-
峨嵋台地西部,黄河西岸的申东砂场、段家村、北伏蒙村和黄河东岸的杨范村、南赵村等地,河湖相地层出露清楚,被厚层黄土/古土壤系列所覆盖,最老黄土为L14~L11(图 2a~d),时代相当于1.2~0.95 Ma(早更新世晚期)[13, 26-27]。在三门盆地的东部,黄河南岸的会兴沟,河湖相地层之上覆盖的最老古土壤为S8(图 2x),时代相当于0.78 Ma(中更新世早期)[15]。
图 2 侯马—运城盆地内部及周围的实测剖面
Figure 2. Stratigraphic column correlation in the Houma-Yuncheng Basin and adjacent areas
上述剖面显示,峨嵋台地和三门盆缘河湖相地层被不同时代的黄土或古土壤覆盖,说明湖水进退与局部构造抬升关系更为密切,而与气候变化的关系不大。黄土/古土壤系列时代差异主要反映的应是构造抬升的先后而非特定的气候事件。
然而,野外详细考察表明,侯马—运城盆地及邻近的临汾盆地、渭河盆地、三门盆地等绝大部分地区,广泛出露被S2(约200 ka)以来的黄土/古土壤覆盖河湖相地层(图 2h→l,n→v),北抵禹门口附近的河津(九龙公园,图 2g),南至三门盆地东侧的黄底沟(三门峡西侧,图 2u),东达临汾盆地的襄汾丁村(丁村人化石及石器出土处,图 2n),西及渭河盆地的大荔(大荔人化石及石器出土处,图 2r)。表明侯马—运城盆地曾与邻近的临汾盆地、渭河盆地、三门盆地连成浩瀚的汾渭古湖。该古湖在200 ka前后突然退却,目前仅残留运城以南的盐湖。
-
侯马—运城盆地在约200 ka大湖退后,沉积环境由连续水下沉积转为广泛剥蚀。运城盐湖作为汾渭古湖孑余部分,保留了沉积环境突变前后的完整记录。为了探寻该特殊事件前后的古环境和构造活动,本文在残留湖泊(运城盐湖)进行了钻探。
-
钻孔位于运城盐湖北缘(34°57.318' N、110°51.985' E),钻孔进深200 m,整体取芯率在95%以上。在野外以10 cm的间距对岩芯采样并进行磁化率测量,在室内开展粒度、色度、烧失量和微量元素等古环境替代性指标测试;并进行磁性地层学和光释光(OSL)定年(图 3、表 1)。
图 3 盐湖钻孔环境替代性指标及年代学测试结果
Figure 3. Environmental proxies and chronologic results for the Salt Lake borehole
表 1 盐湖钻孔及黄土剖面光释光测年结果
Table 1. OSL dating results of the Salt Lake borehole and loess profiles
地点 样品编号 埋深/m U含量/×10-6 Th含量/×10-6 K含量/×10-6 实测含水量/% 环境剂量率(Gy/ka) 等效剂量(Gy) 年龄/ka 盐湖钻孔 D5-12 5.49 2.10 6.65 1.79 15.70 2.19 69.64±5.70 31.80±2.60 盐湖钻孔 D13-8 19.90 2.00 9.90 1.67 21.20 2.14 134.87±11.10 63.02±5.20 盐湖钻孔 D18-19 30.00 3.10 10.80 1.54 17.80 2.33 241.16±30.50 103.50±13.10 盐湖钻孔 D20-12 33.40 2.20 10.80 1.84 19.40 2.38 269.18±21.40 113.10±9.00 盐湖钻孔 D27-6 48.40 2.20 10.85 2.02 9.40 2.63 380.98±44.30 144.86±16.80 夹马口 JMK 7.50 2.90 11.29 1.98 4.64 4.36 390.76±26.38 89.52±6.04 景花堡 JH-上 4.00 3.20 12.90 1.85 8.00 3.08 123.50±6.70 40.10±2.20 景花堡 JH-下 7.00 3.20 10.90 1.63 10.60 2.73 294.25±36.10 107.78±13.20 磁化率的高低主要取决于磁性矿物种类及含量,是恢复古气候、古环境的重要替代性指标[29-30]。对不同类型、大小及地域的湖泊而言,其沉积物中的磁性矿物的来源及所处的水动力条件往往存在差异,使得磁化率的指示意义有所不同[31-32]。因此,湖泊沉积物的磁化率作为环境替代性指标时必须与其他指标相结合才更具说服力。本文采用加拿大产的KT-10手持磁化率仪以10 cm间距对岩芯进行磁化率原位测试,每测点测量3次,取其均值,若偏差较大,重新测量。测试点共1 848个。
粒度是表征沉积物颗粒大小的参数,取决于沉积环境及搬运方式,是古环境研究的重要替代性指标[33-35]。本文采用英国Malvern公司生产的Malvern3000激光粒度仪进行测试,测样间距20 cm,共测试样品953个。本文选择变化较为明显的中值粒径指标(图 3)。
色度是表征沉积物颜色的指标,主要取决于沉积物各组分类型(如有机质、Fe、Ca等)及含量。研究表明,湖相沉积物的色度指标与米兰科维奇曲线及深海氧同位素(MIS)曲线有很好的对应关系[36-37],反映古温度和古湿度[38-39],可作为气候变化的替代性指标。本文采用CR-10型分光光度计进行湿色度测量,测样间距20 cm,测试样品共925个,测量结果以CIE1976(L*a*b*)表色系统显示。本文选择变化较为明显的L*值(亮度)指标(图 3)。
烧失量(Loss on Ignition,LOI)指在高温条件下灼烧足够长的时间后失去的质量占原始样品质量的百分比,用于表征有机物或碳酸盐在加热后物理蒸发或化学分解释放出来的气态产物(如内在水、SO2、CO2等)的多寡,通常与其他环境指标相结合来获取古环境信息[40-41]。本文以约50 cm间距取样,首先将样品放置于105 ℃烘箱中12 h烘干,然后放入马弗炉550 ℃灼烧2 h,计算灼烧后损失质量所占百分比(LOI550)。测试结果代表有机碳在样品中的含量。
湖泊沉积物中特定微量元素的丰度变化,也是古气候、古环境变化的重要指标[42-43]。其中Sr/Ba值通常反映了湖泊水位或盐度变化,Sr/Ba值增大,代表湖泊水位降低,蒸发量加大,湖水趋于咸化;反之亦然[44-45]。本文以约1 m间距采集0~-100 m岩芯样品共计100个,利用ICP-MS进行微量元素测试。测试结果如图 3所示。
宏观特征与实验室测试结果表明,钻孔岩性以湖相黏土和河流相砂层为主;岩芯整体上可分4段:
第1段深-32~0 m,以棕色调为主,粒度较细,主要为粉砂和黏土,底部青灰色砂层中含腹足类化石;实验室指标显示,约在-30 m深度,中值粒径和亮度L*突然增大,此后中值粒径缓慢增大;磁化率逐渐减小;亮度L*和Sr/Ba值持续增大;LOI550在波动中渐小。暗示湖盆收缩,水体孤立,有机质减少,湖水咸化,从还原环境向氧化环境过渡,逐渐发展到现今所见的盐湖。
第2段深-55~-32 m,颜色以灰黑—青灰色为主,色调较暗,粒度较细,含腹足类化石;自下而上中值粒径波动不大,总体相对较细;磁化率逐渐减小;亮度L*整体稳定;LOI550波动中增大;Sr/Ba值逐渐变小。反映了湖水由浅变深和有机质波动性缓慢增加的过程,可能与泥沙补给减少有关,即进入湖盆的径流量减少。
第3段深-142~-55 m,与第2段特征有较大的差别,岩性以青灰色黏土和粉砂质黏土为主,夹有若干中细砂层,砂层水平层理及斜层理发育,显示河流和湖泊沉积互层,腹足类化石多见。粒度、磁化率、亮度及LOI550指标旋回性明显,Sr/Ba值稳定在较低水平,反映沉积环境较稳定。可能属于古气候周期性变化控制下以浅湖—沼泽—河流相为主的大湖期沉积环境。
第4段深-200~-142 m,各项指标呈周期性变化。自下而上,色调变深,粒度渐细,磁化率降低,LOI550波动中增大;亮度L*中部较低,上下较高。总体上显示出水动力波动性减弱和河流相为主向深湖相为主过渡的趋势。
从整体上看,盐湖钻孔上部环境替代性指标(中值粒径、磁化率、亮度和烧失量)与深海氧同位素具有很好的可对比性;下部沉积物粒度较粗,可对比性稍差。特别明显的是,第3、4段磁化率和与中值粒径呈反相关;第1、2段两者呈正相关,可能与物源改变有关。
-
光释光(OSL)测年技术经过30多年的发展,已经广泛应用于黄土[46-49]、河流阶地[50-52]、冰川[53-54]及湖泊[55-56]沉积物的年代测定。本文测试光释光样品8个(表 1)。样品的预处理及测定均在中山大学地球科学与工程学院光释光实验室完成。
盐湖钻孔-33 m处光释光年龄为110 ka左右,-48 m处光释光年龄为144 ka左右(表 1),由于光释光测年范围的限制,石英无法获取更老的年龄,结合环境替代性指标与氧同位素曲线对比结果(图 3)推断,第2段底界(-55 m)年龄应为200 ka左右,第3段底界(-142 m)年龄应为600 ka左右。因此,-33 m界线对应于地表S1古土壤;-55 m界线对应S2古土壤,-142 m界限对应S5古土壤。
磁性地层学样品利用2 cm×2 cm×2 cm无磁立方体盒在切开平整的岩芯面上以约50 cm间距按入岩芯取样。砂层取样间距稍大,具体间距视岩芯状况而定,共采集古地磁样品337块。通过2G-755超导岩石磁力仪进行交变退磁,最大退磁场为100~140 mT,退磁间隔在低场强阶段选择2~3 mT,高场强阶段选择5~10 mT。测试于中国科学院青藏高原研究所大陆碰撞与高原隆升重点实验室完成。钻孔样品磁倾角随深度变化如图 3所示。
磁性地层学结果显示,盐湖钻孔记录了Laschamp、Blake、Big Lost等极性倒转事件。其中Laschamp和Blake事件可以和光释光测年结果相互印证;在-150 m深处记录的两个极性倒转事件,在环境替代性指标曲线中对应MIS15,时代与Big Lost相当。在-190 m左右的两个极性倒转事件对应MIS17,相当于古土壤S6,与前人[57-58]在三门峡地区黄土磁性地层学结果有较好的一致性。因此,盐湖钻孔底部年龄大约为0.7 Ma。
-
(1)第1段/第2段交界的突变
第2段以灰黑—青灰色为主,而第1段则以棕色为主;第2段粒度较细,亮度L*和Sr/Ba值都较低;进入第1段后,粒度逐渐变粗,亮度L*和Sr/Ba值猛然增加。暗示距今约100 ka前后,运城盆地由开放变为封闭,湖泊快速缩小,沉积环境由还原向氧化转变,湖水以蒸发方式排泄而咸化。
(2)第2段/第3段交界的突变
从第3段到第2段,Sr/Ba值突然增加,结合黄土/河湖相层的空间分布,表明距今约200 ka时汾渭浅水大湖沉积戛然而止,运城盆地迅速转为深水小湖沉积环境,并由补偿型大湖突变为非补偿型小湖。
(3)第3段/第4段的古环境变化
第4段古环境指标曲线虽有波动,但总体上粒度逐渐变细,烧失量逐渐变大,反映的应是水体不断加深过程;而第3段岩性变化较小,以青灰色细粒沉积物为主,下部夹有棕褐色沉积,磁化率、亮度L*及LOI550曲线具有旋回特征,应为气候变化控制下的大湖环境。表明运城盆地距今0.7 Ma~0.6 Ma期间由动荡的河湖相沉积转为稳定大湖相沉积。
Depositional Characteristics of the Houma-Yuncheng Basin and Its Response to Tectonic Activity, Climate Change, and River Evolution
-
摘要: 侯马-运城盆地为晚新生代以来强烈下沉的盆地,现今却大面积遭受剥蚀,有悖于构造下沉接受沉积的常理。为探究其原因,在对侯马-运城盆地及邻区20多个黄土剖面进行野外测量及年代对比的基础上,选择运城盐湖北缘进行连续钻探,开展钻孔岩芯的粒度、磁化率、色度、烧失量及微量元素环境替代性指标分析,并进行光释光及磁性地层学综合定年,同时与前人在侯马-运城盆地的近50个钻孔进行了对比。结果表明,盐湖钻孔200 m岩芯代表了大约距今0.7 Ma以来的沉积。55~200 m深度(约距今0.2~0.7 Ma)岩芯反映受气候旋回影响为主的宽阔河湖沉积环境,指示侯马-运城盆地曾与邻近的渭河盆地、三门盆地连成浩瀚的汾渭古湖;55 m深度以上(约0.2 Ma以后)突然转为以河流相为主的沉积环境,这是由于三门峡谷河流溯源侵蚀贯通三门盆地,导致湖水下泄,使盆地发生大面积湖退,从长期沉积转向广泛剥蚀,并被S2以来黄土/古土壤披盖。研究区盆岭空间分布分析揭示,早期北东东向隆起-凹陷被晚期北北东向隆起-凹陷叠加,隆起叠加处构成较强抬升区(峨嵋台地等),披盖不同时期的黄土或古土壤;凹陷叠加区则构成强烈沉降区,如运城盐湖因强烈下沉而封闭和咸化。其构造叠加可能与鄂尔多斯地块运动方式有关。距今约8 Ma前,青藏地块向东北方向与鄂尔多斯地块发生强烈碰撞,在来自青藏高原深部地幔流的配合下,可能使鄂尔多斯地块向东北方向移动,一方面使北东东向汾渭盆地进一步拉张;另一方面与华北克拉通构成右旋力偶,拉裂成北北东雁行排列的山西地堑系。两者于侯马-运城盆地叠加,形成隆起与凹陷的叠加构造地貌格局。Abstract: Despite its high average accumulation rate, the Houma-Yuncheng Basin in the southeastern Ordos Block in northern China is surprisingly experiencing intensive erosion, rather than being in a depositional state, with fluvio-lacustrine deposition terminated and covered by S2 paleosol in most areas of the basin, based on the stratigraphic and chronologic correlation among more than 20 loess/paleosol profiles in the basin and adjacent areas (Weihe Basin to the west and Sanmen Basin to the south). To address how such erosional/depositional transformation occurred, we carried out 200-m-depth continuous borehole drilling in the northern margin of the Salt Lake in Yuncheng Basin, associated with the integrate analysis of grain size, magnetic susceptibility, chroma proxy, and loss on ignition, as well as the OSL and magnetostratigraphic chronologies, added to data from more than previous 50 boreholes. An abrupt change from typical lacustrine sedimentary rhythms to fluvial alternating fine and medium grained dominance occurred at the depth of 55 m with an age of about 0.2 Ma, which is interpreted to be the rapid regression of a large paleolake drainage that exposed the lacustrine sediments in the Houma-Yuncheng Basin and its adjacent basins, by the headward erosion of the downstream river along the Sanmen Gorge. Spatial distribution of basins/ranges with their estimation of the relative uplift/subsidence rates of the Houma-Yuncheng Basin and its adjacent areas reveals that an early east-northeast(ENE)uplift-depression was superimposed by the late northnortheast(NNE)one around ~8 Ma. The superimposed uplift area presented higher local uplifts(e.g., the E'mei Platform within the Houma-Yuncheng Basin)where the loess/paleosol accumulated in various thicknesses, whereas the superimposed depressed areas were subjected to more intensive subsidence, non-compensated deposition, and isolated lakes, i.e. the Salt Lake, in the Yuncheng Basin. The tectonic superposition is likely related to the motor pattern of the Ordos Block. The extrusion of the lithosphere mantle beneath the Ordos Block due to the subduction of the India Plate to the Eurasian Plate pushed the Ordos block northeastward and led to ENE rifting to the southeast(e.g. the Houma-Yuncheng Basin). Furthermore, the dextral stress couple derived from the northeastward motion of the Ordos Block on the North China Craton resulted in the initial extension of the Shanxi Graben System. Consequently, the NNE trending uplift-depression superposed on the early ENE one, forming a complicated tectonic geomorphic pattern of the study area.
-
图 1 侯马—运城盆地构造地貌及汾渭盆地东西向剖面简图
F1.华山山前断裂,F2.温塘—会兴断裂,F3.渭河断裂,F4.中条山南缘断裂,F5.中条山北缘断裂,F6.临晋断裂,F7.太阳—翟店断裂,F8.韩城断裂,F9.罗云山断裂;相对升降速率=(剖面湖相层顶面海拔—参照点湖相层顶面海拔)/上覆黄土年代,参照点位于红色五角星处,参照剖面见图 2l;黄边三角为前人钻孔或剖面[9-16],余下为本文实测。空心三角为较长时间段(S2之前,一般为S5~S10)之下河湖相顶面计算的平均速率(似速率);实心三角为较短时间段(S2)之下的河湖相顶面计算的平均速率(接近真速率),一般而言,真速率 > 似速率[17]
Figure 1. Topographic map of the Houma-Yuncheng Basin and the east-west (E-W) trending section of the Fenwei Basin
图 4 侯马—运城盆地南北向剖面图
B-B′剖面位置见图 1b,C-C′剖面和D-D′剖面位置见B-B′剖面
Figure 4. The north-south (N-S) trending cross sections of the Houma-Yuncheng Basin
表 1 盐湖钻孔及黄土剖面光释光测年结果
Table 1. OSL dating results of the Salt Lake borehole and loess profiles
地点 样品编号 埋深/m U含量/×10-6 Th含量/×10-6 K含量/×10-6 实测含水量/% 环境剂量率(Gy/ka) 等效剂量(Gy) 年龄/ka 盐湖钻孔 D5-12 5.49 2.10 6.65 1.79 15.70 2.19 69.64±5.70 31.80±2.60 盐湖钻孔 D13-8 19.90 2.00 9.90 1.67 21.20 2.14 134.87±11.10 63.02±5.20 盐湖钻孔 D18-19 30.00 3.10 10.80 1.54 17.80 2.33 241.16±30.50 103.50±13.10 盐湖钻孔 D20-12 33.40 2.20 10.80 1.84 19.40 2.38 269.18±21.40 113.10±9.00 盐湖钻孔 D27-6 48.40 2.20 10.85 2.02 9.40 2.63 380.98±44.30 144.86±16.80 夹马口 JMK 7.50 2.90 11.29 1.98 4.64 4.36 390.76±26.38 89.52±6.04 景花堡 JH-上 4.00 3.20 12.90 1.85 8.00 3.08 123.50±6.70 40.10±2.20 景花堡 JH-下 7.00 3.20 10.90 1.63 10.60 2.73 294.25±36.10 107.78±13.20 -
[1] Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20):2905-2930. doi: 10.1029/JB082i020p02905 [2] Peltzer G, Tapponnier P, Zhang Z T, et al. Neogene and Quaternary faulting in and along the Qinling Shan[J]. Nature, 1985, 317(6037):500-505. doi: 10.1038/317500a0 [3] 韩恒悦, 张逸, 袁志祥.渭河断陷盆地带的形成演化及断块运动[J].地震研究, 2002, 25(4):362-368. doi: 10.3969/j.issn.1000-0666.2002.04.010 Han Hengyue, Zhang Yi, Yuan Zhixiang. The evolution of Weihe down-faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 2002, 25(4):362-368. doi: 10.3969/j.issn.1000-0666.2002.04.010 [4] 李永善.西安地裂及渭河盆地活断层研究[M].北京:地震出版社, 1992. Li Yongshan. Research on ground fissures in Xi'an region and active faults in Weihe Basin[M]. Beijing:Seismological Press, 1992. [5] 王书兵, 蒋复初, 吴锡浩, 等.三门组的内涵及其意义[J].第四纪研究, 2004, 24(1):116-123. doi: 10.3321/j.issn:1001-7410.2004.01.016 Wang Shubing, Jiang Fuchu, Wu Xihao, et al. The connotation and significance of Sanmen Formation[J]. Quaternary Sciences, 2004, 24(1):116-123. doi: 10.3321/j.issn:1001-7410.2004.01.016 [6] 易学发, 苏刚, 王卫东, 等.西安地裂缝带的基本特征与形成机制[J].地震地质, 1997, 19(4):289-295. http://d.old.wanfangdata.com.cn/Periodical/jcyzs201307098 Yi Xuefa, Su Gang, Wang Weidong, et al. Basic characteristics of the fissure zones in Xi'an and their caustive mechanism[J]. Seismology and Geology, 1997, 19(4):289-295. http://d.old.wanfangdata.com.cn/Periodical/jcyzs201307098 [7] 索传郿, 王德潜, 刘祖植.西安地裂缝地面沉降与防治对策[J].第四纪研究, 2005, 25(1):23-28. doi: 10.3321/j.issn:1001-7410.2005.01.004 Suo Chuanmei, Wang Deqian, Liu Zuzhi. Land fracture and subsidence prevention in Xi'an[J]. Quaternary Sciences, 2005, 25(1):23-28. doi: 10.3321/j.issn:1001-7410.2005.01.004 [8] 张勤, 瞿伟, 彭建兵, 等.渭河盆地地裂缝群发机理及东、西部地裂缝分布不均衡构造成因研究[J].地球物理学报, 2012, 55(8):2589-2597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201208010 Zhang Qin, Qu Wei, Peng Jianbing, et al. Research on tectonic causes of numerous ground fissures development mechanism and its unbalance distribution between eastern and western of Weihe Basin[J]. Chinese Journal of Geophysics, 2012, 55(8):2589-2597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201208010 [9] Wang Q, Li C G, Tian G Q, et al. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7. 1 Ma[J]. Science in China Series D:Earth Sciences, 2002, 45(2):110-122. doi: 10.1007/BF02879788 [10] Rits D S, van Balen R T, Prins M A, et al. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change-A reevaluation of the paleogeographical setting of Dali Man site[J]. Quaternary Science Reviews, 2017, 166:339-351. doi: 10.1016/j.quascirev.2017.01.013 [11] 胡小猛, 郭家秀, 胡向阳.汾河地堑湖盆第四纪地貌-沉积特征的构造控制[J].地理学报, 2010, 65(1):73-81. http://d.old.wanfangdata.com.cn/Periodical/dlxb201001007 Hu Xiaomeng, Guo Jiaxiu, Hu Xiangyang. The development of morpho-sediment of Quaternary in Fenhe River graben basins and the neotectonic movement[J]. Acta Geographica Sinica, 2010, 65(1):73-81. http://d.old.wanfangdata.com.cn/Periodical/dlxb201001007 [12] 王书兵, 吴锡浩, 蒋复初, 等.山西平陆两个黄土剖面及古气候重建[J].地质力学学报, 2000, 6(4):27-36. doi: 10.3969/j.issn.1006-6616.2000.04.004 Wang Shubing, Wu Xihao, Jiang Fuchu, et al. Two loess profiles in Pinglu, Shanxi and corresponding paleoclimatic reconstruction[J]. Journal of Geomechanics, 2000, 6(4):27-36. doi: 10.3969/j.issn.1006-6616.2000.04.004 [13] 傅建利, 李有利.山西临猗杨范第四纪沉积剖面初步研究[J].北京大学学报(自然科学版), 2002, 38(4):517-523. doi: 10.3321/j.issn:0479-8023.2002.04.012 Fu Jianli, Li Youli. A study on the Yangfan Quaternary section, Linyi, Shanxi[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(4):517-523. doi: 10.3321/j.issn:0479-8023.2002.04.012 [14] 傅建利, 张珂, 马占武, 等.中更新世晚期以来高阶地发育与中游黄河贯通[J].地学前缘, 2013, 20(4):166-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304013 Fu Jianli, Zhang Ke, Ma Zhanwu, et al. The terrace(T5 and T4)formation since the late Middle Pleistocene and its implication in the through cutting of the middle reach of Yellow River[J]. Earth Science Frontiers, 2013, 20(4):166-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304013 [15] Li X W, Ao H, Dekkers M J, et al. Early Pleistocene occurrence of Acheulian technology in North China[J]. Quaternary Science Reviews, 2017, 156:12-22. doi: 10.1016/j.quascirev.2016.11.025 [16] 尹功明, 赵华, 尹金辉, 等.大荔人化石地层的年龄[J].科学通报, 2002, 47(12):938-942. http://d.old.wanfangdata.com.cn/Periodical/kxtb200212012 Yin Gongming, Zhao Hua, Yin Jinhui, et al. Chronology of the stratum containing the skull of the Dali Man[J]. Chinese Science Bulletin, 2002, 47(15):1302-1307. http://d.old.wanfangdata.com.cn/Periodical/kxtb200212012 [17] 黄玉昆, 邹和平, 张珂.新构造学[M].广州:广东省地图出版社, 1996. [18] Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831):891-897. doi: 10.1038/35073504 [19] 杨承先.山西新生代运城-侯马裂谷盆地的构造格局[J].地壳构造与地壳应力文集, 1999:49-56. Yang Chengxian. Tectonic pattern of the Yuncheng-Houma Cenozoic rift basin, Shanxi province[J]. Bulletin of the Institute of Crustal Dynamics, 1999:49-56. [20] 申屠炳明, 徐煜坚, 汪一鹏.韩城断裂的活动特征及断裂带古地震遗迹的初步研究[J].华北地震科学, 1990, 8(1):1-10. Shentu Bingming, Xu Yujian, Wang Yipeng. Preliminary study of the characteristics of the activity of Hancheng fault and earthquake vestiges near the fault[J]. North China Earthquake Sciences, 1990, 8(1):1-10. [21] 王乃樑, 杨景春, 夏正楷, 等.山西地堑系新生代沉积与构造地貌[M].北京:科学出版社, 1996. Wang Nailiang, Yang Jingchun, Xia Zhengkai, et al. The sediment and structural landform of Shanxi graben[M]. Beijing:Science Press, 1996. [22] Lv S H, Li Y L, Wang Y R, et al. The Holocene paleoseismicity of the North Zhongtiaoshan faults in Shanxi province, China[J]. Tectonophysics, 2014, 623:67-82. doi: 10.1016/j.tecto.2014.03.019 [23] 田建梅, 李有利, 司苏沛, 等.中条山北麓中段洪积扇上全新世断层陡坎的发现及其新构造意义[J].北京大学学报(自然科学版), 2013, 49(6):986-992. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201306007 Tian Jianmei, Li Youli, Si Supei, et al. Discovery and neotectonic significance of fault scarps on alluvial fans in the middle of northern piedmont of the Zhongtiao Mountains[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6):986-992. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201306007 [24] Li Y L, Yang J C, Xia Z K, et al. Tectonic geomorphology in the Shanxi graben system, northern China[J]. Geomorphology, 1998, 23(1):77-89. doi: 10.1016/S0169-555X(97)00092-5 [25] Fan Junxi, Lu Yanchou, Chen Jie, et al. Basic characteristics and significance of Sanmen movement[M]//Lu Yanchou, Gao Weiming, Chen Guoxing, et al. Neotectonics and Environment. Beijing:Seismological Press, 2001. [26] 刘东生.黄土与环境[M].北京:科学出版社, 1985. Liu Tungsheng. Loess and the environment[M]. Beijing:Science Press, 1985. [27] 刘维明, 张立原, 孙继敏.高分辨率洛川剖面黄土磁性地层学[J].地球物理学报, 2010, 53(4):888-894. doi: 10.3969/j.issn.0001-5733.2010.04.013 Liu Weiming, Zhang Liyuan, Sun Jimin. High resolution magnetostratigraphy of the Luochuan loess-paleosol sequence in the central Chinese Loess Plateau[J]. Chinese Journal of Geophysics, 2010, 53(4):888-894. doi: 10.3969/j.issn.0001-5733.2010.04.013 [28] Cohen K M, Gibbard P L. Global chronostratigraphical correlation table for the last 2. 7 million years, version 2019 QI-500[J]. Quaternary International, 2019, 500:20-31. doi: 10.1016/j.quaint.2019.03.009 [29] 曹希强, 郑祥民, 周立旻, 等.洪湖沉积物的磁性特征及其环境意义[J].湖泊科学, 2004, 16(3):227-232. doi: 10.3321/j.issn:1003-5427.2004.03.006 Cao Xiqiang, Zheng Xiangmin, Zhou Limin, et al. Paleoenvironmental implication of magnetic measurements on sediments core from Honghu Lake[J]. Journal of Lake Sciences, 2004, 16(3):227-232. doi: 10.3321/j.issn:1003-5427.2004.03.006 [30] 杨建强, 崔之久, 易朝露, 等.云南点苍山冰川湖泊沉积物磁化率的影响因素及其环境意义[J].第四纪研究, 2004, 24(5):591-597. doi: 10.3321/j.issn:1001-7410.2004.05.017 Yang Jianqiang, Cui Zhijiu, Yi Chaolu, et al. The influencing factors and environmental significance of magnetic susceptibility in the glacio-lacustrinal sediments on the Diancang mountains, Yunnan province[J]. Quaternary Sciences, 2004, 24(5):591-597. doi: 10.3321/j.issn:1001-7410.2004.05.017 [31] 胡守云, 王苏民, Appel E, 等.呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J].中国科学(D辑):地球科学, 1998, 28(4):334-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801030958 Hu Shouyun, Wang Sumin, Apple E, et al. Environmental magnetism mechanism of sediment susceptibility change in Hulun Lake[J]. Science China(Seri. D):Earth Sciences, 1998, 28(4):334-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801030958 [32] Hounslow M W, Maher B A. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B3):5047-5061. doi: 10.1029/1998JB900085 [33] Bagnold R A, Barndorff-Nielsen O. The pattern of natural size distributions[J]. Sedimentology, 1980, 27(2):199-207. doi: 10.1111/j.1365-3091.1980.tb01170.x [34] Sun J M, Zhang Z Q. Palynological evidence for the Mid-Miocene climatic optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China[J]. Global and Planetary Change, 2008, 64(1/2):53-68. [35] 郭峰, 孙东怀, 王飞, 等.巴丹吉林沙漠地层序列的粒度分布及其组分成因分析[J].海洋地质与第四纪地质, 2014, 34(1):165-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401018 Guo Feng, Sun Donghuai, Wang Fei, et al. Grain-size distribution pattern of the depositional sequence in central Badain Jaran desert and its genetic interpretation[J]. Marine Geology & Quaternary Geology, 2014, 34(1):165-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201401018 [36] Han Z Y, Liu D Y, Hovan S A. Lightness timescale for terrestrial sediments in the past 500, 000 years[J]. Paleoceanography and Paleoclimatology, 2002, 17(3):20-1-20-7. [37] 朱芸, 陈晔, 舒强, 等.苏北盆地XH1钻孔中更新世以来的彩度指标记录及其气候环境变化[J].海洋地质与第四纪地质, 2007, 27(2):23-31. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200702004 Zhu Yun, Chen Ye, Shu Qiang, et al. Chroma index record of core XH1 at northern Jiangsu Basin and the climate since mid-pleistocene[J]. Marine Geology & Quaternary Geology, 2007, 27(2):23-31. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200702004 [38] 吴艳宏, 李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展, 2004, 19(5):789-792. doi: 10.3321/j.issn:1001-8166.2004.05.016 Wu Yanhong, Li Shijie. Significance of lake sediment color for short time scale climate variation[J]. Advances in Earth Science, 2004, 19(5):789-792. doi: 10.3321/j.issn:1001-8166.2004.05.016 [39] 田庆春, 杨太保, 石培宏, 等.可可西里BDQ0608钻孔沉积物色度环境意义及其影响因素[J].海洋地质与第四纪地质, 2012, 32(1):133-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201018 Tian Qingchun, Yang Taibao, Shi Peihong, et al. Environmental implication of color reflectance of drill hole BDQ0608, Keke Xili region and its influencing factors[J]. Marine Geology & Quaternary Geology, 2012, 32(1):133-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201018 [40] John B. A comparison of two methods for estimating the organic matter content of sediments[J]. Journal of Paleolimnology, 2004, 31(1):125-127. doi: 10.1023/B:JOPL.0000013354.67645.df [41] Hallett D J, Hills L V. Holocene vegetation dynamics, fire history, lake level and climate change in the Kootenay valley, southeastern British Columbia, Canada[J]. Journal of Paleolimnology, 2006, 35(2):351-371. doi: 10.1007/s10933-005-1335-6 [42] Zhang W C, Yan H, Liu C C, et al. Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age[J]. Quaternary International, 2018, 487:54-60. doi: 10.1016/j.quaint.2017.09.007 [43] 王峰, 刘玄春, 邓秀芹, 等.鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报, 2017, 35(6):1265-1273. http://www.cjxb.ac.cn/CN/abstract/abstract3835.shtml Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6):1265-1273. http://www.cjxb.ac.cn/CN/abstract/abstract3835.shtml [44] 朱立平, 王君波, 陈玲, 等.藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J].地理学报, 2004, 59(4):514-524. doi: 10.3321/j.issn:0375-5444.2004.04.004 Zhu Liping, Wang Junbo, Chen Ling, et al. 20, 000-year environmental change reflected by multidisciplinary lake sediments in Chen Co, Southern Tibet[J]. Acta Geographica Sinica, 2004, 59(4):514-524. doi: 10.3321/j.issn:0375-5444.2004.04.004 [45] 伊海生, 张小青, 朱迎堂.青藏高原中部湖泊岩芯记录的第四纪湖平面变化及气候意义[J].地学前缘, 2006, 13(5):300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003 Yi Haisheng, Zhang Xiaoqing, Zhu Yingtang. Lake level change recorded by core of the Quaternary lacustrine sediment in the central Tibetan Plateau and its climatic implications[J]. Earth Science Frontiers, 2006, 13(5):300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003 [46] Lai Z P, Murray A S, Bailey R M, et al. Quartz red TL SAR equivalent dose overestimation for Chinese loess[J]. Radiation Measurements, 2006, 41(1):114-119. doi: 10.1016/j.radmeas.2005.06.006 [47] Lai Z P, Wintle A G, Thomas D S G. Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248(3/4):431-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af73c3f70143cbf14f63af2f143954b5 [48] 赖忠平.基于光释光测年的中国黄土中氧同位素阶段2/1和3/2界限位置及年代的确定[J].第四纪研究, 2008, 28(5):883-891. doi: 10.3321/j.issn:1001-7410.2008.05.011 Lai Zhongping. Locating and dating the boundaries of MIS 2/1 and 3/2 in Chinese loess using luminescence techniques[J]. Quaternary Sciences, 2008, 28(5):883-891. doi: 10.3321/j.issn:1001-7410.2008.05.011 [49] Roberts H M, Wintle A G. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol:Application to a Holocene sequence of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2001, 20(5/6/7/8/9):859-863. [50] Liang H, Zhang K, Fu J L, et al. Bedrock river incision response to basin connection along the Jinshan Gorge, Yellow River, North China[J]. Journal of Asian Earth Sciences, 2015, 114:203-211. doi: 10.1016/j.jseaes.2015.07.010 [51] 尹功明, 王旭龙, 韩非.宁夏沙坡头沙漠扩张的时代:来自黄河阶地光释光年龄证据[J].第四纪研究, 2013, 33(2):269-275. doi: 10.3969/j.issn.1001-7410.2013.02.08 Yin Gongming, Wang Xulong, Han Fei. The age of the Shapotou desert expansion based on OSL ages of Aeolian sediments in the Yellow river terraces, Ningxia Hui Autonomous region, northern China[J]. Quaternary Sciences, 2013, 33(2):269-275. doi: 10.3969/j.issn.1001-7410.2013.02.08 [52] 王昌盛, 陈杰, 张克旗.西南天山明尧勒背斜河流阶地沉积物的光释光测年[J].地震地质, 2005, 27(4):586-598. doi: 10.3969/j.issn.0253-4967.2005.04.007 Wang Changsheng, Chen Jie, Zhang Keqi. Optically stimulated luminescence dating of fluvial deposits from the Mingyaole anticline in the southwestern Tian Shan[J]. Seismology and Geology, 2005, 27(4):586-598. doi: 10.3969/j.issn.0253-4967.2005.04.007 [53] 欧先交, 张彪, 赖忠平, 等.青藏高原东部当子沟末次冰期冰川演化光释光测年[J].地理科学进展, 2013, 32(2):262-269. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201302012 Ou Xianjiao, Zhang Biao, Lai Zhongping, et al. OSL dating study on the glacial evolutions during the Last Glaciation at Dangzi valley in the eastern Qinghai-Tibetan Plateau[J]. Progress in Geography, 2013, 32(2):262-269. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201302012 [54] 贾彬彬, 周亚利, 赵军.新疆阿尔泰山东段冰碛物光释光测年研究[J].地理学报, 2018, 73(5):957-972. http://d.old.wanfangdata.com.cn/Periodical/dlxb201805014 Jia Binbin, Zhou Yali, Zhao Jun. Optically stimulated luminescence dating of moraines in East Altay Mountains, Xinjiang[J]. Acta Geographica Sinica, 2018, 73(5):957-972. http://d.old.wanfangdata.com.cn/Periodical/dlxb201805014 [55] 张家富, 周力平, 姚书春, 等.湖泊沉积物的14C和光释光测年:以固城湖为例[J].第四纪研究, 2007, 27(4):522-528. doi: 10.3321/j.issn:1001-7410.2007.04.007 Zhang Jiafu, Zhou Liping, Yao Shuchun, et al. Radiocarbon and optical dating of lacustrine sediments-a case study in lake Gucheng[J]. Quaternary Sciences, 2007, 27(4):522-528. doi: 10.3321/j.issn:1001-7410.2007.04.007 [56] 隆浩, 张静然.晚第四纪湖泊演化光释光测年[J].第四纪研究, 2016, 36(5):1191-1203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201605014 Long Hao, Zhang Jingran. Luminescence dating of late Quaternary lake-levels in northern China[J]. Quaternary Sciences, 2016, 36(5):1191-1203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201605014 [57] Hu Z B, Pan B T, Bridgland D, et al. The linking of the uppermiddle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 2017, 166:324-338. doi: 10.1016/j.quascirev.2017.02.026 [58] Pan B T, Wang J P, Gao H S, et al. Terrace dating as an archive of the run-through of the Sanmen Gorges[J]. Progress in Natural Science, 2005, 15(12):1096-1103. doi: 10.1080/10020070512331343191 [59] 陈铁梅, 原思训, 高世君.铀子系法测定骨化石年龄的可靠性研究及华北地区主要旧石器地点的铀子系年代序列[J].人类学学报, 1984, 3(3):259-269. Chen Tiemei, Yuan Sixun, Gao Shijun. The study on Uranium-series dating of fossil bones and an absolute age sequence for the main Paleolithic sites of North China[J]. Acta Anthropologica Sinica, 1984, 3(3):259-269. [60] Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 2007, 175(1):62-70. doi: 10.1016/j.quaint.2007.03.022 [61] 王书兵, 蒋复初, 傅建利, 等.关于黄河形成时代的一些认识[J].第四纪研究, 2013, 33(4):705-714. doi: 10.3969/j.issn.1001-7410.2013.04.08 Wang Shubing, Jiang Fuchu, Fu Jianli, et al. Some knowledge of the formation of the Yellow River[J]. Quaternary Sciences, 2013, 33(4):705-714. doi: 10.3969/j.issn.1001-7410.2013.04.08 [62] 陈立业, 张珂, 傅建利, 等.邙山黄土L5以来的常量元素地球化学特征及其对物源的指示意义[J].第四纪研究, 2017, 37(6):1293-1308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201706013 Chen Liye, Zhang Ke, Fu Jianli, et al. Major element geochemical characteristics of Mangshan Loess since L5 and its implications for provenance[J]. Quaternary Sciences, 2017, 37(6):1293-1308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201706013 [63] 陈立业, 张珂, 傅建利, 等.邙山黄土古土壤S2沉积以来的微量和稀土元素地球化学特征及其物源指示意义[J].中山大学学报(自然科学版), 2018, 57(3):14-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsdxxb201803003 Chen Liye, Zhang Ke, Fu Jianli, et al. The trace and rare earth element characteristics of Mangshan Loess since deposit of paleosol S2 and its implications for provenance[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(3):14-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsdxxb201803003 [64] Guo Y J, Zhang J F, Qiu W L, et al. Luminescence dating of the Yellow River terraces in the Hukou area, China[J]. Quaternary Geochronology, 2012, 10:129-135. doi: 10.1016/j.quageo.2012.03.002 [65] Qiu W L, Zhang J F, Wang X Y, et al. The evolution of the Shiwanghe River valley in response to the Yellow River incision in the Hukou area, Shaanxi, China[J]. Geomorphology, 2014, 215:34-44. doi: 10.1016/j.geomorph.2014.01.011 [66] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1/2):198-208. [67] 高翔, 郭飚, 陈九辉, 等.地幔上涌对鄂尔多斯西缘岩石圈的改造:来自远震多尺度层析成像的证据[J].地球物理学报, 2018, 61(7):2736-2749. Gao Xiang, Guo Biao, Chen Jiuhui, et al. Rebuilding of the lithosphere beneath the western margin of Ordos:Evidence from multiscale seismic tomography[J]. Chinese Journal of Geophysics, 2018, 61(7):2736-2749. [68] 邓起东, 王挺梅, 李建国, 等.关于海城地震震源模式的讨论[J].地质科学, 1976(3):195-204. Deng Qidong, Wang Tingmei, Li Jianguo, et al. A discussion on source model of Haicheng earthquake[J]. Scientia Geologica Sinica, 1976(3):195-204.