-
沉积物携带、传输和沉积是一个分选的过程,因此与特定沉积过程有关的沉积物通常具有特定的粒度分布,即粒度端元[15]。端元的提取有参数化与非参数两种方式。对于参数化方法,常通过指定函数类型、数量及位置参数来对数据进行分解,其中,Weibull函数是广泛应用的拟合函数之一[23]。但是参数化方法存在一些问题[14]:1)只能使用单个粒度样本导致无法充分提取整体沉积信息,而且指定的函数与沉积地质过程并无明显关联;2)确定端元数量存在一定难度。对于非参数化方法,Weltje[13]首次提出了端元建模分析,基于主成分分析、因子旋转、非负最小二乘法等提取端元,并由Dietze et al. [16]为其实现了稳定的算法。非参数化方法无需规定端元主峰作为先验条件,而是通过整体数据协方差反映端元数量及组成,反映的是整体样品的粒度组成特征,更适用于钻孔沉积物样品的粒度分析。该算法主要包含两种途径:1)选取不同的端元数量q进行迭代,根据其方差贡献率大小及与原始数据的相关性来综合确定最佳端元数量;2)将确定的端元数目值带入计算得到端元模型,并对端元模型进行评估。
-
算法流程如下:
(1) 为了避免每列数据因尺度差异而带来的弱相关性,需要对粒度矩阵进行缩放处理。采用的方式为选取分位数l,使得每一列数据下界为Pl,上界为P100-l:
(1) 式中:Wm×n为进行缩放处理后得到矩阵;Xm×n为粒度矩阵;XPl为分位数取l时,该列上的取值大小,XP100-l为分位数取100-l时,该列上取值大小,更一般的,l=0则反映了每一列的最小值与最大值(对l取不同值的原因在于,如果在某些粒级上存在大量数据的值为0,则需要通过取不同的分位数来确保模型的稳定性)。
(2) 对Wm×n做内积处理,然后再做特征值分解。
(2) (3) 式中:An×n为Wm×n与自身求内积后的方阵;λn×n为特征值,除了对角线元素,其余元素均为0。vn×n为特征向量。
(3) 通过特征值方差的累计贡献观察潜在的端元数量。类似于因子分析,选取不同的端元数量q对特征空间采用方差最大化因子旋转法(Varimax)进行正交旋转(在Matlab中调用rotatefactors函数),于是计算得到因子载荷矩阵Vn×q。
(4) 将因子载荷矩阵Vn×q进行放缩,使其值范围在(0,1)之间,于是得到Bn×q。再由:
(4) 通过线性非负最小二乘法(在Matlab中调用lsqnonneg函数),经过计算可得到特征向量的得分Sm×q。
(5) 再对最后计算得到的因子载荷矩阵和因子得分矩阵进行放缩处理,目的是使其与原数据单位一致,于是得到端元载荷矩阵Bn×q*和端元得分矩阵Sm×q*。
对模型误差进行评估。
(5) (6) (7) (8) (9) (10) (11) 式中:Xm×n*为模型拟合得到的数据;Em×n为模型拟合数据与原始数据的误差矩阵;rn为每列求出的相关性,对rn求平方和得到变量间相关性r变量2;rm*为每行求出的相关性,对rm*求平方和得到样本间相关性r样本2;r2表示总的相关性,选取不同的q值进行计算,绘制q与r2关系图,可以用于选取合适的端元数量。
The Application of End-member Analysis in Identification of Paleo Floods in Wuhan Section of the Yangtze River
-
摘要: 端元建模分析能够从具有复杂粒度分布特征的沉积物中提取出代表不同沉积动力过程的端元,进而对区域古洪水期进行揭示。以具有代表性的长江堤后湖泊ZK145钻孔晚第四纪沉积物为例,采用特征向量旋转算法对该钻孔粒度资料进行了端元建模分析。结果显示,可分离出4个具有明确地质意义的端元:EM1代表河流冲积砂;EM2代表经流水作用的细砂;EM3、EM4代表静水湖泊沉积。利用钻孔中粗粒端元组分(EM1、EM2)的含量结合磁化率指标,在湖相沉积阶段(22.9~3 m)识别出了9期特大古洪水。端元分析为长江堤后湖泊的古洪水研究提供了一种新的思路和方法,同时为古洪水的反演创造了条件。Abstract: The end-member modeling analysis can extract the end-members representing different sedimentary dynamic processes from the sediments with complex particle size distribution characteristics, revealing the paleo-flood period in the middle reaches of the Yangtze River. Taking the representative Quaternary sediments of the ZK145 borehole in the lake behind the Yangtze River's natural embankment as an example, the eigenvector rotation algorithm was used to analyze the end-member modeling of the borehole grain data. The study shows that four end-members with geological significance can be isolated:EM1 represents river alluvial sand; EM2 represents fine sand with through which water flows; EM3 and EM4 represent hydrostatic lake sedimentation. Using the content of coarse-grained endmembers(EM1, EM2)in the borehole combined with the magnetic susceptibility index, 9 paleo-floods were identified in the lacustrine sedimentary stage. The end-member analysis provides new methods and new ideas for the study of lacustrine paleo-floods after the Yangtze River embankment and, at the same time, created conditions for the inversion of paleo-floods.
-
-
[1] Baker V R. Paleoflood hydrology and extraordinary flood events[J]. Journal of Hydrology, 1987, 96(1/2/3/4):79-99. [2] Baker V R. Paleoflood hydrology:origin, progress, prospects[J]. Geomorphology, 2008, 101(1/2):1-13. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024045037/ [3] Ely L L, Enzel Y, Baker V R, et al. A 5000-year record of extreme floods and climate change in the southwestern United States[J]. Science, 1993, 262(5132):410-412. doi: 10.1126/science.262.5132.410 [4] Benito G, Thorndycraft V R, Rico M, et al. Palaeoflood and floodplain records from Spain:Evidence for long-term climate variability and environmental changes[J]. Geomorphology, 2008, 101(1/2):68-77. [5] 詹道江, 谢悦波.古洪水研究[M].北京:中国水利水电出版社, 2001:1-152. Zhan Daojiang, Xie Yuebo. Paleoflood research[M]. Beijing:China Water & Power Press, 2001:1-152. [6] 李永飞, 于革, 沈华东, 等.太湖沉积对流域极端降水和洪水响应的研究[J].沉积学报, 2012, 30(6):1099-1105. http://www.cjxb.ac.cn/CN/abstract/abstract861.shtml Li Yongfei, Yu Ge, Shen Huadong, et al. Study on lacustrine sediments responsing to climatic precipitation and flood discharge in Lake Taihu catchment, China[J]. Acta Sedimentologica Sinica, 2012, 30(6):1099-1105. http://www.cjxb.ac.cn/CN/abstract/abstract861.shtml [7] Moreira L S, Moreira-Turcq P, Turcq B, et al. Paleohydrological changes in an Amazonian floodplain lake:Santa Ninha Lake[J]. Journal of Paleolimnology, 2012, 48(2):339-350. doi: 10.1007/s10933-012-9601-x [8] Corella J P, Benito G, Rodriguez-Lloveras X, et al. Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula[J]. Quaternary Science Reviews, 2014, 93:77-90. doi: 10.1016/j.quascirev.2014.03.020 [9] 鹿化煜, 安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学(D辑):地球科学, 1998, 28(3):278-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801030972 Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China(Seri. D):Earth Sciences, 1998, 28(3):278-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199801030972 [10] 孙千里, 周杰, 肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质, 2001, 21(1):93-95. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200101015 Sun Qianli, Zhou Jie, Xiao Jule. Grain-size characteristics of Lake Daihai sediments and its paleaoenvironment significance[J]. Marine Geology & Quaternary Geology, 2001, 21(1):93-95. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200101015 [11] 陈敬安, 万国江, 张峰, 等.不同时间尺度下的湖泊沉积物环境记录:以沉积物粒度为例[J].中国科学(D辑):地球科学, 2003, 33(6):563-568. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200306010 Chen Jing'an, Wan Guojiang, Zhang Feng, et al. Environmental records of lake sediments at different time scales-taking sediment particle size as an example[J]. Science China (Seri. D):Earth Sciences, 2003, 33(6):563-568. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200306010 [12] 李长安, 张玉芬, 袁胜元, 等."巫山黄土"粒度特征及其对成因的指示[J].地球科学——中国地质大学学报, 2010, 35(5):879-884. http://d.old.wanfangdata.com.cn/Periodical/dqkx201005018 Li Chang'an, Zhang Yufen, Yuan Shengyuan, et al. Grain size characteristics and origin of the "Wushan Loess" at Wushan area[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(5):879-884. http://d.old.wanfangdata.com.cn/Periodical/dqkx201005018 [13] Weltje G J. End-member modeling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549. doi: 10.1007-BF02775085/ [14] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2):39-62. doi: 10.1016-S0037-0738(03)00235-5/ [15] Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3):409-424. [16] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244:169-180. doi: 10.1016/j.sedgeo.2011.09.014 [17] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12):4494-4506. doi: 10.1002/2015GC006070 [18] 孙有斌, 高抒, 李军.边缘海陆源物质中环境敏感粒度组分的初步分析[J].科学通报, 2003, 48(1):83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021 Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of environmentally sensitive particle size components in marginal sea-land source materials[J]. Chinese Science Bulletin, 2003, 48(1):83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021 [19] 肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报, 2005, 23(1):122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016 Xiao Shangbin, Li Anchun. A study on environmentally sensitive grain-size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1):122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016 [20] Nottebaum V, Lehmkuhl F, Stauch G, et al. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor-an example from northern Chinese drylands[J]. Geomorphology, 2015, 250:113-127. doi: 10.1016/j.geomorph.2015.08.014 [21] 王兆夺, 黄春长, 庞奖励, 等.淮河上游桐柏县卢庄SWD粒度端元分析[J].兰州大学学报(自然科学版), 2017, 53(6):720-726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201706002 Wang Zhaoduo, Huang Chunchang, Pang Jiangli, et al. SWD end member analysis of grain-size of Luzhuang village in Tongbai county in the upper Huaihe River[J]. Journal of Lanzhou University (Natural Science), 2017, 53(6):720-726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201706002 [22] 程良清, 宋友桂, 李越, 等.粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J].沉积学报, 2018, 36(6):1148-1156. http://www.cjxb.ac.cn/CN/abstract/abstract3938.shtml Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36(6):1148-1156. http://www.cjxb.ac.cn/CN/abstract/abstract3938.shtml [23] 孙东怀, 鹿化煜, Rea D, 等.中国黄土粒度的双峰分布及其古气候意义[J].沉积学报, 2000, 18(3):327-335. doi: 10.3969/j.issn.1000-0550.2000.03.001 Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3):327-335. doi: 10.3969/j.issn.1000-0550.2000.03.001 [24] Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. Catena, 2004, 55(3):325-340. doi: 10.1016/S0341-8162(03)00109-7 [25] 孙东怀, 安芷生, 苏瑞侠, 等.古环境中沉积物粒度组分分离的数学方法及其应用[J].自然科学进展, 2001, 11(3):269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008 Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematical method for separation of sediment particle size components in ancient environment and its application[J]. Progress in Natural Science, 2001, 11(3):269-276. doi: 10.3321/j.issn:1002-008X.2001.03.008 [26] 王继全, 张细兵.长江中游武汉河段近期河道演变分析[J].人民长江, 2018, 49(3):9-14. http://d.old.wanfangdata.com.cn/Periodical/rmcj200611018 Wang Jiquan, Zhang Xibing. Analysis of river channel evolution at Wuhan reach of Yangtze River[J]. Yangtze River, 2018, 49(3):9-14. http://d.old.wanfangdata.com.cn/Periodical/rmcj200611018 [27] 张玉芬, 李长安, 阎桂林, 等.长江中游地区洪泛沉积物与正常河流沉积物磁组构特征对比研究[J].地球物理学报, 2004, 47(4):639-645. doi: 10.3321/j.issn:0001-5733.2004.04.014 Zhang Yufen, Li Chang'an, Yan Guilin, et al. A comparative study of magnetic fabric characters between flooded sediments and normal river sediments[J]. Chinese Journal of Geophysics, 2004, 47(4):639-645. doi: 10.3321/j.issn:0001-5733.2004.04.014 [28] 张玉芬, 李长安, 陈亮, 等.基于磁组构特征的江汉平原全新世古洪水事件[J].地球科学——中国地质大学学报, 2009, 34(6):985-992. http://d.old.wanfangdata.com.cn/Periodical/dqkx200906013 Zhang Yufen, Li Chang'an, Chen Liang, et al. Magnetic fabric of Holocene palaeo-floods events in Jianghan Plain[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6):985-992. http://d.old.wanfangdata.com.cn/Periodical/dqkx200906013 [29] Zhu Z M, Feinberg J M, Xie S C, et al. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5):852-857. doi: 10.1073/pnas.1610930114 [30] 朱诚, 于世永, 卢春成.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J].地理学报, 1997, 64(3):268-278. doi: 10.3321/j.issn:0375-5444.1997.03.010 Zhu Cheng, Yu Shiyong, Lu Chuncheng. The study of Holocene environmental archaeology and extreme flood disaster in the Three Gorges of the Changjiang River and the Jianghan Plain[J]. Acta Geographica Sinica, 1997, 64(3):268-278. doi: 10.3321/j.issn:0375-5444.1997.03.010 [31] 葛兆帅, 杨达源, 李徐生, 等.晚更新世晚期以来的长江上游古洪水记录[J].第四纪研究, 2004, 24(5):555-560. doi: 10.3321/j.issn:1001-7410.2004.05.012 Ge Zhaoshuai, Yang Dayuan, Li Xusheng, et al. The paleoflooding record along the up-reaches of the Changjiang River since the Late Pleistocene epoch[J]. Quaternary Sciences, 2004, 24(5):555-560. doi: 10.3321/j.issn:1001-7410.2004.05.012