemberton S G. A comparative analysis of the ichnology of wave- and river-dominated allomembers of the Upper Cretaceous Dunvegan Formation[J]. Bulletin of Canadian Petroleum Geology, 1998, 46(1): 51-73.
    [35] Howard J D. The sedimentological significance of trace fossils[M]//Frey R W. The study of trace fossils. Berlin, Heidelberg: Springer, 1975: 131-146.
    [36] Reinson G E. Barrier-island and associated strand-plain systems[M]// Walker R G. Facies Models, Second edition. St. Johns, NL: Geological Association of Canada, 1984:119-140.
    [37] Frey R W, Pemberton S G. Biogenic structures in outcrops and cores. I. Approaches to ichnology[J]. Bulletin of Canadian Petroleum Geology, 1985, 33(1): 72-115.
    [38] Frey R W, Pemberton S G, Saunders T D A. Ichnofacies and bathymetry: A passive relationship[J]. Journal of Paleontology, 1990, 64(1): 155-158.
    [39] Olivero D, Gaillard C. Paleoecology of Jurassic Zoophycos from south-eastern France[J]. Ichnos, 1996, 4(4): 249-260.
    [40] Uchman A, Demircan H. A Zoophycos group trace fossil from Miocene flysch in southern Turkey: Evidence for a U-shaped causative burrow[J]. Ichnos, 1999, 6(4): 251-259.
    [41] 晋慧娟,李育慈,方国庆. 古代深海底质氧控的遗迹化石群落[J]. 沉积学报,2003,21(1):75-80.

    Jin Huijuan, Li Yuci, Fang Guoqing. Oxygen-dependent ichnocoenose in paleo-pelagic substrates[J]. Acta Sedimentologica Sinica, 2003, 21(1): 75-80.
    [42] Pemberton S G, Van Wagner J C, Wach G D. Ichnofacies of a wave-dominated shoreline[M]//Pemberton S G. Applications of ichnology to petroleum exploration: A core workshop, vol 17. Tulsa: Society of Economic Paleontologists and Mineralogists, Core Workshops, 1992: 339-382.
    [43] 吴贤涛,张国成. 东濮凹陷古近系沙河街组边缘海—浅海相识别与油气储层[J]. 沉积学报,2015,33(2):364-375.

    Wu Xiantao, Zhang Goucheng. Recognition of marginal to shallow marine deposits in Shahejie Formation (Palaeogene) Dongpu Depression and its reservoir significance[J]. Acta Sedimentologica Sinica, 2015, 33(2): 364-375.
    [44] Reading H G, Collinson J D. Clastic coasts[M]//Reading H G. Sedimentary environments: Processes, facies and stratigraphy. Oxford: Blackwell, 1996: 154-231.
    [45] 晋慧娟,李育慈,方国庆. 中国古代深海沉积和遗迹化石群落[M]. 北京:科学出版社,2003:180-189.

    Jin Huijuan, Li Yuci, Fang Guoqing. The paleo-abysmal deposit and ichnocoenoses in China[M]. Beijing: Science Press, 2003: 180-189.
    [46] 罗茂,时国,龚一鸣. 贵阳花溪早三叠世遗迹化石及其对二叠纪末生物大灭绝事件后生物复苏的启示[J]. 古地理学报,2007,9(5):519-532.

    Luo Mao, Shi Guo, Gong Yiming. Early Triassic trace fossils in Huaxi region of Guiyang and their implications for biotic recovery after the end-Permian mass extinction[J]. Journal of Palaeogeography, 2007, 9(5): 519-532.
  • [1] 陈琰, 夏晓敏, 李雅楠, 赵健, 崔俊, 乔柏瀚, 赵东升, 高红灿, 王义, 谭莉, 杜宗飞, 王远飞.  柴西咸水泉地区下油砂山组湖相沉积特征 . 沉积学报, 2024, 42(2): 619-631. doi: 10.14027/j.issn.1000-0550.2022.076
    [2] 郭沫贞, 吕福亮, 侯福斗, 李林, 杨涛涛, 李东.  东爪哇盆地抱球虫灰岩浮游有孔虫组成及指相意义 . 沉积学报, 2020, 38(4): 747-758. doi: 10.14027/j.issn.1000-0550.2019.070
    [3] 荆锡贵, 陈政安, 李凤杰, 文胜男, 谢胜军.  龙门山地区中泥盆统养马坝组风暴沉积中的遗迹化石及其环境意义 . 沉积学报, 2019, 37(4): 749-757. doi: 10.14027/j.issn.1000-0550.2018.170
    [4] 吴斌, 朱莉娟, 侯明才, 晁晖, 江文剑, 石鑫, 罗宏谓, 曹海洋, 何佳伟.  伊犁盆地南缘中侏罗统西山窑组沉积环境讨论 . 沉积学报, 2018, 36(3): 456-467. doi: 10.14027/j.issn.1000-0550.2018.116
    [5] 赵曌, 张立军.  遗迹化石Rhizocorallium中莓状黄铁矿对古环境古生态的指示——以豫西南上泥盆统为例 . 沉积学报, 2017, 35(3): 480-488. doi: 10.14027/j.cnki.cjxb.2017.03.006
    [6] 余关美, 时国.  贵阳地区下三叠统安顺组遗迹化石及古环境意义 . 沉积学报, 2016, 34(4): 626-633. doi: 10.14027/j.cnki.cjxb.2016.04.002
    [7] 宋慧波, 王芳, 胡斌.  晋中南地区上石炭统-下二叠统太原组碳酸盐岩中遗迹组构及其沉积环境 . 沉积学报, 2015, 33(6): 1126-1139. doi: 10.14027/j.cnki.cjxb.2015.06.006
    [8] 牛永斌, 单婷婷, 董小波, 周硕, 高文秀.  豫西北奥陶系马家沟组遗迹化石及其沉积环境 . 沉积学报, 2015, 33(2): 211-225. doi: 10.14027/j.cnki.cjxb.2015.02.001
    [9] 刘群, 袁选俊, 林森虎, 王岚, 郭浩, 潘松圻, 姚泾利.  鄂尔多斯盆地延长组湖相黏土岩分类和沉积环境探讨 . 沉积学报, 2014, 32(6): 1016-1025.
    [10] 王长征, 胡斌, 杨凯.  豫西潭头盆地上白垩统秋扒组遗迹化石与沉积环境 . 沉积学报, 2014, 32(6): 1007-1015.
    [11] 柴达木盆地东北缘中新统遗迹化石组合及其沉积环境 . 沉积学报, 2013, 31(3): 413-420.
    [12] 张喜林.  苏北盆地高邮凹陷古近系戴南组滨浅湖沉积中的遗迹化石 . 沉积学报, 2006, 24(1): 81-89.
    [13] 刘志飞, 王成善, 金玮, 伊海生, 郑洪波, 赵西西, 李亚林.  青藏高原沱沱河盆地渐新—中新世沉积环境分析 . 沉积学报, 2005, 23(2): 210-217.
    [14] 施振生, 朱筱敏, 王贵文, 钟大康, 张新培.  塔里木盆地塔中地区志留系塔塔埃尔塔格组潮坪沉积中的遗迹化石 . 沉积学报, 2005, 23(1): 91-98.
    [15] 张国成, 曾玉凤, Buatois LA, Mangano MG.  济源盆地谭庄组(T2-3)上段湖相沉积及遗迹化石特征 . 沉积学报, 2005, 23(1): 99-107.
    [16] 王冠民.  西藏措勤盆地下白垩统多巴组沉积环境分析 . 沉积学报, 2000, 18(3): 349-354,368.
    [17] 杨逢清, 熊伟.  四川省壤塘县金木达晚三叠世深水沉积中的遗迹化石及沉积环境分析 . 沉积学报, 2000, 18(1): 73-79.
    [18] 方国庆, 刘德良.  塔里木盆地西北缘中奥陶统其浪组风暴岩中遗迹化石及其环境意义 . 沉积学报, 2000, 18(1): 68-72.
    [19] 田军, 龚一鸣, 梁斌, 黄继春.  东昆仑造山带二叠-三叠系遗迹化石及指相意义 . 沉积学报, 1999, 17(3): 361-366.
    [20] 赖旭龙.  藏北中侏罗世遗迹化石Tisoa Serres的发现及其环境意义 . 沉积学报, 1998, 16(3): 1-5.
  • 加载中
图(6)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  281
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 修回日期:  2020-04-28
  • 刊出日期:  2021-06-10

目录

    东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析

    doi: 10.14027/j.issn.1000-0550.2020.028
      基金项目:

      中国石油天然气集团公司科学研究与技术开发项目 2019D⁃4309

      作者简介:

      郭沫贞,男,1974年出生,硕士,高级工程师,油气储层地质,E⁃mail: guomz_hz@petrochina.com.cn

    • 中图分类号: P618.13

    摘要: 抱球虫灰岩是印尼东爪哇盆地已发现油气藏的主要储层岩性之一,是该盆地重要的勘探目的层。该套发育于上新世的抱球虫灰岩,其储层性质优,为高孔中高渗型性储层。但对该类灰岩储层的形成条件、沉积环境因缺乏可靠的相标志而认识不一,从而影响了对该类储层的油气勘探。通过对该套灰岩发育的遗迹化石研究,共识别出OphiomorphaAsterosomaPalaeophycusThalassinoidesPhycosiphonZoophycos,TeichichnusTerebellina等8个遗迹属。按其古生态和及其宿主岩性沉积学特征,将其划分出三类遗迹组合:1)Ophiomorpha⁃Asterosoma遗迹组合,主要发育于抱球虫颗粒岩和泥质抱球虫颗粒岩中,代表中低等水动力能量的下临滨沉积环境,以颗粒滩沉积为主;2)Zoophycos⁃Palaeophcus遗迹组合,主要发育于泥质抱球虫颗粒岩和抱球虫颗粒质泥岩中,代表远滨过渡带和棚内洼地沉积环境,主要为正常浪基面以下正常海洋沉积夹风暴作用沉积,以抱球虫灰泥沉积为主;3)Zoophycos⁃Phycisophon遗迹组合,主要发育于抱球虫颗粒质泥岩中,代表滨外陆棚沉积环境,为风暴浪基面以下正常的海洋灰泥和泥岩沉积。综合岩石类型、岩石序列组合及遗迹化石组合,提出研究区该套抱球虫灰岩下临滨至滨外陆棚的沉积模式。这对研究区该类储层的沉积和成因有重要意义,为此类储层控制因素及展布的研究奠定了基础,并对该类海域储层的油气勘探有重要指导意义。

    English Abstract

    郭沫贞, 吕福亮, 邵大力, 侯福斗, 杨涛涛, 李东. 东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析[J]. 沉积学报, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
    引用本文: 郭沫贞, 吕福亮, 邵大力, 侯福斗, 杨涛涛, 李东. 东爪哇盆地抱球虫灰岩遗迹化石及其沉积环境分析[J]. 沉积学报, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
    GUO MoZhen, LÜ FuLiang, SHAO DaLi, HOU FuDou, YANG TaoTao, LI Dong. Ichnofossils in Globigerinid Limestone and Their Sedimentary Environments, East Java Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
    Citation: GUO MoZhen, LÜ FuLiang, SHAO DaLi, HOU FuDou, YANG TaoTao, LI Dong. Ichnofossils in Globigerinid Limestone and Their Sedimentary Environments, East Java Basin[J]. Acta Sedimentologica Sinica, 2021, 39(3): 713-722. doi: 10.14027/j.issn.1000-0550.2020.028
      • 抱球虫灰岩在印度尼西亚东爪哇盆地广泛发育,目前已发现了多个以该套灰岩为储层的油气藏[14]。在该盆地该套灰岩主要发育于新近系下上新统Mundu组,埋藏深度以小于1 500 m为主,主要由抱球虫颗粒岩、泥质抱球虫颗粒岩及抱球虫泥灰岩组成。其中抱球虫颗粒岩、泥质抱球虫颗粒岩是其主要的储层岩性,其主要特征是岩石的生物颗粒组成以抱球虫颗粒为主,其含量分布在30%~50%[4]。该类储层抱球虫颗粒体腔孔发育,储层物性好,孔隙度为30%~52%,渗透率(1~600)×10-3 μm2[2,4]。因其高品质的储集性,使该套灰岩储层成为该盆地的重要勘探目的层。由于该套灰岩有别于常规的半深海、深海沉积环境形成的软泥型抱球虫灰岩[5],同时由于缺乏可靠的沉积相标志,故不同学者对该套灰岩形成的沉积环境,储层的控制因素和规模,而有不同的观点[610],其中主要有等深流、底流、远洋软泥沉积等观点。

        近期在对该套灰岩的沉积环境进行研究时,在岩芯上发现有丰富的各类遗迹化石。遗迹化石也称为痕迹化石,是指各类生物生命活动时在岩层中留下的痕迹和遗物[11]。遗迹化石是特定生物在特定的环境下其生命活动、行为习性和觅食活动的细节反映,多为未经搬运的原地埋藏,而其造迹生物又是沉积作用的参与者,它们所保存的这些信息,远比实体化石丰富 [12]。因而众多学者普遍认为遗迹化石在古沉积环境分析等方面有独特的价值[1316],认为遗迹化石特征或其组合特征是古环境分析的可靠标志[1721]。一些学者也利用遗迹化石及其组合特征,对不同地区不同层位的古环境和沉积相进行了深入的探讨,促进了各区域的油气勘探工作[2226]。因而分析研究区遗迹化石的种类及组合特征,对该套抱球虫灰岩的成因有重要意义。本文主要利用东爪哇盆地南部海上X油气田X⁃1井上新统Mundu组岩芯、铸体薄片、测井及录井等资料,对该套灰岩发育的遗迹化石及其组合特征进行识别和分析研究,对其古生态和沉积环境进行了分析,指出了该套抱球虫灰岩的形成条件及沉积环境,这对该套灰岩下一步的沉积相分析及其储层控制因素研究有重要意义。

      • 东爪哇盆地是印度尼西亚主要含油气盆地之一,油气资源丰富,2009年盆地的油气资源量达到了3 549百万桶油当量[27]。该盆地位于印度尼西亚东部,盆地面积约16.5×104 km2,盆地大部分为东爪哇海域,占盆地面积的87%,陆上部分主要分布在爪哇岛东北部和Madura岛(图1)。盆地在构造上位于巽他大陆的东南边界,沉积厚度可达6 000 m,主要由一套古近系至第四系碳酸盐岩和碎屑岩地层组成。

        图  1  东爪哇盆地地理位置及其构造背景简图[2728]

        Figure 1.  Geographical location and tectonic setting of the East Java Basin[2728]

        东爪哇盆地自始新世以来,盆地的演化可划分为四个阶段,分别为早裂谷期、同裂谷期、后裂谷期和反转期。早始新世(Ngimbang下段)为早裂谷期,为陆相湖泊—洪积扇沉积环境,发育了一套砂砾岩、砂岩和泥岩沉积;中晚始新世—早渐新世,为同裂谷期,为海陆交互相和海相沉积环境,发育一套碎屑岩和碳酸盐岩互层的地层;中渐新世—早中新世,为后裂谷期或拗陷期的早中期,海退、海浸频繁,生物礁灰岩及灰岩发育(Kujung组上段),该套灰岩地层是盆地深部构造的主要储层之一;中晚中新世始,受板块运动影响,研究区开始构造反转,沉积格局发生变化,由前期南部为浅海陆棚、北部为半深海的沉积环境格局转变为北部开始隆升,南部沉降,形成与前期相反的南低北高的沉积环境格局,碎屑岩与碳酸盐岩同时发育;早上新世时,南低北高的格局进一步加强,北部持续抬升,沉积环境北部为宽缓的浅海陆棚,中南部为半深海。在浅海陆棚边缘发育了一套浅部构造带主要的储层,抱球虫灰岩(Mundu组);晚上新世至更新世,延续北高南低格局,研究区仍为浅海至半深海沉积环境,沉积物以海相砂岩及泥岩沉积为主。

      • X⁃1井位于东爪哇盆地东南部,该井发育的该套抱球虫灰岩厚度为148 m,灰岩顶部埋藏深度为910 m。铸体薄片表明岩石生物碎屑颗粒的主要组成为抱球虫、小型底栖有孔虫、海胆、红藻及软体动物碎片[2,4]图2),其中以抱球虫颗粒为主,含量分布在30%~52%[2,4],其壳体直径主要分布在50~150 μm,壳体形态完整,大小相当。岩石其它类型的生物颗粒含量均小于10%,海绿石和石英颗粒含量均小于2%,胶结物主要为黄铁矿、方解石及白云石,含量均小于3%,其次为灰泥,但其含量以小于25%为主[2,4]

        图  2  X⁃1井抱球虫灰岩岩矿组成及孔隙类型

        Figure 2.  Lithological compositions and pore types of Globigerinid limestone in well X⁃1

      • 岩芯分析的孔隙度和渗透率表明(图3),该套抱球虫灰岩储层为高孔中高渗型储层,孔隙度分布在30%~52%,渗透率分布在(1~600)×10-3 μm2。铸体薄片表明该套储层各类孔隙发育,镜下面孔率可达20%,主要有抱球虫颗粒体腔孔、粒间孔、晶间孔、有孔虫壳壁孔及基质微孔(图2)。这种优质储层主要是由于基质含量少,有孔虫体腔孔隙和粒间孔隙发育,且后期压实作用不强造成的。

        图  3  东爪哇盆地X⁃1井抱球虫灰岩孔隙度和渗透率分布图[28]

        Figure 3.  Porosity and permeability distribution chart of Globigerinid limestone in well X⁃1[28]

      • 通过对X⁃1井上新统Mundu组岩芯发育的各类遗迹化石进行详细观察,对比化石形态、发育的沉积环境及种属间的相互关系[1112,21,29],识别出8类遗迹属,各类遗迹化石特征分述如下:

      • 该遗迹具有形状不同的潜穴及潜穴系统,直、弯曲或偶有分枝,潜穴内部光滑,外表具粪粒黏结的瘤粒,或呈疙瘩状,潜穴剥蚀后外表光滑[12,21]。研究区此种遗迹化石在岩芯上以其潜穴系统横切面形式呈现(图4a,c,f),横断面呈圆形和椭圆形,直径1~3 cm,其管壁内侧光滑,外部可见明显的瘤状凸起,壁厚1~5 mm,潜穴为被动充填,充填物与围岩成分基本相同。潜穴与地层层面平行或呈低角度斜交,发育的岩性多为含泥质较少的抱球虫颗粒岩或泥质抱球虫颗粒岩。

        图  4  东爪哇盆地X⁃1井抱球虫灰岩中的遗迹化石

        Figure 4.  Ichnofossils in Globigerinid limestone in well X⁃1, East Java Basin

      • 该遗迹呈大型星状体,有一高的中心,有多个放射脊,约3~9个,放射脊长度不同,末端呈尖圆状,表面分布有长短不一的纵向皱纹[12,21]。研究区此种遗迹化石在岩芯上以其放射脊的纵切面(图4b)和横切面(图4e)形式呈现,呈水平至倾斜的玫瑰花状,宽度小于3 cm,其断面上可见明显的纵向皱纹,发育的岩性多为含泥质较少的抱球虫颗粒岩或泥质抱球虫颗粒岩。

      • 该遗迹潜穴呈圆柱或亚圆柱状,形态大小有较大差异,潜穴的直径粗细不一,潜穴多为直立或一定程度弯曲,表面光滑,具有相互交错的细纵纹与横纹,一般不分枝,少数呈现不规则分枝,潜穴具衬里结构[12,21]。研究区此种遗迹化石在岩芯上多以其潜穴系统横切面形式呈现(图4b,h),横断面呈圆形和椭圆形,直径多小于5 mm,具明显深灰色衬里,厚度较薄,小于1 mm,潜穴为被动充填,充填物与围岩成分基本相同。发育的岩性从抱球虫颗粒岩至抱球虫颗粒质泥岩,但泥灰岩发育较少。

        该属的Palaeophycus heberti 在研究区也较发育(图4g)。Palaeophycus heberti潜穴为圆柱状,不具纹饰,潜穴直到微弯曲,少数有分枝,同一个体中潜穴直径变化不大,潜穴壁光滑,该遗迹化石以具有较厚的衬壁为特征[12,21]。研究区此种遗迹化石在岩芯上以潜穴系统横切面形式呈现(图4g),横断面呈圆形和椭圆形,潜穴直径约0.5~1 cm,潜穴具较厚衬壁并呈深灰色,衬壁厚约2 mm,衬壁可见横纹,潜穴内被动充填,充填物与围岩相同。发育的岩性主要为抱球虫颗粒质泥岩,泥灰质含量较高。

      • 该遗迹为具蹼状构造的一系列直形管潜穴,外形具排成墙状的隔板构造。在纵剖面上,可见向上紧密叠合的凹形[26],发育新月形纹层,一般不分枝,遗迹长5~9 cm,高可达数厘米,宽1~2 cm[12,21]。此遗迹属与根珊瑚属Rhizocorallium区别在于后者的U型潜穴,其延伸方向经常与地层层面近平行或略斜交,其U型潜穴的两翼管基本近于互相平行,为向下凹陷的横向上舌状叠复的蹼状构造,U型弧顶端呈半圆形[21]。研究区此种遗迹化石在岩芯上多以斜切面形式呈现(图4e),切面上可形成一系列垂向上叠复、向下凸的弯曲细纹,具明显的型蹼状构造,岩芯上其高度3~5 cm,宽2~3 cm。发育的岩性为含泥质较少的抱球虫颗粒岩和泥质抱球虫颗粒岩。

      • 该遗迹在地层中以网状在三维空间内延伸,具有明显分枝这一特点,分枝处略膨胀变粗,常见Y形分枝和近垂向分支,并且相互之间经常穿插连接,构成一套在水平方向上延伸较广的网状分布潜穴系统。潜穴的表面光滑,或偶具小瘤,或具脊状抓痕[12,21]。研究区此种遗迹化石在岩芯上以斜切面和纵切面形式呈现(图4h),切面呈椭圆形,潜穴管直径1.5~3 cm,主动充填,充填物颜色较围岩浅。发育的岩性为抱球虫颗粒岩或泥质抱球虫颗粒岩。

      • 该遗迹在岩层内为复杂的具蹼状构造的觅食潜穴,外部形态变化较大,有螺旋形、板状、圆形、椭圆形、瓣状和鹿角形等。该遗迹潜穴常具有中央和边缘细通道,以及弧度较大的薄板构造,且叠锥随着潜穴的向下延伸逐渐扩大。纵切面表现为一系列新月形弯曲紧压在一起,组成多行系列,各系列宽度在2~5 mm间。这些内凹的新月型系列被认为是掘穴动物由排泄物形成的回填构造[12,21]。研究区此种遗迹化石在岩芯上多以纵切面形式出现(图4d,g),呈弯弧状,长约5~10 cm,潜穴宽度小于1 cm,主动充填,潜穴充填物颜色较深,为深灰色、黑色,具明显的新月形蹼状构造。发育的岩性主要为抱球虫颗粒质泥岩或泥质抱球虫颗粒岩,泥灰质含量较高。

      • 该遗迹在岩层内为小型遗迹,管状潜穴弯曲呈一系列相连的水平或倾斜的J形或U形弧状迹,多为弯曲的分枝,或似鹿角状。中间潜穴管由一系列U型叶片组成,叶片大约几个毫米到1 cm,叶片的两翼之间有蹼状构造伸展[12,21,3031]。管内充填物较围岩颜色较深,具有蹼状构造,由粪粒和沉积物构成。研究区此种遗迹化石较发育(图4a,f),在岩芯上多呈弯弧状,穴管表面光滑,长约2~5 cm,潜穴宽度小于5 mm,主动充填,潜穴充填物颜色较浅,为灰白色,具小型的蹼状构造。发育的岩性主要为抱球虫颗粒质泥岩,泥灰质含量较高。

        除上述发育的遗迹属之外,还发现有Terebellina,该遗迹潜穴呈半椭圆弯曲,为无纹饰,具清晰的壁衬,潜穴直径 2~10 mm,长5~20 cm,壁厚 0.5~3 mm, 潜穴管向下斜和水平方向弯曲,偶成束状[12,21]。研究区此种遗迹在岩芯上形态不是很清楚,以横断面形式出现,呈扁椭圆形,潜穴具较厚的灰白色壁衬,由方解石组成。发育的岩性主要为抱球虫颗粒质泥岩或泥质抱球虫颗粒岩,泥灰质含量较高。此遗迹化石与palaeophycus的区别在于,后者横断面为圆柱形或亚圆柱形,潜穴直或略弯曲,一般不分枝,而前者横断面较扁,潜穴管向下斜和水平方向弯曲[12]

      • 研究区岩性虽然为抱球虫灰岩,属碳酸盐岩。但根据区域构造、古地理环境分析[67,2728,32],其沉积背景在北部为宽缓的浅海陆棚,其靠陆侧发育碎屑岩的三角洲及滨岸相,向海一侧陆棚发育抱球虫灰岩,中间靠陆一侧为碎屑岩和碳酸盐岩的混相,南部为陆坡及半深海含抱球虫泥灰岩及泥岩沉积[28]。对抱球虫颗粒属种分析表明,上升流属种大量发育,认为这些颗粒不是原地堆积,是经过上升流等洋流搬运而来,并经过波浪等水动力改造[28]。岩石生物颗粒缺少造礁生物,发育低角度斜层理(丘状交错层理)(图4a),同时抱球虫壳体形态完整,表明该套灰岩受能量较弱且持续的水动力作用明显。另一方面,没有发现代表浅海碳酸盐岩礁滩沉积的Trypanites遗迹相组成的遗迹属种[29]。综合判断该套灰岩沉积环境为水动力以波浪为主,夹有风暴浪作用的浅海临滨至滨外陆棚沉积环境。

      • 在遗迹化石研究方面,不同学者通过对不同海相亚环境发育的遗迹化石生态及类型的研究,已建立了可靠的滨浅海环境遗迹化石标志系统[19,29,3334]。根据水动力类型、沉积构造、遗迹化石形态及捕食方式等将陆棚浅海划分为滨外陆棚、远滨过渡带、下—中临滨、上临滨—前滨—后滨4类系统7类子系统,每类子系统发育的沉积构造和遗迹化石的古生态特征都有明显差异[29]

        通过对X⁃1井岩性、电性综合分析,该套抱球虫灰岩处于中期旋回的下降半旋回(图5),自然伽马值由下至上依次降低,反映岩性泥质含量依次减少,水体由深变浅,发育海退沉积序列。在岩性上下部为泥质含量高,储层物性差,水动力作用弱的抱球虫泥灰岩,向上过渡为抱球虫颗粒分选好、泥质含量少,储层物性优,并发育低角度斜层理(丘状交错层理)(图4a),为水动力弱至中等的抱球虫颗粒岩(图5)。

        图  5  东爪哇盆地X⁃1井遗迹化石及沉积相柱状图

        Figure 5.  Comprehensive column of ichnofossils and facies in well X⁃1, East Java Basin

        综合上述分析并结合滨浅海亚沉积环境的遗迹化石组合特征[29],以及研究区遗迹化石的纵向分布(图5),将研究区遗迹化石划分为3类遗迹组合。即OphiomorphaAsterosoma遗迹组合代表的下临滨沉积环境、ZoophycosPalaeophcus遗迹组合代表的远滨过渡带和棚内洼地沉积环境,以及ZoophycosPhycisophon遗迹组合代表的滨外陆棚沉积环境。综合岩性特征、沉积旋回、电测响应及遗迹化石分布,提出了研究区抱球虫灰岩形成的沉积模式(图6)。

        图  6  东爪哇盆地抱球虫灰岩沉积环境模式图

        Figure 6.  Sedimentary environments of Globigerinid limestone, East Java Basin

        OphiomorphaAsterosoma遗迹组合,该组合遗迹化石迹属主要有OphiomorphaAsterosomaPalaeophycusTeichichnusThalassinoides图5总体属于能量较低的水体环境遗迹化石,宿主岩性为颗粒岩或泥质颗粒岩,颗粒分选好,孔隙发育,发育低度斜层理(丘状交错层理)(图4a),自然伽马响应为低值(图5),反映岩石泥质含量较低,且Ophiomorpha潜穴管多呈近水平产状(图4a),表现出中低能下临滨的水体环境特征。Ophiomorpha潜穴产状是划分下、中临滨的良好标志之一。受水体能量的影响,Ophiomorpha在下临滨环境,其潜穴以水平产状为主,而在中临滨其潜穴由水平转为垂直[35],这主要是Ophiomorpha为适应不同的水动力而造成的,中临滨的水体能量强,为避免波浪等水动力影响,其潜穴呈垂直产状,而下临滨水动力弱于中临滨,其潜穴以水平为主[35]。综合分析,该遗迹组合反映了水动力能量中等—较弱,以升浪作用为主且持续作用的下临滨沉积环境[36]图6),为抱球虫颗粒滩沉积。该套地层储层物性好,厚度大,为研究区的主要油气产层[2,4]。该遗迹组合所代表的下临滨沉积环境为研究区优质抱球虫颗粒岩及泥质颗粒岩发育的沉积环境。

        ZoophycosPalaeophcus遗迹组合,该组合遗迹化石迹属主要有Zoophycos、PalaeophcusTerebellina图5)。遗迹化石多为食泥型迹属。Zoophycos最早为该遗迹相带的名称之一,是介于浅海区的Cruziana遗迹相和深海区的Nereites遗迹相之间,形成于沿岸地区风暴浪基面以下的深海静水贫氧条件[37]。但随着研究深入,认为Zoophycos既可形成于半深海,也可形成于滨浅海[3840],即可形成于贫氧或缺氧环境中,也可形成于含氧量较高的开阔海、水流动荡畅通的风暴沉积环境[12,41]Palaeophcus遗迹化石的形成环境较广[12],但主要见于海洋和咸水环境,属于Skolithos遗迹相[42]Terebellina被解释为食悬浮沉积物的居住潜穴,常见于远端Cruziana遗迹相,属于典型的滨外浅海环境产物[4243]。这些遗迹化石主要发育于颗粒质泥岩和少量泥质颗粒岩中,自然伽马响应为相对而言为中值(图5),反映岩石泥质含量较高。综合对遗迹化石Zoophycos、PalaeophcusTerebellina的形成环境分析及宿主岩性特征,认为该遗迹组合反映了正常浪基面和风暴浪基面之间的远滨过渡带[44]或为平均低潮线以下棚内洼地或抱球虫颗粒滩的滩后或滩间沉积环境(图6),以抱球虫灰泥沉积为主。该类岩性因其泥质含量高,其有效孔隙不发育,为研究区的非油气产层。

        Zoophycos⁃Phycisophon遗迹组合,该组合遗迹化石迹属主要有ZoophycosPhycosiphon图5)。一般认为Phycosiphon是由造迹生物在沉积物中摄食潜穴而形成的,属深水型遗迹化石[45],形成于风暴浪基面以下远洋静水环境[46]。该类遗迹组合主要发育于颗粒质泥岩,为食泥型迹属,自然伽马响应相对而言也为中值(图5),反映岩石的泥质含量较高。综合分析, Zoophycos⁃Phycisophon遗迹组合反映了风暴浪底之下的滨外陆棚及半深海沉积环境(图6),为正常的海洋抱球虫灰泥及泥岩沉积。该类岩性孔隙不发育,为研究区的非油气产层。

        综合单井沉积环境、遗迹化石组合特征、区域构造演化、古地理环境[67,2728,32],认为东爪哇盆地发育的这套优质抱球虫颗粒岩及泥质颗粒岩主要为受升浪持续作用的下临滨沉积环境形成的抱球虫颗粒滩沉积,抱球虫颗粒质泥岩主要为棚内洼地及正常浪基面以下水动力较弱的远滨过渡带及滨外陆棚环境形成的沉积(图56)。

      • 通过对东爪哇盆地X⁃1井抱球虫灰岩发育的遗迹化石迹属组成分析,发现研究区共发育8种遗迹化石迹属,即OphiomorphaAsterosomaPalaeophycusTeichichnusThalassinoidesZoophycosPhycosiphonTerebellina。通过对其古生态、遗迹化石特征、沉积学特征及区域古地理环境分析研究,将其划分为三类遗迹组合,对应三种浅海沉积亚环境,分别为代表下临滨沉积环境的Ophiomorpha⁃Asterosoma遗迹组合、代表远滨过渡带和棚内洼地沉积环境的Zoophycos⁃Palaeophcus遗迹组合和代表滨外陆棚环境的Zoophycos⁃Phycisophon遗迹组合。提出了研究区优质抱球虫颗粒岩、泥质抱球虫颗粒岩主要形成于Ophiomorpha⁃Asterosoma遗迹组合发育的下临滨沉积环境,抱球虫颗粒质泥岩主要形成于滨外陆棚、远滨过渡带及棚内洼地或滩后的沉积环境。这对研究区该类储集层的沉积和成因研究有重要意义,为此类储层控制因素及展布的研究奠定了基础,并对该类海域油气勘探有重要指导意义。

    参考文献 (46)

    目录

      /

      返回文章
      返回