-
油气成藏时间和期次的确定是油气成藏规律研究中所面临的难点和热点问题。每种定年方法均存在一定的局限性,因此在对油气成藏年代研究时,不能单凭某一种定年方法来判断,而应将不同定年技术方法相结合,综合判断油气充注与成藏的时间[11]。本文根据储层有机包裹体年龄、自生伊利石K-Ar同位素测年数据,结合研究区烃源岩生排烃数值模拟结果、磷灰石裂变径迹年龄和关联地质事件,综合确定镇原—泾川地区延长组长8油层组的油气成藏期次。
-
油气从烃源岩中排出后,在运移、聚集成藏过程中,与其同时或近于同时形成的自生矿物中可能捕获流体包裹体。通过对这些流体包裹体的均一温度、盐度、成分等分析,可以大致推断其形成时的热力学条件和所捕获烃类的地球化学特征。
针对运用包裹体研究油气运移和成藏作用,澳大利亚CSIRO石油资源部流体历史分析技术中心建立了古油柱探测技术,其中有表征油包裹体丰度的含油包裹体颗粒指数GOI和颗粒荧光定量QGF。含油包裹体颗粒指数(GOI)也称颗粒荧光指数,其原理是计算砂岩颗粒中荧光包裹体的数量(含油包裹体颗粒数×100/总构架颗粒数)。统计分析表明,油层与水层的GOI数值有数量级的明显差异,按Eadington et al.[12]对澳大利亚和东南亚油气田样品的统计,油层的GOI值大于5%,运移通道的GOI值多为1%~5%,水层的GOI值小于1%。王飞宇等[13]对中国油气田1 124个样品进行了统计,结果也显示出类似的规律,即绝大部分油层中GOI值大于5%。按此规律,本次包裹体统计工作界定GOI > 5%为指示油气成藏的包裹体(成藏期捕获的包裹体),GOI > 3%为指示油气运移或成藏的包裹体(油气活跃期或成藏期捕获的包裹体)。
本次研究的有机包裹体主要赋存在石英颗粒成岩期次生微裂隙或切穿石英颗粒的成岩期后微裂隙中,也有少部分分布于晚期方解石胶结物中。包裹体多成带分布,少部分成线状或成群分布,包裹体形状规则,大小不等,气液比均≤5%,测温的包裹体为与油气包裹体共生的含烃盐水包裹体。本次共对712个含油包裹体进行了显微岩相学分析,从中筛选出309个GOI > 5%的含油包裹体,测定与其共生的盐水包裹体的均一温度(表 1)。将均一温度投在经过准确恢复了的相应的钻井埋藏史(热演化史)图上,读取所对应的年龄,统计作出包裹体年龄频次图(图 5)。从包裹体年龄分布来看,镇原—泾川地区中生界延长组长8油层组存在着基本连续的一期成藏,但其中可划分出两个不同的阶段。第一阶段在153~148 Ma,第二阶段在143~106 Ma,代表了接近连续的演化和成藏过程。第二阶段又可分出三次较大规模的成藏(143~127 Ma、124~118 Ma、116~110 Ma)。
表 1 镇原—泾川地区长8油层组包裹体均一温度
Table 1. Homogenization temperature of fluid inclusions of Chang 8 reservoir in Zhenyuan-Jingchuan area
井号 深度/m 岩性及含油性 样品数/块 均一温度测点数/个 均一温度主频/℃ 均一温度均值/℃ HH79 2 495.6~2 498.32 油迹细砂岩 2 24 100~125 103.6 HH78 2 406.47~2 409.45 油浸细砂岩 3 25 110~120 106.3 HH74 2 348.96~2 353.89 油斑细砂岩 2 14 70~85 80.2 HH73 2 265.47~2 269.36 油浸细砂岩 3 31 70~90 77.6 HH111-17 1 988.09~2 005.12 油斑细砂岩 5 71 90~115 94.2 HH109 2 337.16~2 346.25 油浸细砂岩 4 60 100~120 113.5 HH1057-3 2 220.3~2 232.9 油浸细砂岩 6 84 85~100 96.4 -
利用自生矿物伊利石同位素测年法分析烃类注入储集层的时间是20世纪80年代后期逐步发展起来的新技术,这一方法的原理在于砂岩储集层中自生伊利石是烃类充填储层前最晚形成的,储层中自生伊利石仅在流动的富钾水介质环境中形成,油气进入储层后,伊利石形成过程便会停止[14-16]。因此,可利用伊利石的年龄来判断储层中油气藏形成年龄。储层自生伊利石同位素年龄反映了油气藏形成期的最大地质年龄。
本次研究共选择了镇原—泾川地区延长组长81段自生伊利石发育的含油砂岩样品5件,进行自生伊利石的分离与K/Ar同位素测年,测试结果见表 2。可见,伊利石记录了3期油气充注事件,时间大致在116 Ma、103 Ma和82 Ma。
表 2 镇原—泾川地区延长组储层自生伊利石K-Ar同位素测年数据
Table 2. K-Ar isotopic dating data of authigenic illite in Yanchang Formation reservoirs in Zhenyuan-Jingchuan area
井号 层位 井深/m 岩性 年龄/Ma 误差/Ma HH12 长81 2 093.7 中砂岩 80.62 1.82 HH73 长81 2 268.3 细砂岩 83.08 2.13 HH78 长81 2 406.7 细砂岩 101.76 2.05 HH42 长81 1 701.3 细砂岩 104.05 2.32 HH74 长81 2 345.0 细砂岩 116.25 1.77 -
根据前述的有机包裹体年龄分析、自生伊利石K-Ar同位素测年数据,结合研究区烃源岩生排烃数值模拟结果、磷灰石裂变径迹年龄和关联地质事件,编绘了镇原—泾川地区延长组长8油层组成藏年代学综合解释图(图 6)。由图可见,鄂尔多斯盆地镇原—泾川地区延长组长8油层组存在基本连续的一期成藏,但可划分为3个不同的成藏阶段,分别对应J3早期、J3晚期—K1末期,K2—N1。其中,第一成藏阶段发生在153~149 Ma,为早期低熟油充注成藏期;之后(148~143 Ma)盆地西部挤压,地层抬升,有机质生烃停滞,成藏间断。第二阶段成藏发生在早白垩世,此期为志丹群沉积期,也是盆地的快速沉降期,成藏作用持续进行。根据包裹体的年龄统计和自生伊利石K-Ar同位素年龄,结合源岩生排烃模拟结果,该阶段又可分出4次较大规模的成藏,分别在143~127 Ma(J3晚期—K1早期)、124~118 Ma(K1中期)、115~110 Ma(K1中期)、104~95 Ma(K1晚期—K2早期),其中,K1中期(124~110 Ma)为石油成藏的主要时期。第三阶段成藏发生在90 Ma之后,盆地整体抬升,进入油气调整期。由于油气充注和储层致密,胶结趋弱,包裹体保存较少,但从储层自生伊利石同位素测年结果来看,大致在83~80 Ma存在一次成藏,对应在K2中期。另外,23 Ma以来,在古近纪末至新近纪,由于快速抬升,有可能存在油气的二次调整过程,即可能存在另一次成藏。总体来看,鄂尔多斯盆地镇原—泾川地区延长组长8油层组主要成藏窗口期在143~95 Ma。
The Relationship between Reservoir Densification and Petroleum Accumulation of the Yanchang Formation in the Honghe Oilfield, Ordos Basin
-
摘要: 红河油田位于鄂尔多斯盆地南部伊陕斜坡和天环坳陷的过渡部位,延长组中部长7张家滩页岩为主要源岩,下伏长8油层组三角洲平原分支水道砂体为主要储集体,源储大面积叠覆邻接、共同演化,时间过程和相互关系在石油成藏过程和机制的研究及勘探评价中具有关键作用。利用流体包裹体均一温度测定、伊利石K-Ar同位素测年、盆地数值模拟和镜下观测等多种方法,研究了长8油层组储集岩致密化、石油成藏的时间关系,并分析了石油充注的成岩响应和储层致密化对成藏的影响。结果表明:压实背景下的多期次胶结作用是储层致密化的主要原因,在123 Ma(K1中期)附近长8油层组储层进入致密化窗口(ϕ < 15%)、在83 Ma(K2中期)附近储层平均孔隙度接近目前的状态(ϕ ≈7%)。石油成藏具有一期多阶段的特点,其过程可从J3早期开始延续至K2中期,大规模成藏的窗口期约在143~95 Ma(J3-K1)间、高峰期在124~110 Ma(K1中期)间。成藏窗口明显早于储层致密化窗口、成藏高峰期早于储层由低孔演变到特低孔的关键胶结事件发生时间。这种时间关系决定了储层成岩演化的迟缓性与石油成藏的继承性。石油充注可在一定程度上改善储层物性,减缓或抑制成岩作用的进行,同时也改变了储层的润湿性,降低了石油成藏的动力条件,后期的继承性充注更易于发生,从而成为低动力背景下石油成藏的重要基础。而不同类型砂岩的差异成岩演化导致储层非均质性进一步增强,油气成藏更加复杂化,表现为选择性充注和含油性差异。Abstract: The Honghe oilfield is located at the transition of the Yishan slope and Tianhuan Depression in the southern Ordos Basin. The Zhangjiatan shale of Chang 7 in the middle Yanchang Formation is the main source rock, and the delta plain channel sand of Chang 8 is the main reservoir. The source rock and reservoir are adjacent over a large area, and evolved simultaneously. Their timing and the relationship between them are critical in research on the process and mechanism of petroleum accumulation and exploration assessment. The time relationship between reservoir rock densification and petroleum accumulation were studied by combining homogeneous temperature testing of fluid inclusions, K-Ar isotope dating of illite, numerical modeling of the basin, microscopic observation and other methods. Based on this, the analysis of the diagenetic response of petroleum filling and the effect of reservoir densification on reservoir formation showed that, along with background compaction, multi-stage cementation was a major cause of densification. At about 123 Ma, the average porosity of the reservoir was less than 15%, then it entered the densification window. At about 83 Ma the average porosity of the reservoir was about 7%, very similar to the current state. Petroleum accumulation occurred in one multi-stage phase. The process began in the late J3 and continued until the middle of K2. The massive accumulation window period was from 143 Ma to 95 Ma, peaking between 124 Ma and 110 Ma. Accumulation commenced significantly earlier than reservoir densification. The peak reservoir-forming period occurred before the time of the key cementation events in which the reservoir evolved from lowto ultra-low porosity. This time relationship between reservoir densification and petroleum accumulation determined the slow rate of reservoir diagenetic evolution and the initiation of petroleum accumulation. Petroleum filling may improve the physical properties of a reservoir to a certain extent, or it may retard or inhibit diagenesis, change reservoir wettability, or reduce the dynamic conditions of petroleum migration, such that later filling occurs more easily, and thus becomes an important basis for petroleum reservoir formation under a low dynamic background. Differential diagenetic evolution of different types of sandstone leads to further enhancement of reservoir heterogeneity and complexity of hydrocarbon accumulation, which is manifested by selective filling and oil-bearing differences.
-
图 2 长8油层组储层主要成岩作用显微照片
(a)HH73井,2 301.6m,颗粒间呈线接触;(b)HH12井,1 921.6 m,方解石胶结,正交偏光,×20;(c)HH21井,1 923 m,石英在绿泥石薄膜的缝隙处生长,自形程度较好,×2000(扫描电镜);(d)HH21井,1 882.4 m,碎屑颗粒表面的绿泥石膜呈栉壳状生长,间或有石英苗,×2000(扫描电镜);(e)H55井,1 887.5 m,早期充注的沥青质在孔隙壁面形成薄膜,×400,单偏光;(f)HH111井,1 926.5 m,长石溶蚀残余、孔隙,×100(-);(g)HH24井,1 824.3 m,早期方解石溶蚀残余,×100(Y);(h)HH1057-3井,2 239 m,绕过或切穿碎屑颗粒的微裂缝,附近发育部分溶蚀孔,×100(-)
Figure 2. Microphotographs showing the main diagenetic characteristics of the Chang 8 sand reservoirs
(a)linear contact between particles; (b)calcite cementation, crossed polars,×20; (c)quartz grows in the crevice of chlorite film and has better self-shape, ×2000(SEM); (d)chlorite films on the surface of clastic grain grow in the form of Chlamys-like shells, sometimes with quartz seedlings, ×2000(SEM); (e)formation of thin film on pore wall by early filling asphaltene, ×400, unipolarized light; (f)residual dissolution of feldspar, pores, ×100(-); (g)residual dissolution of early calcite,×100(Y); (h)microcracks circumvented or cut through the clastic grains, and some corrosion holes are developed nearby, ×100(-)
图 10 显微镜下不同期次的烃类充注现象
(a)(b)红河12,2 091 m,长8,20×,(a)为单偏光,(b)为荧光,长石粒缘缝内有黄白色荧光沥青,粒间孔内有浅蓝色荧光沥青;(c)(d)红河1057-3,2 252.2 m,长8,20×,(c)为单偏光,(d)为荧光,石英加大边内有黄绿色荧光沥青,粒间孔内有蓝白色荧光沥青
Figure 10. Microphotographs of hydrocarbon filling phenomena at different periods
(a)(b) Honghe12, 2091 m, Chang8, 20×; (a) is unipolarized and (b) is fluorescent. There is yellow-white fluorescent asphalt in the margin crack of feldspar and light blue fluorescent asphalt in the intergranular pore; (c)(d) Honghe1057-3, 2 252.2 m, Chang8, 20×; (c) is unipolarized and (d) is fluorescent. There is yellow-green fluorescent asphalt in the edge of quartz enlargement and blue-white fluorescent asphalt in the intergranular pore
表 1 镇原—泾川地区长8油层组包裹体均一温度
Table 1. Homogenization temperature of fluid inclusions of Chang 8 reservoir in Zhenyuan-Jingchuan area
井号 深度/m 岩性及含油性 样品数/块 均一温度测点数/个 均一温度主频/℃ 均一温度均值/℃ HH79 2 495.6~2 498.32 油迹细砂岩 2 24 100~125 103.6 HH78 2 406.47~2 409.45 油浸细砂岩 3 25 110~120 106.3 HH74 2 348.96~2 353.89 油斑细砂岩 2 14 70~85 80.2 HH73 2 265.47~2 269.36 油浸细砂岩 3 31 70~90 77.6 HH111-17 1 988.09~2 005.12 油斑细砂岩 5 71 90~115 94.2 HH109 2 337.16~2 346.25 油浸细砂岩 4 60 100~120 113.5 HH1057-3 2 220.3~2 232.9 油浸细砂岩 6 84 85~100 96.4 表 2 镇原—泾川地区延长组储层自生伊利石K-Ar同位素测年数据
Table 2. K-Ar isotopic dating data of authigenic illite in Yanchang Formation reservoirs in Zhenyuan-Jingchuan area
井号 层位 井深/m 岩性 年龄/Ma 误差/Ma HH12 长81 2 093.7 中砂岩 80.62 1.82 HH73 长81 2 268.3 细砂岩 83.08 2.13 HH78 长81 2 406.7 细砂岩 101.76 2.05 HH42 长81 1 701.3 细砂岩 104.05 2.32 HH74 长81 2 345.0 细砂岩 116.25 1.77 -
[1] 黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009 Huang Sijing, Xie Lianwen, Zhang Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(3):273-281. doi: 10.3969/j.issn.1671-9727.2004.03.009 [2] 郑庆华, 柳益群.鄂尔多斯盆地镇北地区延长组长4+5致密油层成岩作用及成岩相[J].沉积学报, 2015, 33(5):1000-1012. http://www.cjxb.ac.cn/CN/abstract/abstract3585.shtml Zheng Qinghua, Liu Yiqun. Diagenesis and diagenetic lithofacies of tight reservoir of Chang4+5 member of Yanchang Formation in Zhenbei, Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5):1000-1012. http://www.cjxb.ac.cn/CN/abstract/abstract3585.shtml [3] 周晓峰, 丁黎, 杨卫国, 等.鄂尔多斯盆地延长组长8油层组砂岩中绿泥石膜的生长模式[J].岩性油气藏, 2017, 29(4):1-10. doi: 10.3969/j.issn.1673-8926.2017.04.001 Zhou Xiaofeng, Ding Li, Yang Weiguo, et al. Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2017, 29(4):1-10. doi: 10.3969/j.issn.1673-8926.2017.04.001 [4] 刘春燕.致密碎屑岩储层"甜点"形成及保持机理:以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例[J].石油与天然气地质, 2015, 36(6):873-879. Liu Chunyan. Formation and preservation mechanism of sweet spot in tight clastic reservoirs:A case study of Chang 8 oil layer of Yanchang Formation in Zhenjing area, southwest Ordos Basin[J]. Oil & Gas Geology, 2015, 36(6):873-879. [5] 郭小文, 刘可禹, 宋岩, 等.库车坳陷克拉2气田油气充注和超压对储层孔隙的影响[J].石油与天然气地质, 2016, 37(6):935-943. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201606015 Guo Xiaowen, Liu Keyu, Song Yan, et al. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(6):935-943. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201606015 [6] 胡海燕.油气充注对成岩作用的影响[J].海相油气地质, 2004, 9(1/2):85-89. http://d.old.wanfangdata.com.cn/Periodical/sydxxb200901004 Hu Haiyan. Effects of hydrocarbon emplacement to diagenesis of reservoirs[J]. Marine Origin Petroleum Geology, 2004, 9(1/2):85-89. http://d.old.wanfangdata.com.cn/Periodical/sydxxb200901004 [7] 罗静兰, 刘小洪, 林潼, 等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J].地质学报, 2006, 80(5):664-673. doi: 10.3321/j.issn:0001-5717.2006.05.005 Luo Jinglan, Liu Xiaohong, Lin Tong, et al. Impact of diagenesis and hydrocarbon emplacement on sandstone reservoir quality of the Yanchang Formation(Upper Triassic)in the Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5):664-673. doi: 10.3321/j.issn:0001-5717.2006.05.005 [8] 郭春清, 沈忠民, 张林晔, 等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J].地质地球化学, 2003, 31(3):53-57. doi: 10.3969/j.issn.1672-9250.2003.03.010 Guo Chunqing, Shen Zhongmin, Zhang Linye, et al. The corrosion and its mechanism of organic acids on main minerals in oil-gas reservoir sand rocks[J]. Geology-Geochemistry, 2003, 31(3):53-57. doi: 10.3969/j.issn.1672-9250.2003.03.010 [9] 钟大康, 朱筱敏, 蔡进功.沾化凹陷下第三系砂岩次生孔隙纵向分布规律[J].石油与天然气地质, 2003, 24(3):286-290. doi: 10.3321/j.issn:0253-9985.2003.03.019 Zhong Dakang, Zhu Xiaomin, Cai Jingong. Vertical distribution of secondary pores in paleogene sandstones in Zhanhua Depression[J]. Oil & Gas Geology, 2003, 24(3):286-290. doi: 10.3321/j.issn:0253-9985.2003.03.019 [10] 闫林, 冉启全, 高阳, 等.吉木萨尔凹陷芦草沟组致密油储层溶蚀孔隙特征及成因机理[J].岩性油气藏, 2017, 29(3):27-33. doi: 10.3969/j.issn.1673-8926.2017.03.004 Yan Lin, Ran Qiquan, Gao Yang, et al. Characteristics and formation mechanism of dissolved pores in tight oil reservoirs of Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2017, 29(3):27-33. doi: 10.3969/j.issn.1673-8926.2017.03.004 [11] 刘文汇, 王杰, 陶成, 等.中国海相层系油气成藏年代学[J].天然气地球科学, 2013, 24(2):199-209. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201302001 Liu Wenhui, Wang Jie, Tao Cheng, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geoscience, 2013, 24(2):199-209. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201302001 [12] Eadington P J, Lisk M, Krieger F W. Identifying oil well sites: US, No. 5543616[P]. 1996-08-06. [13] 王飞宇, 师玉雷, 曾花森, 等.利用油包裹体丰度识别古油藏和限定成藏方式[J].矿物岩石地球化学通报, 2006, 25(1):12-18. doi: 10.3969/j.issn.1007-2802.2006.01.002 Wang Feiyu, Shi Yulei, Zeng Huasen, et al. To identify paleo-oil reservoir and to constrain petroleum charging model using the abundance of oil inclusions[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1):12-18. doi: 10.3969/j.issn.1007-2802.2006.01.002 [14] 陈红汉.油气成藏年代学研究进展[J].石油与天然气地质, 2007, 28(2):143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003 Chen Honghan. Advances in geochronology of hydrocarbon accumulation[J]. Oil & gas Geology, 2007, 28(2):143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003 [15] 王飞宇, 何萍, 张水昌, 等.利用自生伊利石K-Ar定年分析烃类进入储集层的时间[J].地质论评, 1997, 43(5):540-546. doi: 10.3321/j.issn:0371-5736.1997.05.013 Wang Feiyu, He Ping, Zhang Shuichang, et al. The K-Ar isotopic dating of authigenic illites and timing of hydrocarbon fluid emplacement in sandstone reservoir[J]. Geological Review, 1997, 43(5):540-546. doi: 10.3321/j.issn:0371-5736.1997.05.013 [16] 张有瑜, 罗修泉, 宋健.油气储层中自生伊利石K-Ar同位素年代学研究若干问题的初步探讨[J].现代地质, 2002, 16(4):403-407. doi: 10.3969/j.issn.1000-8527.2002.04.011 Zhang Youyu, Luo Xiuquan, Song Jian. Discussions on K-Ar isotopic geochronological studies of authigenic illites in hydrocarbon reservoirs[J]. Geoscience, 2002, 16(4):403-407. doi: 10.3969/j.issn.1000-8527.2002.04.011 [17] Barclay S A, Worden R H, Parnell J, et al. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions:An example from the Magnus oil field, North Sea[J]. AAPG Bulletin, 2000, 84(4):489-504. http://www.researchgate.net/publication/255979536_Assessment_of_fluid_contacts_and_compartmentalization_in_Sandstone_reservoirs_using_inclusions_An_example_from_the_magnus_oil_field_North_Sea