Formation Mechanism of Cambrian-Ordovician Bioturbated Dolomites in North China
-
摘要: 华北地区寒武系和奥陶系发育了大量的生物扰动白云岩/生物扰动灰岩,选择两个代表性剖面——河南登封寒武系剖面和山西兴县奥陶系剖面进行碳酸盐岩系生物扰动成因研究。河南登封寒武系第二统朱砂洞组中的遗迹化石较单一,主要为Thalassinoides、含有少量Planolites;山西兴县中奥陶统马家沟组五5亚段中遗迹化石较丰富,识别出的遗迹化石共7个遗迹属,分别为Arenicolites、Cylindricum、Helminthopsis、Lorenzinia、Planolites、Teichichnus、Thalassinoides,其中Thalassinoides占主导地位。朱砂洞组主要为滨岸碳酸盐潮坪相,中奥陶统马家沟组五5亚段主要为局限台地相。通过野外地质考察及室内相关实验手段及方法,利用偏光显微镜、扫描电镜对生物潜穴及围岩进行了宏观和微观结构分析,发现生物潜穴内部主要为白云石,基质围岩主要为方解石,生物潜穴在野外露头上表现为颜色不一的斑块状。两个剖面大量发育遗迹化石Thalassinoides(海生迹),Thalassinoides的三维潜穴系统为白云石化流体提供了良好的运移通道,为回流渗透作用提供了有利条件,促进潜穴充填物白云石化,从而形成了大量豹皮状的生物扰动白云岩。
-
关键词:
- 寒武系 /
- 奥陶系 /
- 生物扰动 /
- 白云岩 /
- Thalassinoides(海生迹)
Abstract: A large number of bioturbated dolomites/bioturbated limestones were developed in the Cambrian and Ordovician in North China. Two representative stratal sections, Dengfeng (Cambrian) and Xingxian (Ordovician), were selected for study. Rocks are the cause of bioturbation. The trace fossils in the Cambrian series2 Zhushadong Formation in the Dengfeng Henan are relatively simple, mainly Thalassinoides along with a small amount of Planolites. Abundant fossil traces are present in submember 55 of the Middle Ordovician Majiagou Formation in the Xingxian section. Seven trace fossil ichnogenera were identified: Arenicolites, Cylindricum, Helminthopsis, Lorenzinia, Planolites, Teichichnus and Thalassinoides, of which Thalassinoides is dominant. The Lower Cambrian Zhushadong Formation from the Dengfeng section mainly occurs in the carbonate tidal flat and in the 55 submember of the Middle Ordovician Majiagou Formation from the Xingxian deposit in the carbonate platform. Field geological investigation and laboratory analysis by polarizing microscope and scanning electron microscope established the macro-and microstructure of the bioturbation in the surrounding rocks. Dolomite was predominant in the burrows, and calcite was the main material in the matrix. The burrows are seen in the outcrops as patches of different colors. The abundant three-dimensional burrowing system of Thalassinoides in both sections benefited the transport of dolomitization fluids and created favorable conditions for reflux osmosis, thus dolomitizing the burrow infill and forming a large number of bioturbated dolomite plaques.-
Key words:
- Cambrian /
- Ordovician /
- bioturbation /
- dolomite /
- Thalassinoides
-
图 3 河南登封寒武系第二统朱砂洞组生物扰动白云岩野外特征
(a)垂直层面的Thalassinoides;(b)平行层面的Thalassinoides,Tb.T型分支,Yb.Y型分支,VS.垂直潜穴;(c)(d)多期次的垂直层面的Thalassinoides殖居
Figure 3. Bioturbated dolomite in the Cambrian epoch 2 Zhushadong Formation in the Dengfeng area
(a) Thalassinoides in cross⁃sectional view; (b) Thalassinoides on bedding surface (Tb:T⁃branch; Yb:Y⁃branch; VS:vertical burrow); (c)(d) Thalassinoides in the cross⁃section representing multi⁃layer colonizers
图 4 山西兴县中奥陶统马家沟组五5亚段生物扰动白云岩野外特征
(a)垂直层面的Thalassinoides;(b)垂直层面的Thalassinoides(发育裂隙);(c)平行层面的Thalassinoides潜穴内大颗粒充填;(d)平行层面的Thalassinoides,Tb. T型分支,Yb. Y型分支,VS.垂直潜穴;(e)平行层面的Thalassinoides,潜穴分支处连接成网状;(f)平行层面的,多级潜穴覆盖,T1.第1期潜穴,T2.第2期潜穴
Figure 4. Bioturbated dolomites in the submember 55 of the Middle Ordovician Majiagou Formation in the Xingxian area
(a) Thalassinoides in cross-sectional view; (b) Thalassinoides in cross-sectional view, with fracture; (c) Thalassinoides on bedding surface filled with large grains; (d) Thalassinoides on bedding surface (Tb:T-branch; Yb:Y-branch; VS:vertical burrow); (e) Thalassinoides network on bedding surface; (f) two generations of Thalassinoides distinguished by their cross-cutting relationships, indicating two different colonization surfaces (T1:early generations of Thalassinoides; T2:later generations of Thalassinoides)
图 5 登封寒武系第二统朱砂洞组生物扰动白云岩微观结构特征
(a)(b)(f)生物潜穴内充填为白云石,基质为微晶灰岩;(c)~(e)潜穴内部充填的白云石
Figure 5. Microstructural characteristics of bioturbated dolomites from the Cambrian epoch 2 ZhushadongFormation in the Dengfeng area
(a)(b)(f) matrix consisting of micrite and Thalassinoides filled with dolomite; (c)-(e) dolomite dominant inside burrow
图 6 兴县中奥陶统马家沟组生物扰动白云岩微观结构特征
(a)(b)潜穴围岩边界,边界处可见生物碎屑;(c)沿潜穴发育的微裂隙;(d)潜穴中发现一些方解石斑晶;(e)方解石脉切穿潜穴和围岩;(f)潜穴围岩边界,围岩中有破碎的方解石脉体
Figure 6. Microstructural characteristics of bioturbated dolomites from the Middle Ordovician MajiagouFormation in the Xingxian section
(a)(b) bioclastics in the boundary of Thalassinoides burrow; (c) a microfracture developed along the burrow; (d) some calcite phenocrysts inside Thalassinoides burrow; (e) calcite veins intersecting burrow and matrix; (f) fragmented calcite veins at boundary of Thalassinoides burrow
图 7 XX井中奥陶统马家沟组生物扰动白云岩微观结构特征
(a)~(c)潜穴围岩边界发育裂隙;(d)潜穴围岩边界发育缝合线
Figure 7. Microstructural characteristics of bioturbated dolomites in the Middle Ordovician Majiagou Formation in well XX
(a)-(c) Cracks developed in the boundary of Thalassinoides burrow; (d) stylolites developed along the boundary of Thalassinoides burrow
图 8 登封寒武系第二统朱砂洞组生物扰动白云岩超微结构特征
(a)电镜中识别的潜穴围岩边界;(b)为(a)中方框部分面扫描图像,蓝色为Mg元素;(c)围岩中的方解石晶体;(d)为(a)中方框部面扫描图像,其中绿色为O元素、蓝色为Mg元素、红色为Ca元素;(e)~(h)潜穴内部的白云石晶体
Figure 8. Ultramicro characteristics of bioturbated dolomites from the Cambrian epoch 2 Zhushadong Formation in the Dengfeng area
(a)SEM image of Thalassinoides burrow boundary; (b) mapping image of inset in fig. (a) with Mg element in blue; (c) calcite crystals in surrounding rock; (d) mapping image of inset in fig. (a) (green=O; blue=Mg; red=Ca); (e)-(h) dolomite crystals inside burrow
图 9 山西兴县中奥陶统马家沟组生物扰动白云岩超微结构特征
(a)电镜中的潜穴围岩边界;(b)为(a)中方框部分面扫描图像,蓝色为Mg元素;(c)为(a)中方框部分面扫描图像,其中绿色为O元素、蓝色为Mg元素、红色为Ca元素;(d)围岩中的方解石晶体;(e)~(h)潜穴内部白云石晶体
Figure 9. Ultramicro characteristics of bioturbated dolomites from the Middle Ordovician Majiagou Formationin the Xingxian section
(a) SEM image of Thalassinoides burrow boundary; (b) mapping image of inset in fig.(a), with Mg element in blue; (c) mapping image of inset in fig. (a) (green=O; blue=Mg; red=Ca); (d) calcite crystals in surrounding rock; (e)-(h) dolomite crystals inside burrow
图 10 生物扰动对白云岩回流渗透的促进作用(棕色部分为沉积物,蓝色部分为水体)
(a)造迹生物在沉积物中掘穴;(b)造迹生物的掘穴作用形成三维连通的潜穴系统,白云岩化流体沿潜穴迁移;(c)潜穴充填物发生白云岩化作用
Figure 10. Promoting effect of bioturbation on reflux osmosis of dolomite
(a) organism burrows in sediment; (b) three-dimensional burrow system established; dolomitized fluids migrate along the burrows; (c) dolomitization in burrows
-
[1] Dolomieu D G de. Sur un genre des pierres calcaires tres peueffervescentes avec les acides et phosphorescentes par la collision[J]. Journal de Physique, 1791, 39(1):3-10. [2] Fairbridge R W. The dolomite question[M]. LeBlanc R J, Breeding J G. Regional Aspects of Carbonate Deposition: Special Publication Society of Economic Paleontologists and Mineralogists, 1957: 125-178. [3] Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4):361-368. doi: 10.1111-j.1365-2621.2011.02784.x/ [4] Boggs S U. Principles of sedimentology and stratigraphy[M]. 4th ed. Pearson Prentice Hall: Upper Saddle River, New Jersey, 2006: 1-600. [5] 卓鱼周, 赵红格, 李蒙, 等.白云石(岩)有机成因研究现状及进展[J].矿物岩石地球化学通报, 2015, 34(3):654-658. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201503028 Zhuo Yuzhou, Zhao Hongge, Li Meng, et al. Progress of the research on organic originated dolomite[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):654-658. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201503028 [6] 张亦凡, 马怡飞, 姚奇志, 等."白云石问题"及其实验研究[J].高校地质学报, 2015, 21(3):395-406. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201503004 Zhang Yifan, Ma Yifei, Yao Qizhi, et al. "Dolomite Problem" and experimental studies of dolomite formation[J]. Geological Journal of China Universities, 2015, 21(3):395-406. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb201503004 [7] 王茂林, 周进高, 陈冬霞, 等.白云石成因模式的研究进展及其适用性探讨[J].海相油气地质, 2013, 18(2):31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201302005 Wang Maolin, Zhou Jingao, Chen Dongxia, et al. Research advances of dolomite genesis models and discussion on applicable models[J]. Marine Origin Petroleum Geology, 2013, 18(2):31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201302005 [8] 何幼斌, 王文广.沉积岩与沉积相[M].北京:石油工业出版社, 2007:1-286. He Youbin, Wang Wenguang. Sedimentary rocks and sedimentary facies[M]. Beijing:Petroleum Industry Press, 2007:1-286. [9] 朱筱敏.沉积岩石学[M]. 4版.北京:石油工业出版社, 2008:1-478. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing:Petroleum Industry Press, 2008:1-478. [10] Nadson G A. Beitrag zur kenntnis der bakteriogenen kalkablagerungen[J]. Archiv fuer Hydrobiologie, 1928, 19:154-164. [11] Vasconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546):220-222. https://www.nature.com/articles/377220a0 [12] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804):623-626. http://cn.bing.com/academic/profile?id=e10dbfab69ff0e242af7584613e48aa8&encoded=0&v=paper_preview&mkt=zh-cn [13] Moore T S, Murray R W, Kurtz A C, et al. Anaerobic methane oxidation and the formation of dolomite[J]. Earth and Planetary Science Letters, 2004, 229(1/2):141-154. http://cn.bing.com/academic/profile?id=34243060fee3310a7f6ec5c71ef70f89&encoded=0&v=paper_preview&mkt=zh-cn [14] Yang M J, Stipp S L S, Harding J. Biological control on calcite crystallization by polysaccharides[J]. Crystal Growth & Design, 2008, 8(11):4066-4074. http://cn.bing.com/academic/profile?id=067e6c443c12e686eeedd0a6418a6496&encoded=0&v=paper_preview&mkt=zh-cn [15] Posenato R. Survival patterns of macrobenthic marine assemblages during the End-Permian mass extinction in the western Tethys (Dolomites, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1/2):150-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48d12aafd86dc0c61024680ddcc20c6e [16] Jones B. The preferential association of dolomite with microbes in stalactites from Cayman Brac, British West Indies[J]. Sedimentary Geology, 2010, 226(1/2/3/4:94-109. [17] Deng S C, Dong H L, Guo L, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria:Results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(3/4):151-159. [18] Hoffmann-Sell L, Birgel D, Arning E T, et al. Archaeal lipids in Neogene dolomites (Monterey and Sisquoc Formations, California)-Planktic versus benthic archaeal sources[J]. Organic Geochemistry, 2011, 42(6):593-604. [19] Słowakiewicz M, Mikołajewski Z. Upper Permian main dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland)[J]. Marine and Petroleum Geology, 2011, 28(8):1572-1591. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90a8ff93a82a3db21b3d5468045360d7 [20] Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Experimentally determined biomediated Sr partition coefficient for dolomite:Significance and implication for natural dolomite[J]. Geochimica et Cosmochimica Acta, 2011, 75(3):887-904. http://cn.bing.com/academic/profile?id=59b9b360af6a1c0d5918aa61efd85b81&encoded=0&v=paper_preview&mkt=zh-cn [21] Zhang F F, Yan C, Teng H H, et al. In situ AFM observations of Ca-Mg carbonate crystallization catalyzed by dissolved sulfide:Implications for sedimentary dolomite formation[J]. Geochimica et Cosmochimica Acta, 2013, 105:44-55. https://www.sciencedirect.com/science/article/pii/S001670371200662X [22] Wehrmann L M, Ockert C, Mix A C, et al. Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments (Bowers Ridge, IODP Exp. 323 Site U1341)[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 125-126:117-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32a9a06ef9e453eac6f7dfe492fa244c [23] Zheng X P, Arps P J, Smith R W. Adhesion of two bacteria onto dolomite and apatite:Their effect on dolomite depression in anionic flotation[J]. Mineral Processing, 2001, 62(1/2/3/4:159-172. http://cn.bing.com/academic/profile?id=64b4aeece56d65840c08351c4119d448&encoded=0&v=paper_preview&mkt=zh-cn [24] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4):277-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b0004fc6454efa403999e09a97a0110 [25] Váradyová Z, Štyriaková I, Kišidayová S. Effect of natural dolomites on the in vitro fermentation and rumen protozoan population using rumen fluid and fresh faeces inoculum from sheep[J]. Small Ruminant Research, 2007, 73(1/2/3):58-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7bc9392fa35f2195d49265c8d1483d28 [26] Bontognali T R R, Vasconcelos C, Warthman R J, et al. Microbes produce nanobacteria-like structures, avoiding cell entombment[J]. Geology, 2008, 36(8):663-670. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210188981/ [27] Kandianis M T, Fouke B W, Johnson R W, et al. Microbial biomass:A catalyst for CaCO3 precipitation in advection-dominated transport regimes[J]. Geological Society of America Bulletin, 2008, 120(3/4):442-450. [28] Sánchez-Román M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale:Implications for the geologic record[J]. Geology, 2008, 36(11):879-882. doi: 10.1111-j.1460-9568.2009.06854.x/ [29] Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planet and Science Letters, 2009, 285(1/2):131-139. http://cn.bing.com/academic/profile?id=e3657e554b65d748b583c120c8bfd940&encoded=0&v=paper_preview&mkt=zh-cn [30] Krause S, Liebetrau V, Gorb S, et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity:New insight into an old enigma[J]. Geology, 2012, 40(7):587-590. http://cn.bing.com/academic/profile?id=81543eeddaaba87a3aca6907e8a46308&encoded=0&v=paper_preview&mkt=zh-cn [31] 许杨阳, 刘邓, 于娜, 等.微生物(有机)白云石成因模式研究进展与思考[J].地球科学, 2018, 43(S1):63-70. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1007 Xu Yangyang, Liu Deng, Yu Na, et al. Advance and review on microbial/organogenic dolomite model[J]. Earth Science, 2018, 43(S1):63-70. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1007 [32] 由雪莲, 孙枢, 朱井泉, 等.微生物白云岩模式研究进展[J].地学前缘, 2011, 18(4):52-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104005 You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4):52-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104005 [33] 翟淳.论豹皮灰岩的形成[J].北京地质学院学报, 1961(13):90-112. http://www.cnki.com.cn/Article/CJFDTotal-DQKX196100008.htm Zhai Chun. On the formation of leopard skin limestone[J]. Journal of Beijing Institute of Geology, 1961(13):90-112. http://www.cnki.com.cn/Article/CJFDTotal-DQKX196100008.htm [34] 王尧, 潘正甫.华北地台中部曲阳奥陶系碳酸盐岩石学及沉积相特征[J].地质科学, 1980(3):218-231. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198003002.htm Wang Yao, Pan Zhengfu. Petrography of Ordovician carbonate rocks and the characteristics of sedimentary facies in the central part of North China platform[J]. Scientia Geologica Sinica, 1980(3):218-231. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198003002.htm [35] 贾振远, 马淑媛.山东莱芜地区下古生界豹斑灰岩的成因及其意义[J].地质论评, 1984, 30(3):224-228. http://d.old.wanfangdata.com.cn/Periodical/OA000005839 Jia Zhenyuan, Ma Shuyuan. The origin and significance of Lower Paleozoic patchy limestone in Laiwu, Shandong province[J]. Geological Review, 1984, 30(3):224-228. http://d.old.wanfangdata.com.cn/Periodical/OA000005839 [36] 李定龙, 杨为民, 程学丰, 等.试经奥陶纪豹皮灰岩的古岩溶成因[J].地质论评, 1999, 45(5):463-469. http://d.old.wanfangdata.com.cn/Periodical/OA000002031 Li Dinglong, Yang Weimin, Cheng Xuefeng, et al. A discussion on the genesis of the leopard fur limestone of Ordovician period in northern Anhui, China[J]. Geological Review, 1999, 45(5):463-469. http://d.old.wanfangdata.com.cn/Periodical/OA000002031 [37] 郝毅, 林良彪, 周进高, 等.川西北中二叠统栖霞组豹斑灰岩特征与成因[J].成都理工大学学报(自然科学版), 2012, 39(6):651-656. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201206014 Hao Yi, Lin Liangbiao, Zhou Jingao, et al. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation, Northwest Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(6):651-656. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb201206014 [38] 龙刚, 黄萍, 林剑怀, 等.徐州地区寒武系豹皮灰岩的岩性特征及其成因机制分析[J].地质学刊, 2013, 37(1):67-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201301009 Long Gang, Huang Ping, Lin Jianhuai, et al. Lithologic characteristics of leopard limestone in Cambrian Period and analysis of its formation mechanism in Xuzhou area[J]. Journal of Geology, 2013, 37(1):67-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201301009 [39] 陈云峰, 吴淦国, 王根厚.北京周口店豹皮灰岩的变形特征[J].地质通报, 2007, 26(6):769-775. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200706020 Chen Yunfeng, Wu Ganguo, Wang Genhou. Deformation characteristics of leopard limestone in Zhoukoudian, Beijing, China[J]. Geological Bulletin of China, 2007, 26(6):769-775. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200706020 [40] 陈战杰, 张镔.关于"豹皮灰岩"的成因[J].矿物岩石, 1991, 11(2):41-46. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199102006.htm Chen Zhanjie, Zhang Bin. On the origin of the Baopi limfstone[J]. Mineralogy and Petrology, 1991, 11(2):41-46. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199102006.htm [41] 王起琮, 闫佐, 宁博, 等.鄂尔多斯盆地奥陶系马家沟组豹皮灰岩特征及其成因[J].古地理学报, 2016, 18(1):39-48. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601003 Wang Qicong, Yan Zuo, Ning Bo, et al. Characteristics and genesis of leopard limestone of the Ordovician Majiagou Formation in Ordos Basin[J]. Journal of Palaeogeography, 2016, 18(1):39-48. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201601003 [42] 齐永安, 孟瑶, 代明月, 等.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造[J].地质科技情报, 2014, 33(5):1-8. http://d.old.wanfangdata.com.cn/Thesis/D739739 Qi Yong'an, Meng Yao, Dai Mingyue, et al. Biogenic leopard patch structures from the Zhushadong Formation (Cambrian series 2), Dengfeng area, western Henan[J]. Geological Science and Technology Information, 2014, 33(5):1-8. http://d.old.wanfangdata.com.cn/Thesis/D739739 [43] 武永强, 吴卓丹.太原西山奥陶系豹皮灰岩的成因[J].山西矿业学院学报, 1995, 13(2):161-166. http://www.cnki.com.cn/Article/CJFDTotal-SXKY199502010.htm Wu Yongqiang, Wu Zhuodan. The origin of baopi-limestones in Ordovician of Taiyuan Xishan[J]. Shanxi Mining Institute Learned Journal, 1995, 13(2):161-166. http://www.cnki.com.cn/Article/CJFDTotal-SXKY199502010.htm [44] 陈曦, 吕波, 黄素, 等.陕西韩城-旬邑地区中奥陶统马家沟组豹斑白云岩研究[J].新疆地质, 2011, 29(2):222-225. http://d.old.wanfangdata.com.cn/Periodical/xjdz201102021 Chen Xi, Lü Bo, Huang Su, et al. Study of leopard fur dolomite in Mid-Ordovician Majiagou Formation Hancheng-Xunyi distinct in Shanxi province[J]. Xinjiang Geology, 2011, 29(2):222-225. http://d.old.wanfangdata.com.cn/Periodical/xjdz201102021 [45] 董小波, 牛永斌.豫西北奥陶系马家沟组三段豹斑灰岩的生物潜穴成因及成岩演化[J].现代地质, 2015, 29(4):833-843. http://d.old.wanfangdata.com.cn/Periodical/xddz201504012 Dong Xiaobo, Niu Yongbin. Biological burrow explanation of leopard limestone and its diagenetic evolution in the third member of Majiagou Formation in Ordovician, northwest of Henan province[J]. Geoscience, 2015, 29(4):833-843. http://d.old.wanfangdata.com.cn/Periodical/xddz201504012 [46] Rameil N. Early diagenetic dolomitization and dedolomitization of late Jurassic and earliest cretaceous platform carbonates:A case study from the Jura Mountains (NW Switzerland, E France)[J]. Sedimentary Geology, 2008, 212(1/2/3/4):70-85. http://cn.bing.com/academic/profile?id=76a92c7f0a9e5b837ab2c06c3f39424f&encoded=0&v=paper_preview&mkt=zh-cn [47] Baniak G M, Gingras M K, Pemberton S G. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada[J]. Marine and Petroleum Geology, 2013, 48:275-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe487d04dd4082e55b58f4603848d751 [48] Gingras M K, Pemberton S G, Muelenbachs K, et al. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada[J]. Geobiology, 2004, 2(1):21-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5005771af967063dd690c54b289c88f [49] Jin J S, Harper D A T, Rasmussen J A, et al. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 367-368:73-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1701f2ca6f228dcdcec12d02d86c0b36 [50] 裴放, 张海清, 阎国顺, 等.河南省地层古生物研究第3分册早古生代(华北型)[M].郑州:黄河水利出版社, 2008:1-302. Pei Fang, Zhang Haiqing, Yan Guoshun, et al. The third Paleozoic study of stratigraphic paleontology in Henan province (Early Paleozoic)[M]. Zhengzhou:The Yellow River Water Conservancy Press, 2008:1-302. [51] 张秉贤.豫西南下寒武统朱砂洞组沉积环境与源区特征[D].北京: 中国地质大学(北京), 2018: 1-61. http://cdmd.cnki.com.cn/Article/CDMD-11415-1018084034.htm Zhang Bingxian. Sedimentary environment and source region characteristics of the Lower Cambrian Zhushadong Formation in Southwest Henan province[D]. Beijing: China University of Geosciences (Beijing), 2018: 1-61. http://cdmd.cnki.com.cn/Article/CDMD-11415-1018084034.htm [52] 孟瑶.豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造[D].焦作: 河南理工大学, 2014, 1-82. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201405001.htm Meng Yao. Biogenic leopard patch structures from the Zhushadong Formation (Cambrian series 2), Dengfeng area, western Henan[D]. Jaozuo: Henan Polytechnic University, 2014: 1-82. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201405001.htm [53] 徐论勋.晋西兴县奥陶系石油地质综合研究[M].北京:石油工业出版社, 2004:1-133. Xu Lunxun. A comprehensive study on the petroleum geology of the Ordovician System in Xing-xian, Shanxi[M]. Beijing:Petroleum Industry Press, 2004:1-133. [54] 胡斌, 王冠忠, 齐永安.痕迹学理论与应用[M].徐州:中国矿业大学出版社, 1997:1-198. Hu Bin, Wang Guanzhong, Qi Yong'an. Ichnology theory and application[M]. Xuzhou:China University of Mining and Technology Press, 1997:1-198. [55] 杨式溥, 张建平, 杨美芳.中国遗迹化石[M].北京:科学出版社, 2004:1-353. Yang Shipu, Zhang Jianping, Yang Meifang. Trace fossils of China[M]. Beijing:Science Press, 2004:1-353. [56] Taylor A M, Goldring R. Description and analysis of bioturbation and ichnofabric[J]. Journal of the Geological Society, 1993, 150(1):141-148. [57] Ekdale A A, Bromley R G. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 192(1/2/3/4):221-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1112888e4f1f050efe75b4a6ea0bfb1 [58] Cherns L, Wheeley J R, Karis L. Tunneling trilobites:Habitual infaunalism in an Ordovician carbonate seafloor[J]. Geology, 2006, 34(8):657-660.