-
古土壤是古代成壤作用的产物,记录了丰富的古环境信息,国际上古土壤的研究涉及从太古代到第四纪不同时代的地层[1]。古土壤对认识沉积环境和古气候具有重要意义。中国第四纪黄土—土壤研究成果显著[2-5],用于分析古气候的方法除碳、氧同位素外[6-7],还包括常用于研究第四纪气候的替代指标,如色度、磁化率、碳酸钙含量等,均表现出良好的气候指示意义[8-10]。国内学者对松辽[11-13]、胶莱[14-15]和四川盆地[16-17]的白垩纪古土壤研究较多。近年来,中国东南地区白垩系红层中的古土壤得到了较多关注[18-20]。
江西省上白垩统划分为赣州群和圭峰群,前者包括茅店组和周田组,后者包括河口组、塘边组和莲荷组[21]。近年来,圭峰群红层的沉积特征及古气候意义研究取得一定进展[22-25]。周田组的岩性主要包括砖红色(钙质)泥岩、钙质粉砂岩、粗砂岩、砾岩,以及钙质结核[20, 26]。以往对周田组的认识主要以岩性描述为主[27],对地层中岩相的划分以及古土壤的鉴别和阐述相对薄弱。另外,江西省境内关于白垩纪红层古土壤气候替代指标的研究还比较少,因此,采用第四纪黄土气候替代指标对白垩纪红层古土壤气候及指标适用性的研究具有重要意义。本文以周田组中的古土壤为研究对象,通过测定样品的色度参数(亮度(L*)、红度(a*)、黄度(b*)、饱和度(C*)、色调角(h*))与磁化率值(χlf)及碳酸钙百分比含量(ω(CaCO3)%)指标,对各自特征曲线及内在关系进行对比分析,并结合实际剖面特征,探讨周田组古气候变化信息,为气候替代指标的适用性提供检验。
-
实测剖面位于广丰盆地东北部的毛村村桥东北约100 m,海拔160~220 m。在剖面测制过程中,记录岩性及沉积构造,以1 m间隔采样193件,绘制地层岩性柱状图,在柱状图上划分岩相单元。在193件样品中,钙质结核样81件,钙质淀积层样79件,黏化层样19件,砂岩样14件。经后期处理在室内完成对样品色度、磁化率及碳酸钙百分比含量指标的测试。
色度指标采用国产3nh-NH300色差仪进行测试,色度参数包括L*,a*,b*值,实验误差小于0.08。样品前处理和测试简要步骤如下:称取10 g烘干样品,研磨至颗粒粒径75 μm以下,将粉末样品放在标准校正白板上压实,压平后,在背景光源恒定的条件下,测试3次求取平均值。本文引入新的色度指标,通过公式(1)和(2)分别计算求得饱和度(C*)和色调角(h*)。
(1) (2) 磁化率指标采用英国Bartington公司生产的MS-2型磁化率系统测试完成。本文涉及的磁化率为低频质量磁化率(χlf),仪器参数设置“×0.1量程”,“SI”档(10-8 m3/kg),“LF”档。测试步骤:称取20 g烘干并研磨至粒径45 μm左右的粉末样品,测试3次求取平均值。为得到准确的磁化率值,需要完成空值测量(R0),以获得校正后的样品测量值为R = R样品-R0/2。已知MS2B探头用10 g样品校准,所以样品的低频质量磁化率值的计算公式如(3)所示。
(3) 碳酸钙百分比含量采用酸和盐反应前后差量计算得到。实验环节包括:1)反应前称量样品质量m1;2)滴酸反应48 h且每间隔12 h搅拌反应溶液;3)称量滤纸质量m2;4)过滤反应溶液;5)烘干附着于滤纸表面的样品;6)称量滤纸质量m3。所以样品碳酸钙百分比含量计算公式如(4)所示。实验中采用酸浸湿的滤纸作为对照实验,将测试结果误差降至最小。
(4) -
广丰盆地周田组露头发育良好,沉积构造丰富,主要有三种沉积岩石类型(图 2):古土壤(Ⅰ)、砂岩(Ⅱ)和砾岩(Ⅲ)。
-
古土壤广泛发育,且在剖面上分布连续,识别特征明显。钙质淀积层集中发育在剖面0~70 m、160~200 m、270~330 m范围,以钙板层形态为主,厚度变化幅度较大,薄层仅为2 cm,最厚层可达110 cm,颜色呈红褐色(图 2e)或浅灰绿色(图 3a)。剖面中可见黏化层与钙质淀积层互层构成的韵律层(图 2c),二者界面平直、清晰,横向延伸远。钙质结核在剖面中断续分布,大多数质地坚硬,颜色呈浅红色至红褐色,滴稀盐酸强烈起泡,多富集于层内和层底部(图 2d)。结核大小不一,大者直径为17~25 cm,小者为1~1.5 cm,形如豆状、姜状或椭球体状。部分钙质结核见次生方解石脉(图 3b)。由黏化层和钙质淀积层互层构成土壤发生层次。同时,可见滑擦面,遗迹化石(图 2a,c)。
-
砂岩类型以中—粗砂岩为主,细砂岩较少。细砂岩的单层厚度20~180 cm,呈红褐色,滑擦面发育,可见椭圆形浅灰绿色晕斑,龟裂构造(图 3d)以及含量不足1%的深灰色次棱角状砾石。中砂岩的单层厚度以10~30 cm为主,最大厚度可达120 cm,岩层间的古土壤中零散分布直径小的钙质结核(图 3e)。粗砂岩的单层厚度15~50 cm,以浅灰黑色为主,可见直径1~2 cm的灰岩砾石(图 3f)。
-
砾岩类型主要为中—粗砾岩,砂质支撑。砾岩层集中分布于剖面60~150 m、200~220 m,单层厚度10~50 cm,最大可达6 m,横向延伸不超过8 m。砾石岩性主要为灰岩,含有少量火山岩(图 4a)。砾石主要呈次棱角状,分选性差—中等,粒径主要为3~10 cm,最大直径为23 cm。位于剖面210~220 m处砾岩层平行层理构造发育(图 4b),砾石分布相对均匀。部分砾岩层底部显示逆粒序而在其上部显示正粒序(图 4c)。位于剖面70~75 m处砾岩层底侵蚀界面清晰,可见截然的底界面并呈现出下凹顶平的特征(图 4d,e)。部分砾岩层发育叠瓦状构造(图 4f)。
-
色度实验结果如表 1和表 2所示。L*值变化范围为29.48~63.54,平均值为46.32,变化幅度为79.49%,古土壤L*值平均值为45.33,其中钙质结核(A)、钙质淀积层(B)、黏化层(D)L*值变化范围分别为29.48~63.54、32.42~61.64、33.15~54.18,平均值分别为47.10、45.6、43.90。砂岩(C)L*值平均值为49.06,变化范围为38.99~60.99。各地层单元L*值的大小排序为C > A > B > D。
表 1 古土壤指标描述统计量
Table 1. Paleosol index descriptions
N 极小值 极大值 均值 变化幅度/% L* 193 29.48 63.54 46.32 79.49 a* 193 7.24 17.48 13.38 47.89 b* 193 12.24 22.21 18.07 37.13 C* 193 15.18 28.26 22.53 40.00 h* 193 0.36 0.77 0.64 33.87 ω(CaCO3)% 193 5.58 61.90 24.55 60.52 χlf×10-8 m3/kg 193 1.16 10.16 5.42 251.85 表 2 地层单元色度指标对比
Table 2. Stratigraphic unit chroma index comparison
L* a* b* C* h* χlf×10-8 m3/kg ω(CaCO3)% A钙质结核 47.10 14.06 18.04 22.90 0.66 4.30 32.62 B钙板层 45.6 12.99 18.25 22.45 0.62 6.16 19.28 C砂层 49.06 11.42 17.00 20.53 0.59 6.21 19.01 D黏化层 43.90 13.56 18.26 22.76 0.64 6.40 16.14 古土壤(A、B、D) 45.33 13.54 18.15 22.70 0.64 5.62 22.68 (1) a*值变化幅度为47.89%,平均值为13.38,不同地层单元a*值差异不明显,但整体上表现出A > C > D > B。其中,B层a*值最低,平均值为14.06,变化范围为7.24~17.48,C层和D层a*值平均值相近,分别为13.56、13.55;A层a*值变化范围为10.20~16.94,平均值为14.06。
(2) b*值变化范围为12.24~22.21,变化幅度为37.13%,平均值为18.07,各地层单元b*从大到小依次为D(18.26) > B(18.25) > A(18.04) > C(17.00)。b*随深度变化趋势与a*相似(图 5)。
(3) C*随深度的变化趋势与L*、a*、b*基本一致(图 5),剖面C*值变化范围为15.18~28.26,变化幅度为40.00%,平均值为22.53。钙质结核(钙结层)C*最高,平均值为22.90,钙质淀积层和黏化层C*值的均值分别为22.45、22.76。砂岩层C*值最低,均值仅为20.53。各地层单元C*值大小排序为A > D > B > C。
(4) h*值变化范围为0.360~0.770,变化幅度为33.87%,均值为0.625,古土壤中h*值均值为0.638,分别为A层0.662,B层0.616,D层0.638。砂岩层C层h*值均值为0.590。显然,各地层单元h*大小顺序依次为A > D > B > C。
(5) χlf在剖面中变化幅度高达251.85%,平均值为5.42×10-8 m3/kg,极小值为1.16×10-8 m3/kg,极大值为10.16×10-8 m3/kg。A层χlf值均值最低,仅有4.34×10-8 m3/kg,B、C、D层χlf值均值相近,分别为6.16×10-8 m3/kg、6.21×10-8 m3/kg、6.39×10-8 m3/kg。所以各地层χlf之间存在D > C > B > A,即磁化率值砂岩层高于古土壤。
(6) ω(CaCO3)%差异显著(图 5),A层最高,其碳酸钙百分比含量为32.62%,B、C层ω(CaCO3)%相近,含量分别为19.28%、19.01%,D层含量最低,仅有16.14%。整个剖面中ω(CaCO3)%变化范围为5.58%~61.90%,变化幅度为60.52%,均值为24.55%。古土壤中碳酸钙百分比含量为22.68%,高于砂岩层ω(CaCO3)%。各地层单元ω(CaCO3)%大小关系为:A > B > C > D。
Sedimentary Characteristics and Paleoclimatic Significance of the Late Cretaceous Zhoutian Formation Red Beds in the Guangfeng Basin
-
摘要: 中国东南地区白垩系陆相红层分布广泛,是了解白垩纪温室气候陆地沉积响应的重要载体。但对这些红层的沉积环境尚有"水下"和"水上"之争议,古气候意义还需要进一步挖掘。以广丰盆地毛村剖面晚白垩世周田组为研究对象,通过野外剖面测制及古土壤样品色度、磁化率、碳酸钙含量等实验测试,分析沉积环境与古气候。周田组红层岩石类型可划分为古土壤、砂岩和砾岩。古土壤几乎分布于整个剖面,其中钙质结核、钙板层发育,可见遗迹化石及土壤滑擦面。砂岩与砾岩仅分布于部分层位,砂岩以中-粗砂岩为主,砾岩以中砾岩为主,发育平行层理和粒序层理构造。研究区古土壤样品的碳酸钙含量与低频质量磁化率联系密切,可作为气候变化的替代指标,而色度指标具有区域性,对该研究区的气候指示不明显。碳酸钙含量与磁化率曲线变化明显,记录了红层沉积阶段气候干湿交替的变化趋势。周田组红层沉积于强氧化环境并伴有季节性降水,古气候具有由相对湿热逐渐变化为干热的趋势。Abstract: Cretaceous terrestrial red beds are widespread in southeastern China, and they are archives for understanding the continental sedimentological response to the Cretaceous greenhouse climate. It remains controversial as to whether the red beds were deposited in "subaqueous" or "superaqueous" environments, and the paleoclimate needs to be further explored as well. Based on measurements of the Maocun section in the Guangfeng Basin, the depositional environments and paleoclimate of the Late Cretaceous Zhoutian Formation red beds were studied by chroma, magnetic susceptibility and calcium carbonate content analysis of paleosol samples. Three types of rocks, namely paleosol, sandstone and conglomerate, are distinguished in the Zhoutian Formation. The paleosol is distributed almost throughout the measured section, being characterized by abundant carbonate nodules, carbonate deposition layers, trace fossils, and slickensides. The sandstone observed in some horizons is mainly medium-to coarse-grained. The pebbly conglomerate occurs in parallel bedding and graded bedding structures. The calcium carbonate content of the paleosol samples is closely related to low-frequency mass magnetic susceptibility, which can be used as a climate proxy. In contrast, the chroma index reflects only regional changes, thus is less indicative of climate. Both the calcium carbonate contents and magnetic susceptibility have clear trends, which probably reflect cyclical dry and wet conditions. Therefore, the red beds of the Zhoutian Formation were interpreted to have been deposited in a intense oxidizing environment with seasonal precipitation, and the paleoclimate may have changed between wet and dry conditions.
-
表 1 古土壤指标描述统计量
Table 1. Paleosol index descriptions
N 极小值 极大值 均值 变化幅度/% L* 193 29.48 63.54 46.32 79.49 a* 193 7.24 17.48 13.38 47.89 b* 193 12.24 22.21 18.07 37.13 C* 193 15.18 28.26 22.53 40.00 h* 193 0.36 0.77 0.64 33.87 ω(CaCO3)% 193 5.58 61.90 24.55 60.52 χlf×10-8 m3/kg 193 1.16 10.16 5.42 251.85 表 2 地层单元色度指标对比
Table 2. Stratigraphic unit chroma index comparison
L* a* b* C* h* χlf×10-8 m3/kg ω(CaCO3)% A钙质结核 47.10 14.06 18.04 22.90 0.66 4.30 32.62 B钙板层 45.6 12.99 18.25 22.45 0.62 6.16 19.28 C砂层 49.06 11.42 17.00 20.53 0.59 6.21 19.01 D黏化层 43.90 13.56 18.26 22.76 0.64 6.40 16.14 古土壤(A、B、D) 45.33 13.54 18.15 22.70 0.64 5.62 22.68 -
[1] Retallack G J. Soils and global change in the carbon cycle over geological time[M]//Holland H D, Turekian K K. Treatise on geochemistry. Amsterdam: Elsevier Science, 2003: 581-605. [2] Li X H, Xu W L, Liu W H, et al. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:171-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2772fb8867f4ddacdbd6040559f67162 [3] 刘东生.黄土与环境[M].北京:科学出版社, 1985. Liu Tungsheng. Loess and the environment[M]. Beijing:Science Press, 1985. [4] An Z S. Late Cenozoic climate change in Asia:Loess, monsoon and monsoon-arid environment evolution[M]. Dordrecht:Springer, 2014. [5] 胡泉旭, 王先彦, 孟先强, 等.青藏高原东北部黄土次生碳酸盐氧同位素的古气候意义[J].地球科学, 2018, 43(11):4128-4137. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811028 Hu Quanxu, Wang Xianyan, Meng Xianqiang, et al. Paleoclimatic implications of oxygen isotope from Authigenic carbonates in loess deposit of northeastern Tibetan Plateau[J]. Earth Science, 2018, 43(11):4128-4137. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811028 [6] 侯战方, 张军, 宋春晖, 等.青藏高原天水盆地中新世沉积物碳氧同位素对古气候演化的指示[J].海洋地质与第四纪地质, 2011, 31(3):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201103009 Hou Zhanfang, Zhang Jun, Song Chunhui, et al. The oxygen and carbon isotopic records of Miocene sediments in the Tianshui Basin of the northestern Tibetan Plateau and their paleoclimatic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(3):69-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201103009 [7] 李林, 周锡强, 黄永建, 等.色度学方法的深时研究:以藏南贡扎剖面白垩系赛诺曼/土仑阶为例[J].地学前缘, 2009, 16(5):153-159. doi: 10.3321/j.issn:1005-2321.2009.05.015 Li Lin, Zhou Xiqiang, Huang Yongjian, et al. The deep-time research by chromatometry:An example from the Cenomanian to Turonian Stages of the Cretaceous, Gongza section, Southern Tibet[J]. Earth Science Frontiers, 2009, 16(5):153-159. doi: 10.3321/j.issn:1005-2321.2009.05.015 [8] 陈杰, 杨太保, 曾彪, 等.中国帕米尔地区黄土上部色度变化特征及古气候意义[J].沉积学报, 2018, 36(2):333-342. http://www.cjxb.ac.cn/CN/abstract/abstract3869.shtml Chen Jie, Yang Taibao, Zeng Biao, et al. Chroma characteristics and its paleoclimatic significance in Pamir Loess Section, China[J]. Acta Sedimentologica Sinica, 2018, 36(2):333-342. http://www.cjxb.ac.cn/CN/abstract/abstract3869.shtml [9] 丁敏, 庞奖励, 黄春长, 等.全新世黄土-古土壤序列色度特征及气候意义:以关中平原西部梁村剖面为例[J].陕西师范大学学报(自然科学版), 2010, 38(5):92-97. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201005022 Ding Min, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its climatic significance in Holocene loess-paleosol sequence:A case study of the Holocene Liangcun profile in the western Guanzhong Basin[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2010, 38(5):92-97. http://d.old.wanfangdata.com.cn/Periodical/sxsfdxxb201005022 [10] 高鹏坤, 庞奖励, 黄春长, 等.陕南丹凤茶房村黄土-古土壤剖面色度参数特征[J].沉积学报, 2015, 33(3):537-542. http://www.cjxb.ac.cn/CN/abstract/abstract3537.shtml Gao Pengkun, Pang Jiangli, Huang Chunchang, et al. Chroma characteristics and its significances of the Chafangcun loesspaleosol profile in Southeast Shaanxi, China[J]. Acta Sedimentologica Sinica, 2015, 33(3):537-542. http://www.cjxb.ac.cn/CN/abstract/abstract3537.shtml [11] Du X B, Xie X N, Lu Y C, et al. Distribution of continental red paleosols and their forming mechanisms in the Late Cretaceous Yaojia Formation of the Songliao Basin, NE China[J]. Cretaceous Research, 2011, 32(2):244-257. doi: 10.1016/j.cretres.2010.12.010 [12] Huang C M, Retallack G J, Wang C S, et al. Paleoatmospheric pCO2 fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol carbonates in NE China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:95-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a1c61b9449faf40ed20ad30c7980bfa [13] Gao Y, Ibarra D E, Wang C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4):287-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76eb37d83453e62873609e61b906d417 [14] 曹珂.胶莱盆地晚白垩世辛格庄组钙质结核的碳、氧同位素特征[J].矿物岩石, 2014, 34(2):85-90. http://d.old.wanfangdata.com.cn/Periodical/kwys201402013 Cao Ke. Carbon and oxygen isotopic compositions of carbon nodule in the Xingezhuang Formation of Late Cretaceous, Jiaozhou-Laiyang Basin[J]. Journal of Mineralogy and Petrology, 2014, 34(2):85-90. http://d.old.wanfangdata.com.cn/Periodical/kwys201402013 [15] Zhang L M, Wang C S, Cao K, et al. High elevation of Jiaolai Basin during the Late Cretaceous:Implication for the coastal mountains along the East Asian margin[J]. Earth and Planetary Science Letters, 2016, 456:112-123. http://cn.bing.com/academic/profile?id=5b2ba092cb14de23806712892c9315fe&encoded=0&v=paper_preview&mkt=zh-cn [16] Huang C M, Retallack G J, Wang C S. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China[J]. Cretaceous Research, 2012, 33(1):42-49. doi: 10.1016/j.cretres.2011.08.001 [17] Li J, Wen X Y, Huang C M. Lower Cretaceous paleosols and paleoclimate in Sichuan Basin, China[J]. Cretaceous Research, 2016, 62:154-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b601a9f38e4f082d04c3c3d839d5c681 [18] 李祥辉, 陈斯盾, 曹珂, 等.浙闽地区白垩纪中期古土壤类型与古气候[J].地学前缘, 2009, 16(5):63-70. doi: 10.3321/j.issn:1005-2321.2009.05.006 Li Xianghui, Chen Sidun, Cao Ke, et al. Paleosols of the mid-Cretaceous:A report from Zhejiang and Fujian, SE China[J]. Earth Science Frontiers, 2009, 16(5):63-70. doi: 10.3321/j.issn:1005-2321.2009.05.006 [19] 刘秀铭, 吕镔, 毛学刚, 等.风积地层中铁矿物随环境变化及其启示[J].第四纪研究, 2014, 34(3):443-457. doi: 10.3969/j.issn.1001-7410.2014.03.01 Liu Xiu-ming, Lü Bin, Mao Xuegang, et al. Iron minerals of aeolian deposits vary with environment and its significances[J]. Quaternary Sciences, 2014, 34(3):443-457. doi: 10.3969/j.issn.1001-7410.2014.03.01 [20] 温昌辉.江西石城盆地白垩纪红色地层中成壤特征及古环境分析[D].福州: 福建师范大学, 2016. Wen Changhui. The Cretaceous stratum: Pedogenesis recognition and paleoenvironmental analysis, in Shicheng Basin, Jiangxi province[D]. Fuzhou: Fujian Normal University, 2016. [21] 江西省地质矿产局.江西省岩石地层[M].武汉:中国地质大学出版社, 2008. Bureau of Geology and Mineral Resources Jiangxi Provincial. Lithostratigraphy in Jiangxi province[M]. Wuhan:China University of Geosciences Press, 2008. [22] Chen L Q, Guo F S, Steel R J, et al. Petrography and geochemistry of the Late Cretaceous redbeds in the Gan-Hang Belt, southeast China:Implications for provenance, source weathering, and tectonic setting[J]. International Geology Review, 2016, 58(10):1196-1214. doi: 10.1080/00206814.2016.1141378 [23] Chen L Q, Steel R J, Guo F S, et al. Alluvial fan facies of the Yongchong Basin:Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 2017, 134:37-54. [24] 陈留勤, 刘鑫, 李鹏程.古土壤:沉积环境和古气候变化的灵敏指针[J].沉积学报, 2018, 36(3):510-520. http://www.cjxb.ac.cn/CN/abstract/abstract3883.shtml Chen Liuqin, Liu Xin, Li Pengcheng. Paleosols:Sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3):510-520. http://www.cjxb.ac.cn/CN/abstract/abstract3883.shtml [25] 王凤之, 陈留勤, 郭福生, 等.江西信江盆地晚白垩世塘边组成壤碳酸盐岩碳、氧同位素特征[J].岩石矿物学杂志, 2018, 37(1):143-151. doi: 10.3969/j.issn.1000-6524.2018.01.012 Wang Fengzhi, Chen Liuqin, Guo Fusheng, et al. Carbon and oxygen isotopic compositions of pedogenic carbonates from the Late Cretaceous Tangbian Formation in the Xinjiang Basin, Jiangxi province[J]. Acta Petrologica et Mineralogica, 2018, 37(1):143-151. doi: 10.3969/j.issn.1000-6524.2018.01.012 [26] 刘细元, 衷存堤, 张永忠, 等.江西省晚白垩世周田组的再划分[J].地质调查与研究, 2004, 27(4):217-222. doi: 10.3969/j.issn.1672-4135.2004.04.002 Liu Xiyuan, Zhong Cundi, Zhang Yongzhong, et al. Redefinition of the Late Cretaceous Zhoutian Formation, Jiangxi province[J]. Geological Survey and Research, 2004, 27(4):217-222. doi: 10.3969/j.issn.1672-4135.2004.04.002 [27] 肖光荣, 姚琪, 范爱春.江西省晚白垩世层序地层研究[J].资源调查与环境, 2013, 34(3):141-149. doi: 10.3969/j.issn.1671-4814.2013.03.001 Xiao Guangrong, Yao Qi, Fan Aichun. Research on sequence stratigraphy of Late Cretaceous in Jiangxi province[J]. Resources Survey & Environment, 2013, 34(3):141-149. doi: 10.3969/j.issn.1671-4814.2013.03.001 [28] 邓家瑞, 张志平.赣杭构造带及其地质意义[J].铀矿地质, 1989, 5(1):15-21. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503009 Deng Jiarui, Zhang Zhiping. Gan-Hang tectonic belt and its geologic significance[J]. Uranium Geology, 1989, 5(1):15-21. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503009 [29] 余心起, 舒良树, 颜铁增, 等.赣杭构造带红层盆地原型及其沉积作用[J].沉积学报, 2005, 23(1):12-20. doi: 10.3969/j.issn.1000-0550.2005.01.002 Yu Xinqi, Shu Liangshu, Yan Tiezeng, et al. Prototype and sedimentation of red basins along the Ganhang tectonic belt[J]. Acta Sedimentologica Sinica, 2005, 23(1):12-20. doi: 10.3969/j.issn.1000-0550.2005.01.002 [30] 余达淦, 叶发旺, 王勇.江西广丰早白垩世中晚期盆地火山-侵入杂岩活动序列确认及地质意义[J].大地构造与成矿学, 2001, 25(3):271-276. doi: 10.3969/j.issn.1001-1552.2001.03.008 Yu Dagan, Ye Fawang, Wang Yong. Active succession establishment for volcanic-intrusive complex in Middle-Late Lower Cretaceous in Guangfeng, Jiangxi and its geological implication[J]. Geotectonic et Metallogenia, 2001, 25(3):271-276. doi: 10.3969/j.issn.1001-1552.2001.03.008 [31] 姜勇彪, 郭福生, 刘林清, 等.广丰盆地白垩纪红层及其地貌景观发育研究[J].资源调查与环境, 2009, 30(4):235-242. doi: 10.3969/j.issn.1671-4814.2009.04.001 Jiang Yongbiao, Guo Fusheng, Liu Linqing, et al. A study on Cretaceous red beds and their geomorphologic landscapes in Guangfeng Basin[J]. Resources Survey & Environment, 2009, 30(4):235-242. doi: 10.3969/j.issn.1671-4814.2009.04.001 [32] 衷存堤, 徐平, 肖晓林, 等.对江西晚白垩世赣州群茅店组的重新厘定[J].中国地质, 2002, 29(3):271-274. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200203006 Zhong Cundi, Xu Ping, Xiao Xiaolin, et al. Revision of the Late Cretaceous Maodian Formation of the Ganzhou Group in Jiangxi province[J]. Geology in China, 2002, 29(3):271-274. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200203006 [33] 巫建华, 项媛馨, 钟志菲.江西广丰、玉山盆地橄榄玄粗岩的SHRIMP锆石U-Pb定年和Sr-Nd-Pb-O元素同位素特征[J].岩石矿物学杂志, 2014, 33(4):645-656. doi: 10.3969/j.issn.1000-6524.2014.04.004 Wu Jianhua, Xiang Yuanxin, Zhong Zhifei. SHRIMP zircon U-Pb dating and SrNd-Pb-O isotope characteristics of shoshonite from Guangfeng and Yushan Basins in Jiangxi province[J]. Acta Petrologica et Mineralogica, 2014, 33(4):645-656. doi: 10.3969/j.issn.1000-6524.2014.04.004 [34] 曹珂.中国陆相白垩系地层对比[J].地质论评, 2013, 59(1):24-40. doi: 10.3969/j.issn.0371-5736.2013.01.004 Cao Ke. Cretaceous terrestrial stratigraphic correlation in China[J]. Geological Review, 2013, 59(1):24-40. doi: 10.3969/j.issn.0371-5736.2013.01.004 [35] 周涛, 巫建华, 艾成辉.江西广丰碱性橄榄玄武岩的成因:SHRIMP锆石U-Pb年龄和元素、Sr-Nd-Pb同位素制约[J].东华理工大学学报(自然科学版), 2016, 39(2):108-117. doi: 10.3969/j.issn.1674-3504.2016.02.002 Zhou Tao, Wu Jianhua, Ai Chenghui. Petrogenesis of alkali olivine basalt from Guangfeng Basins in Jiangxi province:SHRIMP zircon U-Pb Dating and element、Sr-Nd-Pb isotope constraints[J]. Journal of East China University of Technology, 2016, 39(2):108-117. doi: 10.3969/j.issn.1674-3504.2016.02.002 [36] 杨胜利, 方小敏, 李吉均, 等.表土颜色和气候定性至半定量关系研究[J].中国科学(D辑):地球科学, 2001, 31(增刊1):175-181. Yang Shengli, Fang Xiaomin, Li Jijun, et al. Transformation functions of soil color and climate[J]. Science China (Seri. D):Earth Sciences, 2001, 31(Suppl. 1):175-181. [37] 何柳, 孙有斌, 安芷生.中国黄土颜色变化的控制因素和古气候意义[J].地球化学, 2010, 39(5):447-455. http://d.old.wanfangdata.com.cn/Periodical/dqhx201005005 He Liu, Sun Youbin, An Zhisheng. Changing color of Chinese loess:Controlling factors and paleocliamtic significances[J]. Geochimica, 2010, 39(5):447-455. http://d.old.wanfangdata.com.cn/Periodical/dqhx201005005 [38] 石培宏, 杨太保, 田庆春, 等.靖远黄土-古土壤色度变化特征分析及古气候意义[J].兰州大学学报(自然科学版), 2012, 48(2):15-23. doi: 10.3969/j.issn.0455-2059.2012.02.004 Shi Peihong, Yang Taibao, Tian Qingchun, et al. Chroma chracteristics in the loess-paleosol at Jingyuan section and its signification to paleocliamete[J]. Journal of Lanzhou University(Natural Sciences), 2012, 48(2):15-23. doi: 10.3969/j.issn.0455-2059.2012.02.004 [39] 赵景波.风化淋滤带地质新理论-CaCO3淀积深度理论[J].沉积学报, 2000, 18(1):29-35. doi: 10.3969/j.issn.1000-0550.2000.01.006 Zhao Jingbo. A new geological theory about eluvial zone-theory illuvial on depth of CaCO3[J]. Acta Sedimentologica Sinica, 2000, 18(1):29-35. doi: 10.3969/j.issn.1000-0550.2000.01.006 [40] Sun Y B, He L, Liang L J, et al. Changing color of Chinese loess:Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6):1131-1138. doi: 10.1016/j.jseaes.2010.08.006 [41] Torrent J, Barrón V, Liu Q S. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil[J]. Geophysical Research Letters, 2006, 33(2):L02401. doi: 10.1029-2005GL024818/ [42] Deaton B C, Balsam W L. Visible spectroscopy:A rapid method for determining hematite and goethite concentration in geological materials[J]. Journal of Sedimentary Research, 1991, 61(4):628-632. doi: 10.1306/D4267794-2B26-11D7-8648000102C1865D [43] Ji J F, Balsam W, Chen J. Mineralogic and climatic interpretations of the Luochuan loess section(China)based on diffuse reflectance spectrophotometry[J]. Quaternary Research, 2001, 56(1):23-30. [44] 何同.黄土高原晚中新世-上新世红粘土碳酸盐地球化学研究[D].南京: 南京大学, 2012. He Tong. Geochemistry of carbonates in the Late Miocene-Pliocene red clay deposits on Chinese Loess Plateau[D]. Nanjing: Nanjing University, 2012. [45] 刘秀铭, 刘东生, Heller F, 等.中国黄土磁化率与第四纪古气候研究[J].地质科学, 1992(增刊1):279-285. Liu Xiuming, Liu Tungsheng, Heller F, et al. Study on magnetic susceptibility of Loess and Quaternary climate in China[J]. Scientia Geologica Sinica, 1992(Suppl. 1):279-285. [46] 王文艳.南雄盆地大塘剖面红色地层的磁化率变化机制及其古气候意义[D].福州: 福建师范大学, 2017. Wang Wenyan. Magnetic susceptibility change mechanism in Datang, Nanxiong Basin and its paleoclimate significances[D]. Fuzhou: Fujian Normal University, 2017. [47] 张蕊.黄土-红粘土磁学参数记录的晚新生代东亚季风气候演化[D].兰州: 兰州大学, 2017. Zhang Rui. Late Cenozoic East Asian monsoon climate variations recorded by loess-red clay magnetic parameters on the Chinese Loess Plateau[D]. Lanzhou: Lanzhou University, 2017. [48] 陈海霞.川西雅安地区白垩纪古环境古气候研究[D].成都: 成都理工大学, 2009. Chen Haixia. Research of paleoenvironment and paleoclimate of Cretaceous in Ya'an area of western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2009. [49] 王尹, 李祥辉, 周勇, 等.南雄盆地晚白垩世-古新世陆源沉积组份变化的古气候指示[J].沉积学报, 2015, 33(1):116-123. http://www.cjxb.ac.cn/CN/abstract/abstract3496.shtml Wang Yin, Li Xianghui, Zhou Yong, et al. Paleoclimate indication of terrigenous clastic rock's component during the Late Cretaceous-Early Paleocene in the Nanxiong Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1):116-123. http://www.cjxb.ac.cn/CN/abstract/abstract3496.shtml [50] 陈留勤.江西永崇盆地晚白垩世沉积演化[M].北京:地质出版社, 2018. Chen Liuqin. Depositional evolution of the Yongchong Basin during Late Cretaceous in Jiangxi province, SE China[M]. Beijing:Geological Publishing House, 2018. [51] Mills H H. Downstream rounding of pebbles:A quantitative review[J]. Journal of Sedimentary Research, 1979, 49(1):295-303. http://cn.bing.com/academic/profile?id=ffd005c6f7831c8b7f4c4cfe8741cf6f&encoded=0&v=paper_preview&mkt=zh-cn [52] Nemec W, Postma G. Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution[M]//Marzo M, Puigdefábregas C. Blackwell: Oxford. Alluvial sedimentation. IAS Special Publication, 1993: 235-276. [53] 刘鑫, 陈留勤, 李馨敏, 等.江西象山地质公园丹霞地貌成景地层沉积环境分析[J].现代地质, 2018, 32(2):260-269. http://d.old.wanfangdata.com.cn/Periodical/xddz201802005 Liu Xin, Chen Liuqin, Li Xinmin, et al. Depositional environments of the bedrock of Danxia Landform in Xiangshan Geopark of Jiangxi province, SE China[J]. Geoscience, 2018, 32(2):260-269. http://d.old.wanfangdata.com.cn/Periodical/xddz201802005 [54] Buck B J, Mack G H. Latest Cretaceous(Maastrichtian)aridity indicated by paleosols in the McRae Formation, south-central New Mexico[J]. Cretaceous Research, 1995, 16(5):559-572. doi: 10.1006/cres.1995.1036 [55] Burgener L, Hyland E, Huntington K W, et al. Revisiting the equable climate problem during the Late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the western Interior Basin, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:244-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ddc2e2a0a52f681bbc84140b928db7d