-
计算添加了不同含量赤铁矿和针铁矿的标样中400~700 nm可见光内不同波段的反射率(表 1),根据加入的标准赤铁矿针铁矿含量,和不同波段反射率之间利用逐步多元线性回归,建立校准方程:
表 1 不同含量的针铁矿和赤铁矿标准样品各颜色波段反射率(%)
Table 1. Reflectance of each color band for different samples of different added content (%) of goethite and hematite
标样编号 紫色 蓝色 绿色 黄色 橙色 红色 Hm Gt 0-0 13.22 12.56 24.49 10.66 14.19 24.89 0 0 1-1 13.17 12.01 23.14 10.74 14.82 26.11 0.1 0 1-2 11.27 9.91 22.04 11.95 16.37 28.45 0.2 0 1-3 10.81 9.15 17.91 10.91 18.03 33.2 0.8 0 1-4 9.56 7.87 15.48 10.7 19.49 36.89 1 0 1-5 8.93 7.17 13.97 10.27 20.23 39.43 1.5 0 2-1 13.99 12.36 23.98 10.69 14.19 24.8 0 0.1 2-2 12.67 11.46 23.89 11.19 14.86 25.93 0 0.2 2-3 11.77 10.47 23.36 11.84 15.61 26.95 0 0.8 2-4 11.47 10.25 23.25 11.98 15.79 27.25 0 1 2-5 10.99 9.6 22.36 12.41 16.39 28.24 0 1.5 3-1 11.98 10.68 22.79 11.51 15.67 27.37 0.1 0.5 3-2 12.79 11.15 22.46 11.16 15.43 27.02 0.2 0.4 3-3 12.32 10.57 21.31 11.2 16.11 28.5 0.4 0.6 3-4 11.94 10.12 20.64 11.31 16.58 29.41 0.4 0.8 3-5 11.89 10.3 21.35 11.4 16.31 28.75 0.4 1 3-6 11.56 9.9 20.96 11.62 16.66 29.3 0.4 1.6 3-7 11.69 9.89 20.28 11.34 16.84 29.95 0.6 1.4 3-8 12.24 10.26 20.37 11.08 16.53 29.51 0.6 0.8 3-9 12.07 10.06 19.94 11.03 16.79 30.11 0.8 1.2 3-10 12.08 9.98 19.42 10.81 16.95 30.76 1 1 赤铁矿(Hm)= 2.758-0.206×绿度+ 0.168×紫度,R2 =0.935,标准偏差=0.111,n=16
针铁矿(Gt)= 6.197-0.509×蓝度,R2=0.818,标准偏差= 0.214,n=16
在赤铁矿的校准方程中,赤铁矿的含量和紫度(紫色波段反射率,以下类推)呈正相关,和绿度呈反相关;在针铁矿的校准方程中,针铁矿的含量只和蓝度呈反相关关系。
将标样代入拟校准方程中进行自检验(图 2),其中,加入赤铁矿含量为0~1.5%,序列n=16,R2=0.90,标准偏差= 0.081,加入针铁矿含量为0~1.6%,序列n=16,R2= 0.88,标准偏差= 0.072。
图 2 赤铁矿(a)和针铁矿(b)校准方程计算结果(实线)与实际加入拟合结果(虚线)的对比
Figure 2. Comparison of calculated content (active line) of hematite (a) and goethite (b) with actual addition content (dotted line)
针铁矿和赤铁矿是土壤和沉积物中游离铁的主要形式,因此游离铁含量与经校准方程计算的针铁矿与赤铁矿的总量应接近[37]。游离铁含量的测定采用土壤学常用的邻菲啰啉分光光度法。比较CBD提取游离铁含量和校准方程定量的赤铁矿和针铁矿含量(表 2)发现,游离铁含量始终略大于定量计算出的赤铁矿和针铁矿含量。因为CBD可以有效去除成壤成因的亚铁磁性矿物,包括赤铁矿,针铁矿和磁赤铁矿等。两者含量接近(表 2),说明校准方程定量得到的赤铁矿针铁矿含量是可靠的。
表 2 测定的游离铁含量与计算的针铁矿和赤铁矿总量(%)的对比
Table 2. Comparison of measured free iron content with calculated total content (%) of goethite and hematite
样品编号 CBD提取游离铁/% DRS测定(Hm+Gt)/% T1 1.69 1.52 T2 1.64 1.43 T3 1.58 1.45 T4 1.55 1.47 T5 1.54 1.50 T6 1.58 1.54 T7 1.61 1.52 T8 1.60 1.51 T9 1.58 1.41 -
前人研究发现,漫反射光谱的一阶导数曲线能够鉴定针铁矿和赤铁矿[18, 27]。嵊山岛黄土漫反射光谱的一阶导数主要有三个峰,指示了赤铁矿和针铁矿的存在。其中赤铁矿的特征峰在550 nm左右,针铁矿有两个峰,主峰在430 nm,次峰在500 nm(图 2a)。北方黄土赤铁矿的特征峰在565~575 nm;针铁矿主峰在535 nm,次峰在435 nm附近,整体峰位比黄土高原黄土偏低。赤铁矿针铁矿的一阶导数特征峰的峰值和峰位不完全取决于含量的多少,还受其他矿物的影响[27]。嵊山岛黄土漫反射光谱的一阶导数特征峰和北方黄土的差异,可能是二者基体不完全相同,受基体效应影响所致。
自然基体中加入标准矿物(0.1%~2.0%)后,其一阶导数曲线变化有两点:一是特征峰峰值随加入的标准矿物含量的增加而增大,二是特征峰峰位向长波方向偏移。其中,赤铁矿序列的一阶导数谱峰位从570 nm增长到580 nm,峰高从0.052增加到0.322。针铁矿序列的一阶导数谱峰位从510 nm增长到535 nm,峰高从0.101增加到0.411(图 3c,d)。
-
利用漫反射光谱定量获得的校准方程,对嵊山岛黄土剖面进行分析测试,得到嵊山岛黄土中赤铁矿和针铁矿的百分含量。赤铁矿的含量为0.18%~0.40%,平均值为0.31%,针铁矿的含量为0.77%~1.19%,平均值为1.11%,赤铁矿/针铁矿的值为0.18~0.38,平均值为0.28。
将其与北方黄土和下蜀黄土进行比较(表 3)发现,不同剖面中针铁矿含量总是大于赤铁矿含量。嵊山岛风尘堆积中除了赤铁矿/针铁矿(Hm/Gt)的含量的最大值(0.38%)略大于下蜀黄土(0.33%)外,赤铁矿和针铁矿平均含量小于下蜀黄土,大于北方黄土。其中嵊山岛针铁矿的含量除在30~50 cm内明显上升以外,其余深度变化不大;与针铁矿相比,赤铁矿的含量变化幅度较大,最大值出现在深度40~45 cm范围内,为0.18%,最小值出现在深度180~200 cm范围内,为0.4%;剖面上Hm/Gt的最大值出现在深度200 cm处,为0.38%,最小值出现在深度40 cm处,为0.18%。嵊山岛风尘堆积赤铁矿和针铁矿含量总体大于黄土高原黄土,小于下蜀黄土,一定程度反映了三者所经历的成土作用的强度的差异。
表 3 不同剖面样品中赤铁矿和针铁矿含量(%)
Table 3. Comparison of the hematite and goethite contents (%) in different sections
Hematite and Goethite Content in the Dust Deposition from the Eastern Islands of the Yangtze River Delta and Its Paleoclimatic Significance
-
摘要: 长江三角洲东延海域嵊山岛屿风尘堆积地层是记录晚更新世晚期东亚季风演变的重要载体。采用漫反射光谱(DRS)法、柠檬酸钠-重碳酸钠-连二亚硫酸钠(CBD)浸提法结合标准赤铁矿、针铁矿建立标准铁氧化物含量与反射率之间的校准方程,定量重建了东部岛屿风尘堆积的赤铁矿、针铁矿含量的变化特征。结果显示,东海嵊山岛风尘堆积中赤铁矿的含量为0.18%~0.40%,平均值为0.31%,针铁矿的含量为0.7%~1.19%,平均值为1.11%。根据赤铁矿、针铁矿含量特征结合地球化学和环境磁学参数,分析其记录的古环境信息:54~46 ka B.P.时期内气候相对干燥,季风降水减弱,46~39 ka B.P.时期内气候相对潮湿,季风降水增强;46±4 ka B.P.时期的高值可能指示了一个冷事件。Abstract: The dust deposition in Shengshan Island, East China Sea is an important aeolian archive, which can provide information on the East China monsoon during the Late Quaternary. In this paper, the sodium citrate-sodium bicarbonate-sodium dithionite(CBD)method was used to remove free iron, different proportions of hematite and goethite were added to the matrix, and the standard was established by the multiple linear regression method. The results show that the hematite content in Shengshan Island is 0.18%-0.40% with an average value of 0.31%, and the content of goethite is 0.77%-1.19% with an average value of 1.11%. According to the content characteristics of hematite and goethite combined with geochemical and environmental magnetic parameters, we conclude that the monsoon precipitation decreased from 54 ka to 46 ka, and the monsoon precipitation increased from 46 ka to 39 ka. High values at 46±4 ka may indicate a cold event.
-
图 4 嵊山岛剖面中赤铁矿、针铁矿含量,赤铁矿/针铁矿比值,磁化率(χ、χlf、χhf)和化学风化指标(CIA、Rb/Sr、Al2O3/Na2O、K2O/Na2O)随深度变化曲线(年代数据来自文献[35];磁化率和化学风化数据来自文献[45-46])
Figure 4. Depth variations of DRS derived hematite (Hm) and goethite (Gt) concentrations and their ratio (Hm/Gt) for the SSD section. Dating taken from reference [35]; Selected magnetic susceptibility and geochemical weathering indicators (CIA, Rb/Sr, Al2O3/Na2O, K2O/Na2O), taken from references [45-46] are included
表 1 不同含量的针铁矿和赤铁矿标准样品各颜色波段反射率(%)
Table 1. Reflectance of each color band for different samples of different added content (%) of goethite and hematite
标样编号 紫色 蓝色 绿色 黄色 橙色 红色 Hm Gt 0-0 13.22 12.56 24.49 10.66 14.19 24.89 0 0 1-1 13.17 12.01 23.14 10.74 14.82 26.11 0.1 0 1-2 11.27 9.91 22.04 11.95 16.37 28.45 0.2 0 1-3 10.81 9.15 17.91 10.91 18.03 33.2 0.8 0 1-4 9.56 7.87 15.48 10.7 19.49 36.89 1 0 1-5 8.93 7.17 13.97 10.27 20.23 39.43 1.5 0 2-1 13.99 12.36 23.98 10.69 14.19 24.8 0 0.1 2-2 12.67 11.46 23.89 11.19 14.86 25.93 0 0.2 2-3 11.77 10.47 23.36 11.84 15.61 26.95 0 0.8 2-4 11.47 10.25 23.25 11.98 15.79 27.25 0 1 2-5 10.99 9.6 22.36 12.41 16.39 28.24 0 1.5 3-1 11.98 10.68 22.79 11.51 15.67 27.37 0.1 0.5 3-2 12.79 11.15 22.46 11.16 15.43 27.02 0.2 0.4 3-3 12.32 10.57 21.31 11.2 16.11 28.5 0.4 0.6 3-4 11.94 10.12 20.64 11.31 16.58 29.41 0.4 0.8 3-5 11.89 10.3 21.35 11.4 16.31 28.75 0.4 1 3-6 11.56 9.9 20.96 11.62 16.66 29.3 0.4 1.6 3-7 11.69 9.89 20.28 11.34 16.84 29.95 0.6 1.4 3-8 12.24 10.26 20.37 11.08 16.53 29.51 0.6 0.8 3-9 12.07 10.06 19.94 11.03 16.79 30.11 0.8 1.2 3-10 12.08 9.98 19.42 10.81 16.95 30.76 1 1 表 2 测定的游离铁含量与计算的针铁矿和赤铁矿总量(%)的对比
Table 2. Comparison of measured free iron content with calculated total content (%) of goethite and hematite
样品编号 CBD提取游离铁/% DRS测定(Hm+Gt)/% T1 1.69 1.52 T2 1.64 1.43 T3 1.58 1.45 T4 1.55 1.47 T5 1.54 1.50 T6 1.58 1.54 T7 1.61 1.52 T8 1.60 1.51 T9 1.58 1.41 表 3 不同剖面样品中赤铁矿和针铁矿含量(%)
Table 3. Comparison of the hematite and goethite contents (%) in different sections
-
[1] 刘东生, 安芷生, 袁宝印.中国的黄土与风尘堆积[J].第四纪研究, 1985, 6(1):113-125. Liu Tungsheng, An Zhisheng, Yuan Baoyin. Eolian process and dust mantle(loess)in China[J]. Quaternary Research, 1985, 6(1):113-125. [2] An Z S, Liu T, Lu Y C, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China[J]. Quaternary International, 1990, 7(7/8):91-95. http://cn.bing.com/academic/profile?id=be070a18bbcb29bbd49ac2da8e92eb62&encoded=0&v=paper_preview&mkt=zh-cn [3] Zhao G Y, Liu X M, Chen Q, et al. Paleoclimatic evolution of Holocene loess and discussion of the sensitivity of magnetic susceptibility and median diameter[J]. Quaternary International, 2013, 296:160-167. http://cn.bing.com/academic/profile?id=401fd12f5288e3786675710d3166aae2&encoded=0&v=paper_preview&mkt=zh-cn [4] 杨达源.中国东部的第四纪风尘堆积与季风变迁[J].第四纪研究, 1991, 11(4):354-360. Yang Dayuan. The Quaternary dust-fall accumulation and the monsoon variability in eastern China[J]. Quaternary Sciences, 1991, 11(4):354-360. [5] 于振江, 黄多成.安徽省沿江地区网纹红土和下蜀土的形成环境及其年龄[J].安徽地质, 1996, 6(3):48-56. Yu Zhen-jiang, Huang Duocheng. Formation environment of net-veined laterite and Xiashu loess and their ages in the area along the Yangtze River, Anhui province[J]. Geology of Anhui, 1996, 6(3):48-56. [6] 李徐生, 韩志勇, 杨达源, 等.镇江下蜀黄土的稀土元素地球化学特征研究[J].土壤学报, 2006, 43(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/trxb200601001 Li Xu-sheng, Han Zhiyong, Yang Dayuan, et al. Geochemistry of Xiashu loess in Zhenjiang, Jiangsu province[J]. Acta Pedologica Sinica, 2006, 43(1):1-7. http://d.old.wanfangdata.com.cn/Periodical/trxb200601001 [7] Hu X F, Wei J, Xu L F, et al. Magnetic susceptibility of the Quaternary Red Clay in subtropical China and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279(3/4):216-232. doi: 10.1016-j.palaeo.2009.05.016/ [8] Chen Y Y, Li X S, Han Z Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu province[J]. Journal of Geographical Sciences, 2008, 18(3):341-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb-e200803008 [9] Qiao Y S, Hao Q Z, Peng S S, et al. Geochemical characteristics of the eolian deposits in southern China, and their implications for provenance and weathering intensity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4):513-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d74ce06e3327b7dba797b14c3c32f0e0 [10] Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6286):737-739. http://cn.bing.com/academic/profile?id=c220cb7fe031a87c0cd04ffae2f7f31c&encoded=0&v=paper_preview&mkt=zh-cn [11] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1/2/3/4):67-88. http://cn.bing.com/academic/profile?id=490fce365e746a74ef933cf7fe23b2cd&encoded=0&v=paper_preview&mkt=zh-cn [12] Guo Z T, Biscaye P, Wei L Y, et al. Summer monsoon variations over the last 1. 2 Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters, 2000, 27(12):1751-1754. http://cn.bing.com/academic/profile?id=a175ef629ebf72cac6b9e6f5753b2d8d&encoded=0&v=paper_preview&mkt=zh-cn [13] Gallet S, Jahn B M, van Vliet Lanoë B, et al. Loess geochemistry and its implications for particle origin and composition of the upper continental crust[J]. Earth and Planetary Science Letters, 1998, 156(3/4):157-172. doi: 10.1016-S0012-821X(97)00218-5/ [14] Hao Q Z, Guo Z T. Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr:Implications for monsoon evolution[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B12):B12101. [15] Deaton B C, Balsam W L. Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials[J]. Journal of Sedimentary Research, 1991, 61(4):628-632. http://cn.bing.com/academic/profile?id=3126651df231fd65388c32972c055ff1&encoded=0&v=paper_preview&mkt=zh-cn [16] Claudio C, Iorio E D, Liu Q S, et al. Iron oxide nanoparticles in soils:Environmental and agronomic importance[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(7):4449-4460. http://cn.bing.com/academic/profile?id=00d2e5b2832ad2360fd2e6f5ce34b52e&encoded=0&v=paper_preview&mkt=zh-cn [17] Bowles J F W. The iron oxides:Structure, properties reactions occurrence and uses[J]. Mineralogical Magazine, 1997, 61(408):740-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/096032719701600706 [18] Cudahy T J, Ramanaidou E R. Measurement of the hematite:Goethite ratio using field visible and near-infrared reflectance spectrometry in channel iron deposits, western Australia[J]. Journal of the Geological Society of Australia, 1997, 44(4):411-420. http://cn.bing.com/academic/profile?id=69d3a2e28f1bfc0d57642ce7dd599bfa&encoded=0&v=paper_preview&mkt=zh-cn [19] Scheinost A C, Chavernas A, Barron V, et al. Use and Limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils[J]. Clays and Clay Minerals, 1998, 46(5):528-536. http://cn.bing.com/academic/profile?id=66271e3dd3cbf860400db5524d03f41d&encoded=0&v=paper_preview&mkt=zh-cn [20] Malengreau N, Muller J P, Calas G. Fe-Speciation in Kaolins:A diffuse reflectance study[J]. Clays and Clay Minerals, 1994, 42(2):137-147. http://cn.bing.com/academic/profile?id=b772d7a1ef8211b0f1943bb47687d1e3&encoded=0&v=paper_preview&mkt=zh-cn [21] Barranco F T, Balsam W L, Deaton B C. Quantitative reassessment of brick red lutites:Evidence from reflectance spectrophotometry[J]. Marine Geology, 1989, 89(3/4):299-314 doi: 10.1016-0025-3227(89)90082-0/ [22] Torrent S, Barrón V. The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite[J]. Clays and Clay Minerals, 2003, 51(3):309-317. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b63d2f60e7c58cf5c7ef8c0b94243a1b [23] 李香钰, 方小敏, 杨一博, 等. 3Ma以来黄土高原朝那黄土-红粘土序列赤铁矿记录及其古气候意义[J].第四纪研究, 2012, 32(4):700-708. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201204015 Li Xiangyu, Fang Xiaomin, Yang Yibo, et al. Hematite record of 3Ma loess-red clay sequences in the central Chinese loess plateau 3Ma and its paleoclimatic significance[J]. Quaternary Sciences, 2012, 32(4):700-708. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201204015 [24] Grygar T, Dědeček J, Kruiver P P, et al. Iron oxide mineralogy in Late Miocene red beds from La Gloria, Spain:Rockmagnetic, voltammetric and Vis spectroscopy analyses[J]. Catena, 2003, 53(2):115-132. [25] Hao Q Z, Oldfield F, Bloemendal J, et al. The record of changing hematite and goethite accumulation over the past 22 Myr on the Chinese Loess Plateau from magnetic measurements and diffuse reflectance spectroscopy[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(B12):B12101. [26] Yin K, Hong H L, Algeo T J, et al. Fe-oxide mineralogy of the Jiujiang red earth sediments and implications for Quaternary climate change, southern China[J]. Scientific Reports, 2018, 8:3610. http://cn.bing.com/academic/profile?id=4698dc5c4036e0e28ef36ea24d060090&encoded=0&v=paper_preview&mkt=zh-cn [27] Ji J F, Chen J, Balsam W, et al. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle:Rapid climatic response of the East Asian Monsoon to the tropical Pacific[J]. Geophysical Research Letters, 2004, 31(3):L03207. [28] Zhang Y G, Ji J F, Balsam W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea:Co-evolution of monsoonal precipitation and El Nino over the past 600, 000 years[J]. Earth and Planetary Science Letters, 2007, 264(1/2):136-150. http://cn.bing.com/academic/profile?id=0ffc929c1c00f8478a67162d0490a114&encoded=0&v=paper_preview&mkt=zh-cn [29] Ji J F, Balsam W, Chen J, et al. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy[J]. Clays and Clay Minerals, 2002, 50(2):208-216. http://cn.bing.com/academic/profile?id=a2ea04a1182689d81f323fa6d6a55e3e&encoded=0&v=paper_preview&mkt=zh-cn [30] Balsam W, Ji J F, Chen J. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility[J]. Earth and Planetary Science Letters, 2004, 223(3/4):335-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59aae7aa2c403fc98ba3cc7a3297ab93 [31] Zhang W G, Yu L Z, Min L, et al. East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu Loess in southern China[J]. Quaternary Science Reviews, 2009, 28(3/4):345-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7978f22efdeb766bb7ffbd3d76e4a2a2 [32] 周玮, 季峻峰, William B, 等.利用漫反射光谱鉴定红粘土中针铁矿和赤铁矿[J].高校地质学报, 2007, 13(4):730-736. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200704017 Zhou Wei, Ji Junfeng, William B, et al. Determination of goethite and hematite in red clay by diffuse reflectance spectroscopy[J]. Geological Journal of China Universities, 2007, 13(4):730-736. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200704017 [33] 郑祥民.长江三角洲及海域风尘沉积与环境[M].上海:华东师范大学出版社, 1999. Zheng Xiangmin. Aeolian deposition and environment in Changjiang delta and extending sea areas[M]. Shanghai:East China Normal University Press, 1999. [34] 郑祥民, 刘飞.长江三角洲与东海岛屿黄土研究综述[J].华东师范大学学报(自然科学版), 2006(6):9-24. http://d.old.wanfangdata.com.cn/Periodical/hdsfdxxb200606002 Zheng Xiangmin, Liu Fei. Review of reseach on loess in the Yangtze River delta and the East China Sea islands[J]. Journal of East China Normal University (Natural Science), 2006(6):9-24. http://d.old.wanfangdata.com.cn/Periodical/hdsfdxxb200606002 [35] 任少芳, 郑祥民, 周立旻, 等.基于光释光测年的东海嵊山岛风尘黄土环境敏感粒度组分研究[J].第四纪研究, 2018, 38(3):646-658. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201803009 Ren Shaofang, Zheng Xiangmin, Zhou Limin, et al. Analysis of environmentally sensitive grainsize component of loess on the Shengshan Island in East China Sea based on optically stimulated luminescence dating[J]. Quaternary Research, 2018, 38(3):646-658. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201803009 [36] Judd D B. Color in business, science and industry[J]. Physics Today, 1953, 6(2):18. [37] 季峻峰, 陈骏, Balsam W, 等.黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究[J].第四纪研究, 2007, 27(2):221-229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200702007 Ji Junfeng, Chen Jun, Balsam W, et al. Quantitative analysis of hematite and goethite in the Chinese loess-paleosol sequences and its implication for dry and humid variability[J]. Quaternary Sciences, 2007, 27(2):221-229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200702007 [38] Trolard F, Tardy Y. The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size[J]. Geochimica et Cosmochimica Acta, 1987, 51(4):945-957. [39] Majzlan J, Navrotsky A, Schwertmann U. Thermodynamics of iron oxides:Part Ⅲ. Enthalpies of formation and stability of ferrihydrite(~Fe(OH)3), schwertmannite(~FeO(OH)3/4(SO4)1/8), and ε-Fe2O3[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1049-1059. [40] Kämpf N, Schwertmann U. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils[J]. Geoderma, 1983, 29(1):27-39. [41] Torrent J, Liu Q S, Bloemendal J, et al. Magnetic enhancement and Iron oxides in the Upper Luochuan loess-paleosol sequence, Chinese Loess Plateau[J]. Soil Science Society of America Journal, 2007, 71(5):1570-1578. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f125ec255501e2a0a42702eee8be865 [42] Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess[J]. Quaternary Science Reviews, 2007, 26(3/4):368-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea49a94ba868380276d7af68c3e29218 [43] Guo B, Zhu R X, Roberts A P, et al. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese Loess/Paleosol Sequences[J]. Geophysical Research Letters, 2001, 28(22):4259-4262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2001GL013290 [44] Geiss C E, Zanner C W. Sediment magnetic signature of climate in modern loessic soils from the Great Plains[J]. Quaternary International, 2007, 162-163:97-110. http://cn.bing.com/academic/profile?id=992d8906eb80fe8bfcb533aeecca02f0&encoded=0&v=paper_preview&mkt=zh-cn [45] Dearing J A, Livingstone I P, Bateman M D, et al. Palaeoclimate records from OIS 8. 0-5. 4 recorded in loess-palaeosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminescence dating[J]. Quaternary International, 2001, 76-77:43-56. http://cn.bing.com/academic/profile?id=8def15df442e5be28d57c6e62811ffab&encoded=0&v=paper_preview&mkt=zh-cn [46] 张岩.嵊山岛黄土地层古环境信息研究[D].上海: 华东师范大学, 2014: 13-29. Zhang Yan. The paleoenvironmental inforrmation research of loess from the Sheng Shan Island[D]. Shanghai: East China Normal University, 2014: 13-29. [47] 邱思静, 陈一凡, 王振, 等.天山北麓乌鲁木齐河阶地晚更新世黄土磁学特征及古气候意义[J].第四纪研究, 2016, 36(5):1319-1330. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605025 Qiu Sijing, Chen Yifan, Wang Zhen, et al. Rock magnetic properties and paleoclimatic implications of Late Pleistocene loess in the range front of the Ürümqi River, Xinjiang, NW China[J]. Quaternary Sciences, 2016, 36(5):1319-1330. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605025 [48] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550):2345-2348. doi: 10.1126-science.1064618/