Sedimentary Succession of Cambrian Microbial Carbonates at Dengjiazhuang Section at Feicheng
-
摘要: 山东肥城邓家庄剖面寒武系出露连续,构成了7个三级层序。微生物碳酸盐岩主要发育在高位体系域和强迫型海退体系域单元中,以徐庄组凝块石、张夏组核形石、长山组叠层石、凤山组均一石为代表,是研究早古生代微生物碳酸盐岩复苏期的良好实例。多样化的微生物碳酸盐岩中可见大量保存精美的附枝菌(Epiphyton)、葛万菌(Girvanella)以及肾形菌(Renalcis)等钙化微生物残余物,指示了微生物碳酸盐岩形成与蓝细菌为主导的微生物新陈代谢活动密切相关。此外,微生物碳酸盐岩沉积特征反映了生长环境的分异性:均一石、凝块石分别生长在潮下带下部、上部;柱状叠层石主要发育在能量较高的潮间带环境;核形石指示了沉积环境浅且能量高的鲕粒滩相沉积环境。邓家庄寒武系剖面微生物碳酸盐岩为了解寒武纪地球微生物、古环境、古气候提供了重要的岩石记录。Abstract: The Dengjiazhuang section at Feicheng city, Shandong province, is characterized by a continuous Cambrian stratigraphic succession comprising seven third-order sequences. Microbial carbonates in the Dengjiazhuang section were developed in the HST and FRST, represented by thrombolite in the Xuzhuang Formation, oncolite in the Zhangxia Formation, dendrite in the Gushan Formation, stromatolite in the Changshan Formation, and leiolite in the Fengshan Formation, which is a typical example for studying a resuscitate period of microbial carbonates in the Early Paleozoic. Besides, a large number of well-preserved calcified microorganism fossils such as Epiphyton, Girvanella and Renalcis spp. are found in the microbial carbonates, which indicates that there are complex microbial metabolic activities led by cyanobacteria in the microbial mat during the formation of carbonates. Furthermore, the sedimentary characteristics of the microbial carbonates reflect the diversity of sedimentary environments. Leiolite and thrombolite grew respectively in the lower and upper part of the subtidal zone; columnar stromatolites were developed generally in the high-energy intertidal zone; oncolites indicate oolitic beach facies with shallow water and high energy. Therefore, the diversity of microbial carbonates at the Dengjiazhuang section in the Cambrian provides an important rock record for the study of earth microorganisms, paleoenvironment and paleoclimate in the Cambrian.
-
Key words:
- microbial carbonates /
- calcified microorganism /
- sedimentary succession /
- sedimentary model /
- Cambrian
-
图 1 华北地台地质简图及剖面所在位置(修改自文献[29])
(a)华北地台寒武系—奥陶系露头概况;(b)邓家庄剖面所在位置
Figure 1. Brief geological map of the North China Platform and location map of measured outcrop sections(modified from reference [29])
(a) Cambrian-Ordovician outcrops of the North China Platform; (b) location map of Dengjiazhuang section
图 3 邓家庄剖面徐庄组凝块石沉积组构
(a)徐庄组凝块石以生物丘形式产出;(b)凝块石表面可见以不规则或团块状凝块;(c)凝块石微观可见肾型菌、葛万菌等钙化微生物以及白云石、三叶虫生物碎屑等颗粒;(d)暗色泥晶中零星发育的附枝菌菌落(箭头所示)以及黄铁矿
Figure 3. Sedimentary fabrics of the thrombolite in the Xuzhuang Formation at Dengjiazhuang section
(a) thrombolite bioherm from Xuzhuang Formation; (b) irregular or clumpy clots be seen on the surface of the thrombolite; (c) calcified microorganisms such as Renalcis and Girvanella, with dolomite and trilobite in the thrombolite; (d) Epiphyton (arrowed) and pyrite in dark micrite
图 4 邓家庄剖面张夏组核形石沉积组构
(a)鲕粒灰岩中发育的单向交错层理;(b)核形石产出在鲕粒灰岩层中;(c)核形石微观特征,内部主要由微亮晶与暗色泥晶所构成,周围充填鲕粒;(d)零星分布的它形、半自形粒状黄铁矿晶体与葛万菌丝状体(箭头所示);(e)核形石内部泥晶基质中存在模糊的丝状体残余物(箭头所示)
Figure 4. Sedimentary fabrics of oncolite in the Zhangxia Formation at Dengjiazhuang section
(a) oolitic limestone with unidirectional cross-bedding; (b) oncolite in the oolitic limestone; (c) microstructures of the oncolite, mainly composed of microspar and dark micrite, surrounded by oolites; (d) scattered pyrite crystals and Girvanella (arrowed); (e) cyanobacterial filaments in micrite of the oncolite (the arrowed)
图 5 邓家庄剖面长山组叠层石沉积组构
(a)长山组叠层石以生物层形式产出,纵剖面可见清晰纹层;(b)~(d)大型柱状叠层石具有圆状或椭圆状横剖面;(e)显微可见葛万菌残余物(箭头所示);(f)暗色泥晶中的肾形菌;(g)特殊的不规则网状物,可见葛万菌丝状体(箭头所示)
Figure 5. Sedimentary fabrics of stromatolite in the Changshan Formation at Dengjiazhuang section
(a) stromatolite biostrome in Changshan Formation, clear laminae in the longitudinal section; (b)-(d) rounded or elliptical cross-sections of the large columnar stromatolite; (e) Girvanella calcification residue (the arrowed); (f) Renalcis in dark micrite; (g) irregular network with Girvanella (arrowed)
-
[1] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl. 1):179-214. doi: 10.1046-j.1365-3091.2000.00003.x/ [2] Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654. [3] Shapiro R S. A comment on the systematic confusion of thrombolites[J]. PALAIOS, 2000, 15(2):166-169. [4] Kalkowsky E. Oolith und Stromatolith im norddeutschen Buntsandstein[J]. Zeitschrift der Deutschen Geologischen Gesellschaft, 1908, 60:68-125. [5] Aitken J D. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta[J]. Journal of Sedimentary Research, 1967, 37(4):1163-1178. [6] Riding R. Classification of microbial carbonates[M]//Riding R. Calcareous algae and stromatolites. Berlin, Heidelberg: Springer, 1991: 21-51. [7] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelfbasin transect, Miocene, SE Spain[J]. PALAIOS, 1995, 10(4):347-361. http://cn.bing.com/academic/profile?id=f3007cc64f39cb3c2d023235d4086ae0&encoded=0&v=paper_preview&mkt=zh-cn [8] 杨仁超, 樊爱萍, 韩作振, 等.核形石研究现状与展望[J].地球科学进展, 2011, 26(5):465-474.[ http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105001 Yang Renchao, Fan Aiping, Han Zuozhen, et al. Status and prospect of studies on oncoid[J]. Advances in Earth Science, 2011, 26(5):465-474.] http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201105001 [9] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘, 2007, 14(5):222-234.[ http://d.old.wanfangdata.com.cn/Periodical/dxqy200705022 Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234.] http://d.old.wanfangdata.com.cn/Periodical/dxqy200705022 [10] Woo J, Chough S, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. PALAIOS, 2008, 23(1/2):55-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfcfb94329ed0557052eb3b5fd42fbc2 [11] 韩作振, 陈吉涛, 张晓蕾, 等.鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J].地质学报, 2009, 83(8):1097-1103.[ http://d.old.wanfangdata.com.cn/Periodical/dizhixb200908006 Han Zuozhen, Chen Jitao, Zhang Xiaolei, et al. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8):1097-1103.] http://d.old.wanfangdata.com.cn/Periodical/dizhixb200908006 [12] Shen J W, Yu C M, Bao H M. A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China[J]. Facies, 1997, 37(1):195-209. [13] Chen J T, Lee J H, Woo J. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:246-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f11a28997f5a3bdaa6572e807c45604c [14] Lee J H, Chen J T, Choh S J, et al. Furongian (Late Cambrian) sponge-microbial maze-like reefs in the North China Platform[J]. PALAIOS, 2014, 29(1):27-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=778e60299ebab81e69506bc3269e0fa7 [15] Lee J H, Chen J T, Chough S K. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3/4):621-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cf134aa886813d229e174120c4b6d50d [16] Coulson K P, Brand L R. Lithistid sponge-microbial reef-building communities construct laminated, Upper Cambrian (Furongian) 'stromatolites'[J]. PALAIOS, 2016, 31(7):358-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d585cdca0c5bf350746a85dc6bffd32e [17] Lee J H, Riding R. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs[J]. EarthScience Reviews, 2018, 181:98-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4659e5417ad98befbfde193d522677af [18] Nutman A P, Bennett V C, Friend C R L, et al. Rapid emergence of life shown by discovery of 3, 700-million-yearold microbial structures[J]. Nature, 2016, 537(7621):535-538. [19] Allen M A, Goh F, Burns B P, et al. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay[J]. Geobiology, 2009, 7(1):82-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64f0d4265c93830036ed19a742da5a08 [20] Delfino D O, Wanderley M D, Silva L H S E, et al. Sedimentology and temporal distribution of microbial mats from Brejo do Espinho, Rio de Janeiro, Brazil[J]. Sedimentary Geology, 2012, 263-264:85-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59e271c2c9cc1f5fa0d29b34d50074b3 [21] Reid R P, James N P, Macintyre I G, et al. Shark Bay stromatolites:Microfabrics and reinterpretation of origins[J]. Facies, 2003, 49(1):299-324. http://cn.bing.com/academic/profile?id=4bf8be5255c80d38d6d8afa01a11805d&encoded=0&v=paper_preview&mkt=zh-cn [22] 梅冥相, 孟庆芬.现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J].古地理学报, 2016, 18(2):127-146.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201602001 Mei Mingxiang, Meng Qingfen. Composition diversity of modern stromatolites:A key and window for further understanding of the formation of ancient stromatolites[J]. Journal of Palaeogeography, 2016, 18(2):127-146.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201602001 [23] Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189:21-50. [24] 梅冥相, Latif K, 孟庆芬, 等.寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘:以河北秦皇岛驻操营剖面为例[J].地质学报, 2019, 93(1):227-251.[ http://d.old.wanfangdata.com.cn/Periodical/dizhixb201901014 Mei Ming-xiang, Latif K, Meng Qingfen, et al. Cambrian bioherms dominated by microbial carbonate within the oolitic grainstone bank, Zhangxia Formation of the Miaolingian, Zhucaoying section in Qinhuangdao city of Hebei province[J]. Acta Geologica Sinica, 2019, 93(1):227-251.] http://d.old.wanfangdata.com.cn/Periodical/dizhixb201901014 [25] 梅冥相, 郭荣涛, 胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报, 2011, 27(8):2473-2486.[ http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023 Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8):2473-2486.] http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023 [26] 梅冥相, 张瑞, 李屹尧, 等.华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J].岩石学报, 2017, 33(4):1073-1093.[ http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005 Mei Mingxiang, Zhang Rui, Li Yiyao, et al. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4):1073-1093.] http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005 [27] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4):229-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c56d19de9a1d789e146a154c19b80e25 [28] 史晓颖, 陈建强, 梅仕龙.华北地台东部寒武系层序地层年代格架[J].地学前缘, 1997, 4(3/4):161-173.[ http://www.cqvip.com/QK/98600X/199704/2627200.html Shi Xiaoying, Chen Jianqiang, Mei Shilong. Cambrian sequence chronostratigraphic frame-work of the North China Platform[J]. Earth Science Frontiers, 1997, 4(3/4):161-173.] http://www.cqvip.com/QK/98600X/199704/2627200.html [29] Han Z Z, Zhang X L, Chi N J, et al. Cambrian oncoids and other microbial-related grains on the North China Platform[J]. Carbonates and Evaporites, 2015, 30(4):373-386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16f04410582bc2a86c6b9f64927bb35f [30] 肖恩照, 覃英伦, Riaz M, 等.吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J].东北石油大学学报, 2017, 41(5):43-53.[ http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201705005 Xiao Enzhao, Qin Yinglun, Riaz M, et al. Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain:A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5):43-53.] http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201705005 [31] 卢衍豪, 朱兆玲, 袁金良, 等.中国寒武纪地层对比表及说明书[M].北京:科学出版社, 1982.[ Lu Yanhao, Zhu Zhaoling, Yuan Jinliang, et al. Suggestions for the establishment of the Cambrian Stages in China[M]. Beijing:Science Press, 1982.] [32] 梅冥相, 马永生, 梅仕龙, 等.华北寒武系层序地层格架及碳酸盐台地演化[J].现代地质, 1997, 11(3):275-282.[ http://www.cqvip.com/Main/Detail.aspx?id=2757230 Mei Mingxiang, Ma Yongsheng, Mei Shilong, et al. Framework of Cambrian sedimentary sequence and evolution of carbonate platform in North China[J]. Geoscience, 1997, 11(3):275-282.] http://www.cqvip.com/Main/Detail.aspx?id=2757230 [33] Helland-Hansen W. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 94(1/2/3/4):95-97. doi: 10.1016-j.earscirev.2010.03.004/ [34] Goldhammer R K, Dunn P A, Hardie L A. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing:Examples from Alpine Triassic platform carbonates[J]. Geological Society of America Bulletin, 1990, 102(5):535-562. http://cn.bing.com/academic/profile?id=f67adae51154c29931ad01db1d930e12&encoded=0&v=paper_preview&mkt=zh-cn [35] 梅冥相.从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学进展之一[J].古地理学报, 2010, 12(5):549-564.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201005005 Mei Mingxiang. Correlation of sequence boundaries according to discerning between normal and forced regressions:The first advance in sequence stratigraphy[J]. Journal of Palaeogeography, 2010, 12(5):549-564.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201005005 [36] Burne R V, Moore L S. Microbialites:Organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 1987, 2(3):241-254. http://d.old.wanfangdata.com.cn/Periodical/gdlxb200705005 [37] Chen J T, Lee J H. Current progress on the geological record of microbialites and microbial carbonates[J]. Acta Geologica Sinica, 2014, 88(1):260-275. http://cn.bing.com/academic/profile?id=058cfaebc42805141362f08b0966ea54&encoded=0&v=paper_preview&mkt=zh-cn [38] 陈金勇, 韩作振, 范洪海, 等.鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J].沉积学报, 2014, 32(3):494-502.[ http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml Chen Jinyong, Han Zuozhen, Fan Honghai, et al. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3):494-502.] http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml [39] 梅冥相.碳酸盐岩米级旋回层序的成因类型及形成机制[J].岩相古地理, 1993, 13(6):34-43.[ Mei Ming-xiang. Genetic types and mechanisms of the carbonate rock meter-scale cyclic sequences[J]. Sedimentary Geology and Tethyan Geology, 1993, 13(6):34-43.] [40] 梅冥相, Riaz M, 刘丽, 等.辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石[J].古地理学报, 2019, 21(1):31-48.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201901003 Mei Mingxiang, Riaz M, Liu Li, et al. Oncoids built by photosynthetic biofilms:An example from the Series 2 of Cambrian at Fuzhouwan section in Liaodong Peninsula[J]. Journal of Palaeogeography, 2019, 21(1):31-48.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201901003 [41] Logan B W, Rezak R, Ginsburg R N. Classification and environmental significance of algal stromatolites[J]. The Journal of Geology, 1964, 72(1):68-83. http://cn.bing.com/academic/profile?id=b61df1b96409e44aa49246a709120419&encoded=0&v=paper_preview&mkt=zh-cn [42] Luo C, Reitner J. First report of fossil "keratose" demosponges in Phanerozoic carbonates:Preservation and 3-D reconstruction[J]. Naturwissenschaften, 2014, 101(6):467-477. http://cn.bing.com/academic/profile?id=031190855aaa751ac6c68872fcdc5d97&encoded=0&v=paper_preview&mkt=zh-cn [43] Xiao E Z, Latif K, Riaz M, et al. Calcified microorganisms bloom in Furongian of the North China Platform:Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1):250-260. [44] Stal L J. Cyanobacterial mats and stromatolites[M]//Whitton B A, Potts M. The ecology of cyanobacteria: Their diversity in time and space. Dordrecht: Springer, 2000: 61-120. [45] 陈旭, 阮亦萍, 布科A J.中国古生代气候演变[M].北京:科学出版社, 2001:1-325.[ Chen Xu, Ruan Yiping, Boucot A J. Paleozoic climate evolution in China[M]. Beijing:Science Press, 2001:1-325.] [46] 王龙, Latif K, Riaz M, 等.微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J].地球科学进展, 2018, 33(10):1005-1023.[ http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201810003 Wang Long, Latif K, Riaz M, et al. The genesis, classification, problems and prospects of microbial carbonates:Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10):1005-1023.] http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201810003 [47] Luchinina V A, Terleev A A. The morphology of the genus Epiphyton Bornemann[J]. Geologia Croatica, 2008, 61(2/3):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002402367 [48] Adachi N, Nakai T, Ezaki Y, et al. Late early Cambrian archaeocyath reefs in Hubei province, South China:Modes of construction during their period of demise[J]. Facies, 2014, 60(2):703-717. [49] Laval B, Cady S L, Pollack J C, et al. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804):626-629. http://cn.bing.com/academic/profile?id=6269f1eaa034c8530aef35818a57d32a&encoded=0&v=paper_preview&mkt=zh-cn [50] 梅冥相.微生物席的特征和属性:微生物席沉积学的理论基础[J].古地理学报, 2014, 16(3):285-304.[ http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403001 Mei Mingxiang. Feature and nature of microbial-mat:Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3):285-304.] http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403001 [51] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3):141-162. [52] Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 617-635. [53] Kennard J M, James N P. Thrombolites and stromatolites:Two distinct types of microbial structures[J]. PALAIOS, 1986, 1(5):492-503. [54] Dupraz C, Pattisina R, Verrecchia E P. Translation of energy into morphology:Simulation of stromatolite morphospace using a stochastic model[J]. Sedimentary Geology, 2006, 185(3/4):185-203. http://cn.bing.com/academic/profile?id=c17f9122113a49d0062b682825090ee6&encoded=0&v=paper_preview&mkt=zh-cn [55] 梅冥相.从凝块石概念的演变论微生物碳酸盐岩的研究进展[J].地质科技情报, 2007, 26(6):1-9.[ http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200706001 Mei Ming-xiang. Discussion on advances of microbial carbonates from the terminological change of thrombolites[J]. Geological Science and Technology Information, 2007, 26(6):1-9.] http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200706001 [56] Reid R P, Foster J S, Radtke G, et al. Modern marine stromatolites of Little Darby Island, Exuma archipelago, Bahamas:Environmental setting, accretion mechanisms and role of euendoliths[M]//Reitner J, Quéric N V, Arp G. Advances in stromatolite geobiology. Berlin:Springer, 2011:77-89.