-
全球硫生物地球化学循环过程伴随着多种微生物新陈代谢过程(例如,硫酸盐还原、歧化反应和硫化物氧化等),影响全球长时间尺度的碳循环、气候演化以及氧气含量[25-27]。海洋作为全球最大的硫储库,其海水硫酸盐硫同位素值约为21‰[28],其同位素组成主要受到通过河流输入的来自大陆风化产物的控制;另外火山喷发和洋中脊的玄武岩脱气过程也有所贡献,但是通量较小(图 2)[25]。风化产物中的硫酸盐包括蒸发岩的溶解,碳酸盐岩的风化以及硫化物的氧化等,由于地壳中硫化物的同位素值比较低,并且丰度大于蒸发岩,因此河流输入硫酸盐的同位素值比海水要低很多,大约在5‰左右[29]。硫酸盐埋藏进入海洋沉积物的形式包括蒸发岩、碳酸盐岩和黄铁矿,其中进入碳酸盐矿物晶格的硫比较少(图 2)。蒸发岩在地质历史中曾经是重要的汇[30],但现代海洋中黄铁矿是最重要的汇[25]。根据物质守恒原理,海水硫酸盐的硫同位素主要与河流输入硫酸盐硫同位素(δ 34S输入),黄铁矿埋藏(f黄铁矿)和MSR导致的硫同位素分馏有关(εMSR),因此搞清楚黄铁矿形成过程中的硫同位素分馏对理解全球硫循环及其在地质历史中的演化至关重要[31-34]。
(1)
Constraint of Sedimentary Processes on the Sulfur Isotope of Authigenic Pyrite
-
摘要: 自生黄铁矿是海洋沉积物中还原态硫的主要赋存形式,其形成过程与有机质矿化相关,影响全球的C-S-Fe生物地球化学循环。自生黄铁矿硫同位素分馏主要受微生物硫酸盐还原的控制,但近期的研究成果表明局部沉积环境的改变也可以影响黄铁矿硫同位素的组成,特别是在浅海环境。在浅海非稳态沉积环境内,物理再改造和生物扰动作用,导致硫酸盐还原带内生成的硫化物被再氧化,进而影响黄铁矿的硫同位素值。浅海沉积过程容易受到古气候和海平面变化的影响,引起沉积速率的剧烈波动,导致有机质和活性铁输入的不稳定,进而影响成岩系统的开放性和硫酸盐还原速率,最终影响黄铁矿的硫同位素值。另外,沉积速率的改变还影响硫酸盐—甲烷转换带的迁移,造成有机质和甲烷厌氧氧化硫酸盐还原的相互转化,产生不同的硫同位素信号。东海内陆架泥质区为研究沉积过程对自生黄铁矿的形成及其硫同位素组成的约束机制提供了很好的研究材料。该区域有很好的沉积学研究基础,自生黄铁矿丰富、并且个别层位有生物气(甲烷为主)存在,是研究边缘海C-S-Fe循环的理想场所。Abstract: Authigenic pyrite is the main mineral specie of reduced sulfur in marine sediments. Its formation process is related to organic mineralization and affects the global C-S-Fe biogeochemical cycle. Sulfur isotope fractionation of authigenic pyrite is mainly controlled by microbial sulfate reduction, but recent studies have indicated that the local depositional environment also affects the composition of pyrite sulfur isotopes, especially in shallow depositional environments. In an unsteady shallow environment, physical reworking and bioturbation lead to reoxidation of sulfides formed in the sulfate reduction zone, which in turn affects the sulfur isotopes of pyrite. The sedimentation process in a shallow depositional environment is readily affected by paleoclimate and sea-level changes, which cause drastic fluctuations in sedimentation rate as well as instable input of, for instance, organic matter and active iron. This in turn affects the openness of the diagenetic system and ultimately affects the isotopic value of pyritic sulfur. In addition, any change in sedimentation rate also affects the movement of the sulfate-methane transition zone, resulting in the conversion of organic matter and anaerobic oxidation methane sulfate reduction, producing different sulfur isotope signals. The study of the sulfur isotopes of authigenic pyrite in the mud area of the inner shelf of the East China Sea provides a good example for depositional control on the formation of authigenic pyrite and its sulfur isotope composition. The sedimentary process of this area has been well studied, and its sediments have been shown to be enriched in authigenic pyrite and biogas (CH4). Therefore, it is an ideal site for studying the sulfur cycle in a marginal sea, and is expected to provide a new perspective on the global C-S-Fe biogeochemical cycle.
-
Key words:
- pyrite /
- sulfur isotope /
- microbial sulfate reduction /
- sedimentary environment /
- East China Sea
-
图 5 黄铁矿硫同位素组成与海平面变化之间的关系(修改自文献[68])
(a)钻孔PRGL1-4在地中海的位置;(b)沉积速率对黄铁矿硫同位素的影响,注意冰期和间冰期沉积速率的差异;(c)200 ka以来黄铁矿硫同位素信号与海平面变化具有良好的对应关系;浅蓝色代表冰期,深蓝色代表代表严格意义上的冷期(低海平面,高沉积速率);浅橙色代表间冰期,深橙色代表严格意义上的暖期(高海平面,低沉积速率)
Figure 5. Relationship between sulfur isotope composition and sea-level change (modified from reference [68])
图 7 东海内陆架泥质沉积区域背景和洋流系统以及部分自生黄铁矿和石膏扫描电镜图片
(a)东海接收长江、浙闽和台湾河流的陆源物质,主要洋流系统包括ZFCC:浙闽沿岸流;TWC:台湾暖流;KC:黑潮,据文献[80];(b)EC2005钻孔(121.33° E,27.42° N)位于水深36 m的浙闽泥质沉积中心,岩芯长度达到60 m(17.3 ka),据文献[83];(c)自生黄铁矿集合体呈现球状、棒状和块状等形貌,并发育溶蚀孔,据文献[45];(d)钻孔沉积物最上部10 m发现自生石膏,是硫化物再氧化的结果,据文献[84]
Figure 7. Regional background and ocean current system in the East China Sea and representative scanning electron micrographs of authigenic pyrite and gypsum
-
[1] 吴自军, 任德章, 周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展, 2013, 28(7):765-773. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307003 Wu Zijun, Ren Dezhang, Zhou Huaiyang. Anaerobic Oxidation of Methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J]. Advances in Earth Science, 2013, 28(7):765-773. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201307003 [2] Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine geochemistry. Berlin, Heidelberg: Springer, 2006: 271-309. [3] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic:suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1075-1090. doi: 10.1016/0016-7037(79)90095-4 [4] Egger M J. Anaerobic oxidation of methane and its impact on iron and phosphorus cycling in marine sediments[D]. Utrecht: University Utrecht, 2016. [5] Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937):184-187. doi: 10.1126/science.1169984 [6] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858):643-645. doi: 10.1038/296643a0 [7] Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615. doi: 10.1016/0016-7037(84)90089-9 [8] Raiswell R, Hardisty D S, Lyons T W, et al. The iron paleoredox proxies:A guide to the pitfalls, problems and proper practice[J]. American Journal of Science, 2018, 318(5):491-526. doi: 10.2475/05.2018.03 [9] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1):1-220. doi: 10.7185/geochempersp.1.1 [10] Rickard D. Sedimentary pyrite framboid size-frequency distributions:A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522:62-75. doi: 10.1016/j.palaeo.2019.03.010 [11] Richardson J A, Keating C, Lepland A, et al. Silurian records of carbon and sulfur cycling from Estonia:The importance of depositional environment on isotopic trends[J]. Earth and Planetary Science Letters, 2019, 512:71-82. doi: 10.1016/j.epsl.2019.01.055 [12] Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion[J]. Earth and Planetary Science Letters, 2018, 494:202-215. doi: 10.1016/j.epsl.2018.04.043 [13] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi: 10.1016/S0016-7037(01)00552-X [14] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8 [15] Huang Y G, Chen Z Q, Wignall P B, et al. Latest Permian to middle Triassic redox condition variations in ramp settings, South China:Pyrite framboid evidence[J]. Geological Society of America Bulletin, 2017, 129(1/2):229-243. http://cn.bing.com/academic/profile?id=b52fcb065d1d90195fd0f4d411c2c3bc&encoded=0&v=paper_preview&mkt=zh-cn [16] Lin Z Y, Sun X M, Lu Y, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane:Insights from the South China Sea[J]. Chemical Geology, 2017, 449:15-29. doi: 10.1016/j.chemgeo.2016.11.032 [17] Antler G, Turchyn A V, Ono S, et al. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2017, 203:364-380. doi: 10.1016/j.gca.2017.01.015 [18] Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO[2 J]. Geochimica et Cosmochimica Acta, 2001, 65(10):1573-1581. doi: 10.1016/S0016-7037(00)00622-0 [19] Canfield D E, Farquhar J, Zerkle A L. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog[J]. Geology, 2010, 38(5):415-418. doi: 10.1130/G30723.1 [20] Shi W, Li C, Luo G M, et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion[J]. Geology, 2018, 46(3):267-270. doi: 10.1130/G39663.1 [21] Ma Z X, Liu X T, Yu W C, et al. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin:Insight from the basal Datangpo Formation of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529:39-52. doi: 10.1016/j.palaeo.2019.05.031 [22] 朱茂旭, 史晓宁, 杨桂朋, 等.海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展, 2011, 26(4):355-364. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201104001 Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments:An overview[J]. Advances in Earth Science, 2011, 26(4):355-364. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201104001 [23] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds:Implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4671-4692. doi: 10.1016/j.gca.2010.05.008 [24] Riedinger N, Brunner B, Krastel S, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system:The argentine continental margin[J]. Frontiers in Earth Science, 2017, 5:33. doi: 10.3389/feart.2017.00033 [25] Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43:593-622. doi: 10.1146/annurev-earth-060313-054802 [26] Jørgensen B B, Findlay A J, Pellerin A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10:849. doi: 10.3389/fmicb.2019.00849 [27] Canfield D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1):607-636. doi: 10.2138/gsrmg.43.1.607 [28] Tostevin R, Turchyn A V, Farquhar J, et al. Multiple sulfur isotope constraints on the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2014, 396:14-21. doi: 10.1016/j.epsl.2014.03.057 [29] Burke A, Present T M, Paris G, et al. Sulfur isotopes in rivers:Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle[J]. Earth and Planetary Science Letters, 2018, 496:168-177. doi: 10.1016/j.epsl.2018.05.022 [30] Hurtgen M T. The marine sulfur cycle, revisited[J]. Science, 2012, 337(6092):305-306. doi: 10.1126/science.1225461 [31] Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658 [32] Hurtgen M T, Arthur M A, Halverson G P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite[J]. Geology, 2005, 33(1):41-44. doi: 10.1130/G20923.1 [33] Fakhraee M, Hancisse O, Canfield D E, et al. Proterozoic seawater sulfate scarcity and the evolution of ocean-atmosphere chemistry[J]. Nature Geoscience, 2019, 12(5):375-380. doi: 10.1038/s41561-019-0351-5 [34] Turchyn A V, DePaolo D J. Seawater chemistry through Phanerozoic time[J]. Annual Review of Earth and Planetary Sciences, 2019, 47:197-224. doi: 10.1146/annurev-earth-082517-010305 [35] Raiswell R, Berner R A. Pyrite formation in euxinic and semieuxinic sediments[J]. American Journal of Science, 1985, 285(8):710-724. doi: 10.2475/ajs.285.8.710 [36] Rickard D. How long does it take a pyrite framboid to form?[J]. Earth and Planetary Science Letters, 2019, 513:64-68. doi: 10.1016/j.epsl.2019.02.019 [37] Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1):1-23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227553753/ [38] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193):1973-1975. doi: 10.1126/science.11540246 [39] Gomes M L, Hurtgen M T. Sulfur isotope fractionation in modern euxinic systems:Implications for paleoenvironmental reconstructions of paired sulfate-sulfide isotope records[J]. Geochimica et Cosmochimica Acta, 2015, 157:39-55. doi: 10.1016/j.gca.2015.02.031 [40] Brunner B, Bernasconi S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(20):4759-4771. doi: 10.1016/j.gca.2005.04.015 [41] Sim M S, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation[J]. Science, 2011, 333(6038):74-77. doi: 10.1126/science.1205103 [42] Wortmann U G, Bernasconi S M, Böttcher M E. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7):647-650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2 [43] Bradley A S, Leavitt W D, Schmidt M, et al. Patterns of sulfur isotope fractionation during microbial sulfate reduction[J]. Geobiology, 2016, 14(1):91-101. doi: 10.1111/gbi.12149 [44] Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28):11244-11249. doi: 10.1073/pnas.1218874110 [45] Liu X T, Fike D, Li A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates:Evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505:66-75. doi: 10.1016/j.chemgeo.2018.12.014 [46] Gomes M L, Hurtgen M T. Sulfur isotope systematics of a euxinic, low-sulfate lake:Evaluating the importance of the reservoir effect in modern and ancient oceans[J]. Geology, 2013, 41(6):663-666. doi: 10.1130/G34187.1 [47] Stebbins A, Algeo T J, Olsen C, et al. Sulfur-isotope evidence for recovery of seawater sulfate concentrations from a PTB minimum by the Smithian-Spathian transition[J]. Earth-Science Reviews, 2018, 195:83-95. http://cn.bing.com/academic/profile?id=6fb6b9576070ebcde812d86ee09ec730&encoded=0&v=paper_preview&mkt=zh-cn [48] 张美, 陆红锋, 邬黛黛, 等.南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J].海洋地质与第四纪地质, 2017, 37(6):178-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706019 Zhang Mei, Lu Hongfeng, Wu Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(6):178-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201706019 [49] 张现荣, 孙治雷, 魏合龙, 等.自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J].海洋地质与第四纪地质, 2017, 37(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702004 Zhang Xianrong, Sun Zhilei, Wei Helong, et al. Micro-biomineralizaiton of authigenic pyrite and its implications for seafloor cold seeps[J]. Marine Geology & Quaternary Geology, 2017, 37(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702004 [50] Wang M, Cai F, Li Q, et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough[J]. Science China Earth Sciences, 2015, 58(12):2145-2153. doi: 10.1007/s11430-015-5196-1 [51] Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115:547-556. doi: 10.1016/j.jseaes.2015.11.001 [52] Lin Q, Wang J S, Algeo T J, et al. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea[J]. Marine Geology, 2016, 379:100-108. doi: 10.1016/j.margeo.2016.05.016 [53] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440:26-41. doi: 10.1016/j.chemgeo.2016.07.007 [54] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43:381-395. doi: 10.1016/j.marpetgeo.2012.12.009 [55] Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9):2095-2118. doi: 10.1016/j.gca.2003.07.017 [56] Xie L, Wang J S, Wu N Y, et al. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea:Implications for a possible mud volcano environment[J]. Science China Earth Sciences, 2013, 56(4):541-548. doi: 10.1007/s11430-012-4511-3 [57] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea:An overview[J]. Journal of Asian Earth Sciences, 2018, 168:3-16. doi: 10.1016/j.jseaes.2018.09.021 [58] Bryant R N, Jones C, Raven M R, et al. Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging:Extracting local paleo-environmental information from modern and ancient sediments[J]. Rapid Communications in Mass Spectrometry, 2019, 33(5):491-502. doi: 10.1002/rcm.8375 [59] Jørgensen B B, Beulig F, Egger M, et al. Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2019, 254:231-245. doi: 10.1016/j.gca.2019.03.016 [60] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments[J]. Nature Geoscience, 2018, 11(6):421-425. doi: 10.1038/s41561-018-0122-8 [61] Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61(3/4):143-155. doi: 10.1016-S0304-4203(98)00024-3/ [62] Wang J L, Du J Z, Baskaran M, et al. Mobile mud dynamics in the East China Sea elucidated using 210Pb, 137Cs, 7Be, and 234Th as tracers[J]. Journal of Geophysical Research:Oceans, 2016, 121(1):224-239. doi: 10.1002/2015JC011300 [63] Zhu M X, Chen K K, Yang G P, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(11):2811-2828. doi: 10.1002/2016JG003391 [64] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293-334. [65] Fry B, Ruf W, Gest H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution[J]. Chemical Geology:Isotope Geoscience section, 1988, 73(3):205-210. doi: 10.1016/0168-9622(88)90001-2 [66] Richardson J A, Newville M, Lanzirotti A, et al. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate[J]. Chemical Geology, 2019, 523:59-72. doi: 10.1016/j.chemgeo.2019.05.036 [67] Rose C V, Fischer W W, Finnegan S, et al. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 246:299-316. doi: 10.1016/j.gca.2018.11.030 [68] Pasquier V, Sansjofre P, Rabineau M, et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23):5941-5945. doi: 10.1073/pnas.1618245114 [69] Liu X T, Rendle-Bühring R, Meyer I, et al. Holocene shelf sedimentation patterns off equatorial East Africa constrained by climatic and sea-level changes[J]. Sedimentary Geology, 2016, 331:1-11. doi: 10.1016/j.sedgeo.2015.10.009 [70] Claypool G E. Ventilation of marine sediments indicated by depth profiles of pore water sulfate and δ34S[J]. The Geochemical Society Special Publications, 2004, 9:59-65. doi: 10.1016/S1873-9881(04)80007-5 [71] Chang L, Bolton C T, Dekkers M J, et al. Asian monsoon modulation of nonsteady state diagenesis in hemipelagic marine sediments offshore of Japan[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11):4383-4398. doi: 10.1002/2016GC006344 [72] Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S[J]. Earth and Planetary Science Letters, 2013, 363:144-155. doi: 10.1016/j.epsl.2012.12.015 [73] Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate[J]. Geochimica et Cosmochimica Acta, 2005, 69(16):4117-4126. doi: 10.1016/j.gca.2005.02.004 [74] Hilligsøe K M, Jensen J B, Ferdelman T G, et al. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea)[J]. Geochimica et Cosmochimica Acta, 2018, 239:255-274. doi: 10.1016/j.gca.2018.07.040 [75] Blanchet C L, Thouveny N, Vidal L, et al. Terrigenous input response to glacial/interglacial climatic variations over southern Baja California:A rock magnetic approach[J]. Quaternary Science Reviews, 2007, 26(25/26/27/28):3118-3133. http://cn.bing.com/academic/profile?id=7b22903b83d773104e2633dc71beadfd&encoded=0&v=paper_preview&mkt=zh-cn [76] Liu J, Zhu R X, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B3):B03103. http://cn.bing.com/academic/profile?id=cb4e21911cb9966bf10245188a1e7c0b&encoded=0&v=paper_preview&mkt=zh-cn [77] Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151:1-47. doi: 10.1016/j.earscirev.2015.09.010 [78] Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the inner shelf of the East China Sea:Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268(1/2/3/4):34-42. http://cn.bing.com/academic/profile?id=40c20474819d470445a2bf5491449667&encoded=0&v=paper_preview&mkt=zh-cn [79] Chen T, Wang Z H, Wu X X, et al. Magnetic properties of tidal flat sediments on the Yangtze coast, China:Early diagenetic alteration and implications[J]. The Holocene, 2015, 25(5):832-843. doi: 10.1177/0959683615571425 [80] Ge C, Zhang W G, Dong C Y, et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7):4720-4733. doi: 10.1002/2015JB011952 [81] Zheng Y, Zheng H B, Kissel C, et al. Sedimentation rate control on diagenesis, East China Sea sediments[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3/4):301-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0015f53d295aa367317ca6fc7c2f257 [82] Roberts A P, Zhao X, Harrison R J, et al. Signatures of reductive magnetic mineral diagenesis from unmixing of first-order reversal curves[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(6):4500-4522. doi: 10.1029/2018JB015706 [83] 徐方建, 李安春, 肖尚斌, 等.末次冰消期以来东海内陆架古环境演化[J].沉积学报, 2009, 27(1):118-127. http://www.cjxb.ac.cn/CN/abstract/abstract185.shtml Xu Fangjian, Li Anchun, Xiao Shangbin, et al. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation[J]. Acta Sedimentologica Sinica, 2009, 27(1):118-127. http://www.cjxb.ac.cn/CN/abstract/abstract185.shtml [84] Liu X T, Li A C, Dong J, et al. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf[J]. Marine Chemistry, 2018, 205:90-97. doi: 10.1016/j.marchem.2018.08.009 [85] 石学法, 刘升发, 乔淑卿, 等.中国东部近海沉积物地球化学:分布特征、控制因素与古气候记录[J].矿物岩石地球化学通报, 2015, 34(5):885-894. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201505002 Shi Xuefa, Liu Shengfa, Qiao Shuqing, et al. Geochemical characteristics, controlling factor and record of paleoclimate in sediments from eastern China seas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5):885-894. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201505002 [86] 杨守业, 韦刚健, 石学法.地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J].矿物岩石地球化学通报, 2015, 34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003 Yang Shouye, Wei Gangjian, Shi Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003 [87] 石学法, 胡利民, 乔淑卿, 等.中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J].海洋科学进展, 2016, 34(3):313-327. http://d.old.wanfangdata.com.cn/Periodical/hbhhy201603001 Shi Xuefa, Hu Limin, Qiao Shuqing, et al. Progress in research of sedimentary organic carbon in the East China Sea:Sources, dispersal and sequestration[J]. Advances in Marine Science, 2016, 34(3):313-327. http://d.old.wanfangdata.com.cn/Periodical/hbhhy201603001 [88] 刘健, 秦华峰, 孔祥淮, 等.黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究[J].第四纪研究, 2007, 27(6):1031-1039. doi: 10.3321/j.issn:1001-7410.2007.06.019 Liu Jian, Qin Huafeng, Kong Xianghuai, et al. Comparative researches on the magnetic properties of muddy sediments from the Yellow Sea and East China Sea shelves and the Korea Strait[J]. Quaternary Sciences, 2007, 27(6):1031-1039. doi: 10.3321/j.issn:1001-7410.2007.06.019 [89] Yang S Y, Wang Z B, Dou Y G, et al. A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China[J]. Geological Society, London, Memoirs, 2014, 41:293-303. doi: 10.1144/M41.21 [90] Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18):2141-2156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb0de1e2c1f888760bbc88e5eb37620e [91] Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea:Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151:1-15. doi: 10.1016/j.jseaes.2017.10.017 [92] Gao S. Holocene shelf-coastal sedimentary systems associated with the Changjiang River:an overview[J]. Acta Oceanologica Sinica, 2013, 32(12):4-12. doi: 10.1007/s13131-013-0390-5 [93] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352:268-294. doi: 10.1016/j.margeo.2014.03.021 [94] Zhang K D, Li A C, Huang P, et al. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf[J]. Sedimentary Geology, 2019, 384:50-59. doi: 10.1016/j.sedgeo.2019.03.006 [95] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390:270-281. doi: 10.1016/j.margeo.2017.06.004 [96] Dong J, Li A C, Liu X T, et al. Sea-level oscillations in the East China Sea and their implications for global seawater redistribution during 14.0-10.0 kyr BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511:298-308. doi: 10.1016/j.palaeo.2018.08.015 [97] Ge H M, Zhang C L, Versteegh G J M, et al. Evolution of the East China Sea sedimentary environment in the past 14 kyr:Insights from tetraethers-based proxies[J]. Science China Earth Sciences, 2016, 59(5):927-938. doi: 10.1007/s11430-015-5229-9 [98] 王昆山, 石学法, 李珍, 等.东海DGKS9617岩心重矿物及自生黄铁矿记录[J].海洋地质与第四纪地质, 2005, 25(4):41-45. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504007 Wang Kunshan, Shi Xuefa, Li Zhen, et al. Records of heavy mineral and authigenous pyrite in Core DGKS9617 from the East China Sea[J]. Marine Geology & Quaternary Geology, 2005, 25(4):41-45. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504007 [99] Duan W M, Chen L R. Pyrite genesis during early diagenesis in Yellow Sea and East China Sea[J]. Science in China (Series B), 1994, 37(4):502-512. [100] Lin S, Huang K M, Chen S K. Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments[J]. Continental Shelf Research, 2000, 20(4/5):619-635. doi: 10.1016-S0278-4343(99)00088-6/ [101] Zhu M X, Shi X N, Yang G P, et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf:Constraints from solid-phase sulfur speciation and stable sulfur isotope[J]. Continental Shelf Research, 2013, 54:24-36. doi: 10.1016/j.csr.2013.01.002 [102] Zhao B, Yao P, Bianchi T S, et al. The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(12):3556-3569. doi: 10.1029/2018JG004649 [103] 郑妍, 郑洪波, 王可.末次冰期以来东海内陆架沉积反映的海平面变化[J].同济大学学报(自然科学版), 2010, 38(9):1384-1386. doi: 10.3969/j.issn.0253-374x.2010.09.025 Zheng Yan, Zheng Hongbo, Wang Ke. History of sea level change since last glacial:Reflected by sedimentology of core from East China Sea inner shelf[J]. Journal of Tongji University (Natural Science), 2010, 38(9):1381-1386. doi: 10.3969/j.issn.0253-374x.2010.09.025 [104] Kang X M, Liu S M, Zhang G L. Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2014, 33(9):100-108. doi: 10.1007/s13131-014-0499-1 [105] Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology, 1986, 54(1/2):149-155. doi: 10.1016-0009-2541(86)90078-1/ [106] Diaz R, Moreira M, Mendoza U, et al. Early diagenesis of sulfur in a tropical upwelling system, Cabo Frio, southeastern Brazil[J]. Geology, 2012, 40(10):879-882. doi: 10.1130/G33111.1 [107] Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123:213-223. doi: 10.1016/j.jseaes.2016.04.007 [108] Holmkvist L, Kamyshny A, Jr, Brüchert V, et al. Sulfidization of lacustrine glacial clay upon Holocene marine transgression (Arkona Basin, Baltic Sea)[J]. Geochimica et Cosmochimica Acta, 2014, 142:75-94. doi: 10.1016/j.gca.2014.07.030 [109] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139:390-405. doi: 10.1016/j.earscirev.2014.09.007 [110] Gomes M L, Fike D A, Bergmann K D, et al. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 2018, 16(1):17-34. doi: 10.1111/gbi.12265 [111] Zhao B, Yao P, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495:104-117. doi: 10.1016/j.chemgeo.2018.08.012 [112] 刘喜停, 颜佳新.铁元素对海相沉积物早期成岩作用的影响[J].地球科学进展, 2011, 26(5):482-492. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105003 Liu Xiting, Yan Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5):482-492. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105003 [113] Zhang X, Lin C M, Li Y L, et al. Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley, China[J]. Continental Shelf Research, 2013, 69:155-167. doi: 10.1016/j.csr.2013.09.006 [114] Peng X T, Guo Z X, Chen S, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205:1-13. doi: 10.1016/j.gca.2017.02.010 [115] Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea[J]. Biogeosciences, 2018, 15(20):6329-6348. doi: 10.5194/bg-15-6329-2018