-
四川盆地晚震旦世—早寒武世天然气勘探近年来获得重大突破,在川中古隆起构造低部位高石—磨溪地区发现了储量超万亿方的安岳特大型气藏。气藏解剖表明[23-24],安岳特大型气藏的关键油气成藏条件与德阳—安岳克拉通内裂陷的发育及演化关系密切。德阳—安岳裂陷由川西海盆向川中、蜀南呈北西西向延伸,宽度50~300 km,南北长320 km,盆地范围内面积达6×104 km2,是一个区域拉张背景下受同沉积断裂控制的台内裂陷。先后经历了形成期、发育期及消亡期3个主要演化阶段,各演化阶段对安岳特大型气藏发育所必须的烃源灶、规模有效储层、区域盖层等石油地质要素的发育起到关键控制作用。
以德阳—安岳裂陷为核心,自晚震旦世至早寒武世中晚期形成了两套源—储—盖组合,且在这两套油气成藏组合中均获得重大发现,如在以灯影组台缘带为主要储集层的第一套成藏组合整体控制储量5 000×108 m3,台缘带控制含气面积1 500 km2。无论是对基础石油地质条件的控制还是后期勘探实践发现,均表明德阳—安岳裂陷槽相关的古裂陷、古隆起、古丘滩等对气藏的聚集成藏起到重要的控制,为塔里木盆地盐下油气勘探提供了重要借鉴。
-
与四川盆地晚震旦世—早寒武世发育的德阳—安岳克拉通内裂陷构造相比而言,塔里木盆地寒武系盐下无论在沉积充填序列还是关键油气成藏条件形成及配置组合方面均具有良好的相似性(表 1)。受南华纪初开始的罗迪尼亚超大陆裂解影响,位于相同古纬度的扬子板块与塔里木板块均发育了大规模台内裂陷,先后经历了裂陷形成期、发育期及消亡期,控制了各自岩相古地理的发育及演化。如前文所讨论,塔里木盆地自晚震旦世台地形成开始,先后经历了晚震旦世同裂谷充填阶段→震旦纪末抬升剥蚀→早寒武世初深水缓坡台地→早寒武世缓坡台地→中寒武世蒸发潟湖主导镶边台地5个重要演化阶段,与四川盆地德阳—安岳裂陷形成期、发育期及消亡期有着一一对应的关系。震旦纪末,塔里木盆地整体遭受柯坪运动引起的抬升剥蚀,较好保留了“两隆夹一坳”沉积格局的同时,也对上震旦统中缓坡丘滩带产生了重要的改造作用。柯坪运动发生的同时,四川盆地也整体遭受了桐湾运动II幕的剥蚀改造,使得裂陷槽周缘上震旦统灯影组微生物岩碳酸盐岩地层受到强烈同生岩溶改造。随着早寒武世早期全球性海泛的开始,发育了一套与四川筇竹寺层位相当的玉尔吐斯组烃源岩。四川盆地筇竹寺烃源岩的分布明显受控于沉积前地貌特征,裂陷槽内烃源岩厚度、生烃强度等指标均明显大于相邻区域。重新评价灯影组、龙王庙组天然气资源结果表明,资源总量达4.1~5.0×1013 m3,台内裂陷贡献资源量2.92~3.11×1013 m3,占比高达62%。而玉尔吐斯组分布面积高达22×104 km2,厚度10~15 m,局部更是可达30~50 m,规模更是十分可观。而且地球化学指标对比表明,玉尔吐斯组明显优于筇竹寺组烃源岩,TOC值达4%~16%,是筇竹寺组的2~3倍,被认为中国发现的最优质海相泥质烃源岩。随后塔里木盆地与四川盆地均发育了一套缓坡型碳酸盐岩台地沉积,即肖尔布拉克组、龙王庙组,为规模优质储层发育提供了重要物质基础。台地演化中后期,发育了覆盖全台地的蒸发潟湖沉积,构成了一套区域分布优质直接盖层,封盖能力明显优于四川盆地同期发育的高台组、洗象池组泥质岩及蒸发膏盐。
表 1 四川盆地与塔里木盆地晚震旦世—早寒武世石油地质要素对比表
Table 1. Comparison between Sichuan Basin and Tarim Basin petroleum geological background and elements through the Later Sinian to the Early Cambrian
地质要素 四川盆地 塔里木盆地 台内裂陷 晚震旦世灯影期发育德阳—安岳台内裂陷,面积6×104 km2 晚震旦世仍存在南华纪开始发育的阿满裂陷和昆仑山前裂陷[2],总面积超达14.8×104 km2 构造运动 桐湾运动导致灯影组地层被剥蚀,最强烈地区可剥至灯二段 中央隆起带及北部柯坪—温宿、轮台断隆等强烈剥蚀,裂陷区域与周缘有残留,分布较广 海平面变化 与台地演化 早寒武世初海泛,台地被淹没,形成全盆地分布的筇竹寺组优质烃源岩 早寒武世初海泛,台地被淹没,形成全盆地分布的玉尔吐斯组优质烃源岩 储集层 裂陷周缘灯影组微生物白云岩储层、早寒武世缓坡台地龙王庙组滩相白云岩储层 裂陷充填间歇期晚震旦世微生物—颗粒滩白云岩储层及早寒武世肖尔布拉克组丘滩相白云岩储层 烃源岩 裂陷内发育麦地坪组烃源岩,上覆海泛期筇竹寺烃源岩 裂陷内南华系—震旦系潜在烃源岩,上覆 玉尔吐斯组烃源岩 盖层 下寒武统筇竹寺组烃源岩构成灯影组气藏的盖层,高台组+洗象池组膏盐层构成龙王庙气藏的盖层 下寒武统玉尔吐斯组烃源岩构成上震旦统气藏的盖层,中下寒武统膏盐构成肖尔布拉克组气藏的区域盖层 圈闭 地层—岩性圈闭为主,构造高部位有利于油气富集 地层—岩性圈闭为主,构造高部位有利于油气富集 成藏组合 灯影组气藏(旁生侧储、下生上储),龙王庙组气藏 (下生上储) 与四川盆地相类似的两套成藏组合 -
储层作为最重要的油气成藏条件之一,其规模性及质量直接关系到油气聚集规模与丰度。塔里木盆地发育了两套与台内裂陷构造演化相关规模有效储层,与四川盆地德阳—安岳裂陷相伴生发育的两套主力储层无论在储层特征还是主控因素上均具有良好相似性。第一套储层是形成于晚震旦世裂后坳陷期分布于南北两高隆带的微生物岩和颗粒滩占主体的中缓坡丘滩带储层,面积达26 500 km2,与四川盆地灯四段微生物丘滩体储层特征和成因均可对比。储集岩性以微生物格架白云岩、颗粒白云岩及结晶白云岩为主,叠层石较为常见。储集空间以溶蚀孔洞、晶间孔隙、微生物岩相关孔隙及裂缝为主,多为原生孔隙、早表生组构选择性溶孔及晚表生溶蚀孔洞组合。微生物丘滩复合体构成为储层发育重要物质基础,与四川盆地桐湾运动Ⅱ幕(柯坪运动)相当的表生溶蚀作用使储层物性得到进一步的改善。“两隆夹一坳”的古地貌经玉尔吐斯期的填平补齐后变得更加平缓,发育了肖尔布拉克组碳酸盐岩缓坡泛丘滩储层,面积达9×104 km2。与四川盆地龙王庙组颗粒滩白云岩储层特征相类似,储集岩性以(藻)砂屑滩白云岩、颗粒白云岩、微生物白云岩、结晶白云岩等为主,有效储集空间以粒间溶孔、晶间溶孔、藻格架孔等为主。储层成因研究表明,台内丘滩相沉积和高频海平面升降相关的早表生溶蚀作用是肖尔布拉克组白云岩储层发育主因[25-26],这与龙王庙组颗粒滩储层的发育机理相似,相控特征明显。
进一步比较两套有效储层表明,肖尔布拉克组泛滩储层在规模、质量上均优于上震旦统中缓坡丘滩带储层。实钻井已证实肖尔布拉克组中缓坡丘滩带储层分布面积为上震旦统储层2~3倍、厚度更大,平均储地比达39.6%。这与经过柯坪运动剥蚀夷平、玉尔吐斯组进一步填平补齐作用所形成的宽缓古地貌密切相关,而目前对震旦系储层规模及厚度数据主要来自于野外露头,覆盖区发育情况仍需进一步评价。储层评价结果表明肖尔布拉克组储层以孔隙—孔洞为主的Ⅰ、Ⅱ储层,而震旦系优质储层主要发育于有利相带叠合表层风化壳位置,受后期多期次成岩改造,以中低孔—低渗为特征的Ⅲ类为主。
Tectonic-sedimentary Filling History through the Later Sinian to the Mid-Cambrian in Tarim Basin and Its Explorational Potential
-
摘要: 南华纪初,受罗迪尼亚(Rodinia)超级大陆裂解的影响,塔里木陆块进入强伸展构造演化阶段,陆内发育了北东—南西向裂谷体系,裂谷区与两侧高隆带构成“两隆夹一坳”古构造格局。这一古构造格局持续控制了晚震旦世至中寒武世碳酸盐岩沉积序列的充填、演化及油气成藏组合,应将受前寒武纪裂谷构造—沉积演化控制的系列碳酸盐岩台地作为一个成因整体进行系统研究。结果表明:晚震旦世—中寒武世碳酸盐岩台地先后经历了5个重要演化阶段,即晚震旦世同裂谷充填期、震旦纪末抬升剥蚀阶段、早寒武世初海侵深水缓坡型富泥质碳酸盐岩台地阶段、浅水缓坡型碳酸盐岩台地阶段,以及中寒武世蒸发潟湖占主导镶边型碳酸盐岩台地阶段。控制了两套烃源岩、两套储层及一套区域盖层的发育,即形成于震旦纪裂陷槽内潜在烃源岩和早寒武世深水缓坡阶段玉尔吐斯组烃源岩、震旦纪末期受剥蚀淋滤形成的上震旦统微生物丘滩相白云岩储层和早寒武世受岩相和早期云化联合控制的肖尔布拉克组丘滩相白云岩储层,以及中寒武统蒸发潟湖相蒸发岩盖层,构成了上、下两套有效油气成藏组合。与已获得重大突破的四川盆地同期德阳—安岳克拉通内裂陷沉积演化序列及油气成藏组合类比表明,与之具有良好的相似性,且主力烃源岩品质、直接盖层的封盖性能更优于安岳特大型气藏,认为塔里木盆地这一构造—沉积单元具有重要的勘探前景与地位,上部成藏组合更具现实勘探价值。Abstract: Tarim block evolved into a strong stretching stage affected by the Rodinia supercontinent cracking in the early Nanhua Period. The inter-platform rift system, oriented Northeast-Southwest, developed a "Two Uplifts and One Depression" tectonic framework with north and south high belts. The sedimentary filling sequence, evolution, and hydrocarbon accumulation in the Late Sinian to the Middle Cambrian carbonate platform is obviously affected by this tectonic framework. In this study, the carbonate sedimentary sequence underlying Mid-Cambrian Evaporite and controlled by the Pre-Cambrian rift tectonic-sedimentary evolution was considered to be an integral unit. This unit has experienced five evolution stages, including the Late Sinian carbonate ramp platform, denudation across the Sinian-Cambrian boundary, Early Cambrian deep-water muddy ramp and shallow-water carbonate ramp, and Mid-Cambrian evaporate lagoon dominated rimmed platform. High quality hydrocarbon source rocks in the Yuertusi Formation, an Upper Sinian and Lower Cambrian carbonate ramp mound-shoal facies dolomite reservoir, and Middle Cambrian evaporite caprock developed during the tectonic-sedimentary filling process and contains two sets of an effective accumulation combination. We propose that this dolomite sequence underlying the Mid-Cambrian resembles the Deyang-Anyue area in the Sichuan Basin, SW China, which has similar tectonic-sedimentary filling sequence and hydrocarbon accumulation assemblages. The quality of hydrocarbon source rock and direct cap rock is better than that of the Deayang-Anyue giant gas field, and the upper accumulation combination is of great realistic explorational potential.
-
图 1 塔里木盆地构造分区简图(a);南北向构造—地层结构剖面(TLM-Z250线)(b);地层综合柱状图(c)(据文献[2-3]修改汇编)
Figure 1. Sketch map of tectonic units in the Tarim Basin (a) with the location of south to north oriented structural-stratigraphic section (Line TLM-Z250) (b); and composite stratigraphic section of the Tarim Basin from the Pre-Cambrian through the Mid-Cambrian (c)
表 1 四川盆地与塔里木盆地晚震旦世—早寒武世石油地质要素对比表
Table 1. Comparison between Sichuan Basin and Tarim Basin petroleum geological background and elements through the Later Sinian to the Early Cambrian
地质要素 四川盆地 塔里木盆地 台内裂陷 晚震旦世灯影期发育德阳—安岳台内裂陷,面积6×104 km2 晚震旦世仍存在南华纪开始发育的阿满裂陷和昆仑山前裂陷[2],总面积超达14.8×104 km2 构造运动 桐湾运动导致灯影组地层被剥蚀,最强烈地区可剥至灯二段 中央隆起带及北部柯坪—温宿、轮台断隆等强烈剥蚀,裂陷区域与周缘有残留,分布较广 海平面变化 与台地演化 早寒武世初海泛,台地被淹没,形成全盆地分布的筇竹寺组优质烃源岩 早寒武世初海泛,台地被淹没,形成全盆地分布的玉尔吐斯组优质烃源岩 储集层 裂陷周缘灯影组微生物白云岩储层、早寒武世缓坡台地龙王庙组滩相白云岩储层 裂陷充填间歇期晚震旦世微生物—颗粒滩白云岩储层及早寒武世肖尔布拉克组丘滩相白云岩储层 烃源岩 裂陷内发育麦地坪组烃源岩,上覆海泛期筇竹寺烃源岩 裂陷内南华系—震旦系潜在烃源岩,上覆 玉尔吐斯组烃源岩 盖层 下寒武统筇竹寺组烃源岩构成灯影组气藏的盖层,高台组+洗象池组膏盐层构成龙王庙气藏的盖层 下寒武统玉尔吐斯组烃源岩构成上震旦统气藏的盖层,中下寒武统膏盐构成肖尔布拉克组气藏的区域盖层 圈闭 地层—岩性圈闭为主,构造高部位有利于油气富集 地层—岩性圈闭为主,构造高部位有利于油气富集 成藏组合 灯影组气藏(旁生侧储、下生上储),龙王庙组气藏 (下生上储) 与四川盆地相类似的两套成藏组合 -
[1] 王招明, 谢会文, 陈永权, 等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J].中国石油勘探, 2014, 19(2):1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001 Wang Zhaoming, Xie Huiwen, Chen Yongquan, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2):1-13. doi: 10.3969/j.issn.1672-7703.2014.02.001 [2] 杜金虎, 潘文庆.塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J].石油勘探与开发, 2016, 43(3):327-339. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603002 Du Jinhu, Pan Wenqing. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3):327-339. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603002 [3] jiang L, cai C F, worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7):2130-2157. doi: 10.1111/sed.12300 [4] 郭峰, 郭岭.柯坪地区肖尔布拉克寒武系层序及沉积演化[J].地层学杂志, 2011, 35(2):164-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201102007 Guo Feng, Guo Ling. Sequence stratigraphy and sedimentary evolution of the Cambrian system at the Xiaoerblak section in the Keping area[J]. Journal of Stratigraphy, 2011, 35(2):164-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201102007 [5] 宋金民, 罗平, 杨式升, 等.塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J].石油勘探与开发, 2014, 41(4):404-413. http://d.old.wanfangdata.com.cn/Periodical/syktykf201404003 Song Jinmin, Luo Ping, Yang Shisheng, et al. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(4):404-413. http://d.old.wanfangdata.com.cn/Periodical/syktykf201404003 [6] 杜金虎, 邹才能, 徐春春, 等.川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J].石油勘探与开发, 2014, 41(3):268-277. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403003 Du Jinhu, Zou Caineng, Xu Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3):268-277. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403003 [7] 邹才能, 杜金虎, 徐春春, 等.四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J].石油勘探与开发, 2014, 41(3):278-293. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403004 Zou Caineng, Du Jinhu, Xu Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403004 [8] 林畅松, 李思田, 刘景彦, 等.塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J].岩石学报, 2011, 27(1):210-218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101013 Lin Changsong, Li Sitian, Liu Jingyan, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1):210-218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101013 [9] 贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社, 1997:1-200. Jia Chengzao. Tectonic characteristics and petroleum Tarim Basin China[M]. Beijing:Petroleum Industry Press, 1997:1-200. [10] 翟明国.中国主要古陆与联合大陆的形成-综述与展望[J].中国科学(D辑):地球科学, 2013, 43(10):1583-1606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310004 Zhai Mingguo. The main old lands in China and assembly of Chinese unified continent[J]. Science China(Seri. D):Earth Sciences, 2013, 43(10):1583-1606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310004 [11] 何登发, 贾承造, 李德生, 等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质, 2005, 26(1):64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010 He Dengfa, Jia Chengzao, Li Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1):64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010 [12] 邹亚锐, 塔吉古丽, 邢作云, 等.塔里木新元古代-古生代沉积盆地演化[J].地球科学——中国地质大学学报, 2014, 39(8):1200-1216. http://d.old.wanfangdata.com.cn/Periodical/dqkx201408020 Zou Yarui, Ta Jiguli, Xing Zuoyun, et al. Evolution of sedimentary basins in Tarim during Neoproterozoic-Paleozoic[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(8):1200-1216. http://d.old.wanfangdata.com.cn/Periodical/dqkx201408020 [13] 夏林圻, 张国伟, 夏祖春, 等.天山古生代洋盆开启、闭合时限的岩石学约束:来自震旦纪、石炭纪火山岩的证据[J].地质通报, 2002, 21(2):55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002 Xia Linqi, Zhang Guowei, Xia Zuchun, et al. Constraints on the timing of opening and closing of the Tianshan Paleozoic oceanic basin:Evidence from Sinian and Carboniferous volcanic rocks[J]. Geological Bulletin of China, 2002, 21(2):55-62. doi: 10.3969/j.issn.1671-2552.2002.02.002 [14] 崔海峰, 田雷, 张年春, 等.塔西南坳陷南华纪-震旦纪裂谷分布及其与下寒武统烃源岩的关系[J].石油学报, 2016, 37(4):430-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201604002 Cui Haifeng, Tian Lei, Zhang Nianchun, et al. Nanhua-Sinian rift distribution and its relationship with the development of Lower Cambrian source rocks in the southwest depression of Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(4):430-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201604002 [15] 高林志, 郭宪璞, 丁孝忠, 等.中国塔里木板块南华纪成冰事件及其地层对比[J].地球学报, 2013, 34(1):39-57. http://d.old.wanfangdata.com.cn/Periodical/dqxb201301009 Gao Linzhi, Guo Xianpu, Ding Xiaozhong, et al. Nanhuan glaciation event and its stratigraphic correlation in Tarim Plate, China[J]. Acta Geoscientia Sinica, 2013, 34(1):39-57. http://d.old.wanfangdata.com.cn/Periodical/dqxb201301009 [16] 刘伟, 张光亚, 潘文庆, 等.塔里木地区寒武纪岩相古地理及沉积演化[J].古地理学报, 2011, 13(5):529-538. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201105007 Liu Wei, Zhang Guangya, Pan Wenqing, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011, 13(5):529-538. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201105007 [17] 何金有, 贾承造, 邬光辉, 等.新疆阿克苏地区震旦系风化壳古岩溶特征及其发育模式[J].岩石学报, 2010, 26(8):2513-2518. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008022 He Jinyou, Jia Chengzao, Wu Guanghui, et al. Characteristics and model of Sinian weathering paleo-karst in Aksu area, Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(8):2513-2518. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008022 [18] 李朋威, 罗平, 宋金民, 等.微生物碳酸盐岩储层特征与主控因素:以塔里木盆地西北缘上震旦统-下寒武统为例[J].石油学报, 2015, 36(9):1074-1089. http://d.old.wanfangdata.com.cn/Periodical/syxb201509005 Li Pengwei, Luo Ping, Song Jinmin, et al. Characteristics and main controlling factors of microbial carbonate reservoirs:A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(9):1074-1089. http://d.old.wanfangdata.com.cn/Periodical/syxb201509005 [19] 王小林, 胡文瑄, 陈琪, 等.塔里木盆地柯坪地区上震旦统藻白云岩特征及其成因机理[J].地质学报, 2010, 84(10):1479-1494. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201010009 Wang Xiaolin, Hu Wenxuan, Chen Qi, et al. Characteristics and formation mechanism of Upper Sinian algal dolomite at the Kalpin area, Tarim Basin, NW China[J]. Acta Geologica Sinica, 2010, 84(10):1479-1494. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201010009 [20] 朱光有, 陈斐然, 陈志勇, 等.塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J].天然气地球科学, 2016, 27(1):8-21. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002 Zhu Guangyou, Chen Feiran, Chen Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1):8-21. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002 [21] 刘文汇, 胡广, 腾格尔, 等.早古生代烃源形成的生物组合及其意义[J].石油与天然气地质, 2016, 37(5): 617-626. Liu Wenhui, Hu Guang, Tenger, et al. Organism assemblages in the Paleozoic source rocks and their implications[J]. Oil & Gas Geology, 2016, 37(5): 617-626. [22] 熊益学, 陈永权, 关保珠, 等.塔里木盆地下寒武统肖尔布拉克组北部台缘带展布及其油气勘探意义[J].沉积学报, 2015, 33(2):408-415. http://www.cjxb.ac.cn/CN/abstract/abstract3524.shtml Xiong Yixue, Chen Yongquan, Guan Baozhu, et al. Distribution of northern platform margin and implications to favorable exploration regions on Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Acta Sedimentologica Sinica, 2015, 33(2):408-415. http://www.cjxb.ac.cn/CN/abstract/abstract3524.shtml [23] 魏国齐, 杜金虎, 徐春春, 等.四川盆地高石梯-磨溪地区震旦系-寒武系大型气藏特征与聚集模式[J].石油学报, 2015, 36(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201501001 Wei Guoqi, Du Jinhu, Xu Chunchun, et al. Characteristics and accumulation modes of large gas reservoirs in Sinian-Cambrian of Gaoshiti-Moxi region, Sichun Basin[J]. Acta Petrolei Sinica, 2015, 36(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201501001 [24] 许海龙, 魏国齐, 贾承造, 等.乐山-龙女寺古隆起构造演化及对震旦系成藏的控制[J].石油勘探与开发, 2012, 39(4):406-416. http://d.old.wanfangdata.com.cn/Periodical/syktykf201204003 Xu Hailong, Wei Guoqi, Jia Chengzao, et al. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian Strata, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4):406-416. http://d.old.wanfangdata.com.cn/Periodical/syktykf201204003 [25] 郑剑锋, 沈安江, 刘永福, 等.多参数综合识别塔里木盆地下古生界白云岩成因[J].石油学报, 2012, 33(增刊2):145-153. http://d.old.wanfangdata.com.cn/Periodical/syxb2012z2014 Zheng Jianfeng, Shen Anjiang, Liu Yongfu, et al. Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim Basin, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl. 2):145-153. http://d.old.wanfangdata.com.cn/Periodical/syxb2012z2014 [26] 赵文智, 沈安江, 周进高, 等.礁滩储集层类型、特征、成因及勘探意义:以塔里木和四川盆地为例[J].石油勘探与开发, 2014, 41(3):257-267. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403001 Zhao Wenzhi, Shen Anjiang, Zhou Jingao, et al. Types, characteristics, origin and exploration significance of reef-shoal reservoirs:A case study of Tarim Basin, NW China and Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):257-267. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403001