-
中奥陶统烟溪组沉积期,湘中—湘南下古生代广泛发育黑色碳质页岩和硅质岩。但长期以来该页岩被认为均已变质成为板岩,是湘中—湘东南的变质基底,不具生烃潜力[1-2]。最近,永州宁远县棉花坪中奥陶统却发现巨厚层未变质的碳质页岩,通过区域剖面对比认为该碳质页岩属烟溪组。烟溪组广泛发育在湘中地区和湘南地区[3-4],分布面积大,厚度一般在20~85 m,湘南茶陵地区最厚,可达235 m。烟溪组下伏和上覆地层分别为下奥陶统桥亭子组和上奥陶统天马山组,岩性均为砂岩和页岩互层。由于烟溪组碳质页岩具有厚度大、分布广、变质程度低的特点,因此,烟溪组应为湘中和湘南页岩气勘探的新的目的层,但是目前针对烟溪组的沉积特征认识不清,直接影响了烟溪组页岩气勘探潜力评价。本文在扎实野外工作的基础上,针对烟溪组沉积特征和生烃潜力开展初步研究,并认为湘中和湘南烟溪组碳质页岩以陆架边缘—盆地相沉积为主,具有有机碳含量高、成熟度高、脆性矿物含量高和物性好的特点,因此,研究区烟溪组页岩气勘探潜力巨大。
早奥陶世基本继承了寒武纪构造古地理格局,湘中为陆棚斜坡和盆地相[5],以泥质、含粉砂质泥质和粉砂岩沉积为主。湘南为盆地和斜坡环境,以浊积成因砂、泥质和远洋泥质沉积为主。中奥陶世,岩石圈挠曲导致盆地强烈沉降并发生海侵[6-7],湘西北区先期台地转化为陆棚盆地,并沉积瘤状泥灰岩和钙质页岩等[8-11],湘中和湘南区则成为欠补偿饥饿盆地,沉积碳质页岩、硅质页岩和碳泥质硅质岩等。晚奥陶世属前陆盆地早期阶段[12-13],湘中区相继为陆棚盆地、盆缘缓坡和局限残留盆地,并沉积碳质泥岩、泥质粉砂岩和粉砂岩等[14-16];湘南区因盆地南东侧块体(华夏)逆冲抬升,形成槽盆环境下一套快速堆积的浊积岩建造,局部夹碳酸盐岩和硅质岩。烟溪组为中奥陶统下部沉积,对应奥陶系最大海侵期,但烟溪组岩性纵向变化较快,除了碳质页岩还发育多层硅质岩,其沉积环境需深入分析。
-
烟溪组页岩热解分析表明其生烃潜量(S1+S2)分布在0.18~0.25 mg/g,平均为0.22 mg/g,最高热解峰值温度Tmax为339 ℃~492 ℃,平均为395 ℃。其生烃潜量极低,亦从另一个角度表明该层位页岩经历了较强的热演化过程,导致其中易于生烃的有机质首先热解生烃,残留下来的是那些难以发生热分解的有机质。烟溪组页岩样品中干酪根组分为腐泥组与惰质组,未见壳质组与镜质组,其中腐泥组含量55%~69%,平均为65%;惰质组含量31%~45%,平均为35%;计算得到的类型指数全部分布在0~40范围内,根据有机质类型划分的“三类四分法”,判断烟溪组页岩样品有机碳类型为Ⅰ—Ⅱ1型(表 1)。
表 1 湘中和湘南烟溪组剖面点有机质含量(TOC)与成熟度(Ro)值
Table 1. TOC and Ro values at Yanxi Formation section points in Xiangzhong and Xiangnan area
-
有机质的丰度与含气性正相关,它决定页岩中有机质孔隙的发育程度和对天然气的吸附能力。对烟溪组采集的139个样品进行有机碳含量测定,结果表明:烟溪组页岩有机碳含量普遍较高,最高的样品有机碳含量达到8.17%,平均值为2.12%,属于优质烃源岩。烟溪组有机碳含量(TOC)在平面上具有较强的非均质性,隆回—洞口—祁东一线TOC最大,并向南北两侧递减,至零陵、宁远、城步等地TOC值为1.97%~2.94%(表 1),总之,研究区烟溪组TOC总体较高,利于页岩气成藏。虽然该页岩具有很高的有机碳含量,但是研究区烟溪组热演化成熟度较高(表 1),根据地表样品分析结果显示烟溪组在部分地区已经达到了浅变质阶段。根据国外页岩气勘探经验,页岩的高成熟度(> 3%)不是制约页岩气聚集的主要因素,且国外页岩气勘探区域热演化成熟度均较高,如美国页岩气产区的页岩成熟度普遍大于1.3%,阿巴拉契亚盆地的西弗吉尼亚州南部最高可达4.0%,且只有在成熟度较高的区域才有页岩气的产出,因此,虽然研究区奥陶系烟溪组成熟度较高,但是同样具有页岩气潜力。
-
烟溪组自下而上可划分出4个岩性段,各岩性段有机碳含量在纵向上具有较强的非均一性,体现了岩性及沉积特征对有机碳含量的控制作用。以湘中马杜桥烟溪组剖面为例,第一岩段岩性为黑色硅质岩、硅质页岩夹少量碳质页岩,其TOC为2.05%~4.34%,平均2.74%,其中,碳质页岩平均TOC为3.31%,硅质岩平均2.42%(图 11),碳质页岩的TOC较硅质岩高。第二岩性段主要为粉砂质页岩,夹少量硅质岩。该岩性段中砂质页岩的TOC平均为0.93%,相较第一岩性段,本段黏土矿物含量显著升高,但TOC却明显减小。第三岩性段下部以硅质岩与碳质页岩互层为主,上部以硅质岩为主,夹碳质页岩。本段TOC较高,碳质页岩TOC测定结果平均为3.14%,是烟溪组页岩中TOC最高的层段,具有良好的生烃潜力。该岩性段中硅质岩的TOC平均为1.75%,而碳质页岩平均为3.56%,碳质页岩TOC明显较硅质岩高。第四岩性段主要为浅灰色硅质岩、硅质页岩夹少量黑色页岩,黑色页岩不污手,平均TOC为2.14%,是烟溪组TOC较低的层段。该段中碳质页岩TOC也较碳质页岩的高。总体来看,烟溪组TOC较高的层段为第一和第三岩性段,较低的为第二和第四岩性段。
-
烟溪组第一和第三段TOC高值的因素包括沉积环境、古生产力和古氧化还原环境等。
第一和第三岩性段岩性以黑色薄层硅质岩和碳质页岩为主,而第二和第四岩性段以砂质页岩和粉砂岩、杂砂岩为主(图 11)。烟溪组第一和第三岩性段沉积相类型为深水盆地相和深水陆棚相,而第二和第四岩性段以浅水陆棚和浊积扇相为主。因此,与第二和第四岩性段相比,第一和第三岩性段水体深度更大,是海平面快速上升期沉积。测试资料显示第一和第三岩性段页岩TOC较第二和第四岩性段高,表明沉积环境对TOC具有控制作用。
生物营养元素P、Ba、Cu、Ni和Zn等的含量与古生产力呈明显正相关性,能反应地质时期沉积水体的生产力状况。烟溪组上述营养元素纵向分布特征分析表明:第三岩性段古生产力指数最高,其次为第一岩性段(图 12)。古生产力与有机碳纵向分布特征具有一致性,即古生产力较高的岩性段,对应的TOC也呈高值(图 12)。
图 12 湘中地区祁东马杜桥剖面古生产力和氧化还原指标垂向分布特征
Figure 12. Vertical distribution characteristics of paleoproductivity and redox index, Maduqiao section, Qidong, Xiangzhong area
氧化还原敏感元素U、V、Mo、Cr、U、Th、Ni和Co等元素的富集程度与水体氧化还原程度密切相关,其相互比值可以用于判别沉积水体的氧化还原环境[21, 22](表 2)。烟溪组氧化还原指标分析表明:第三岩性段和第一岩性段属厌氧—贫氧环境(图 12),有利于有机质的保存。
判识指标 缺氧环境 富氧环境 厌氧 贫氧 V/(V+Ni) > 0.60 0.45~0.60 < 0.45 U/Th > 1.25 0.75~1.25 < 0.75 V/Cr > 4.25 2.00~4.25 < 2.00 Ni/Co > 7.00 5.00~7.00 < 5.00 烟溪组富有机质页岩主要分布在第一和第三岩性段,这与烟溪组沉积期2次海平面快速上升、古生产力和氧化还原指标密切相关。
Sedimentary Characteristics and Exploration Potential for Shale Gas in Yanxi Formation, Central and Southern Hunan
-
摘要: 湖南地区,尤其是湘中—湘南区域奥陶系烟溪组是我国新发现的页岩气勘探层位,该地层具有岩性变化大、有机碳含量高、成熟度高的特点。通过野外露头资料、钻井资料分析表明烟溪组岩性以硅质岩和碳质页岩为主,砂质页岩和砂岩次之。根据岩性、沉积构造以及纵向上岩石组合特征分析,认为烟溪组沉积相类型多样,包括深水盆地相、浅水盆地相、浅水陆棚相和浊积扇相等。研究表明:深水盆地相分布在湘南,浅水盆地和浅水陆棚相分布在湘中中部,而浊积扇相分布在湘中西北部、北部和东部等区域,沉积相的分布规律决定了烟溪组页岩气的勘探方向。横向上,湘南深水盆地硅质岩和碳质页岩TOC含量较低,而湘中浅水盆地相碳质页岩TOC含量高、厚度大,是烟溪组最有利的勘探区域;纵向上,烟溪组第三岩性段碳质页岩有机质丰度最高,脆性矿物含量高,是页岩气勘探的“甜点”层位。Abstract: The Ordovician Yanxi Formation in Hunan, especially in central and southern Hunan, is a newly discovered shale gas exploration horizon in China. It has large lithological variation, high organic carbon content and high maturity. Outcrop data and drilling data analysis indicate that the Yanxi Formation is mainly composed of siliceous rock and carbonaceous shale overlain by sandy shale and sandstone. The lithology, sedimentary structure and vertical rock assemblage characteristics show that the Yanxi Formation contains various sedimentary facies types, including deep-water basin facies, deep-water shelf facies, shallow-water shelf facies, and turbidite fan facies. It was found that, in plan, deep-water basin facies are distributed in southern Hunan, deep-water shelf and shallow-water shelf facies in central Hunan, and turbidite fan facies in northern and eastern parts of central and western Hunan. The facies distribution determines the direction for shale gas exploration in the Yanxi Formation. The TOC content of siliceous rocks and carbonaceous shales in the deep-water basin of southern Hunan is low, whereas the thick carbonaceous shales of the shelf facies in central Hunan have a high TOC, and are the most favorable for exploration in the Yanxi Formation. In particular, the carbonaceous shale in the third lithology section has the highest abundance of organic matter and a high brittle mineral content, and has the greatest shale gas exploration potential.
-
Key words:
- Xiangzhong area /
- Yanxi Formation /
- shale gas /
- deep-water basin facies /
- light metamorphism
-
图 8 湘中地区烟溪组沉积相对比剖面(剖面位置见图 10左图)
Figure 8. Depositional correlation section, Yanxi Formation, Xiangzhong area
表 1 湘中和湘南烟溪组剖面点有机质含量(TOC)与成熟度(Ro)值
Table 1. TOC and Ro values at Yanxi Formation section points in Xiangzhong and Xiangnan area
-
[1] 杜远生, 徐亚军.华南加里东运动初探[J].地质科技情报, 2012, 31(5):43-49. http://d.old.wanfangdata.com.cn/Periodical/kjtb201211011 Du Yuansheng, Xu Yajun. A preliminary study on Caledonian event in South China[J]. Geological Science and Technology Information, 2012, 31(5):43-49. http://d.old.wanfangdata.com.cn/Periodical/kjtb201211011 [2] 舒良树.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报, 2006, 12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 Shu Liangshu. Predevonian tectonic evolution of South China:From Cathaysian Block to Caledonian period folded orogenic[J]. Geological Journal of China Universities, 2006, 12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 [3] 何卫红, 唐婷婷, 乐明亮, 等.华南南华纪-二叠纪沉积大地构造演化[J].地球科学——中国地质大学学报, 2014, 39(8):929-953. http://d.old.wanfangdata.com.cn/Periodical/dqkx201408002 He Weihong, Tang Tingting, Yue Mingliang, et al. Sedimentary and tectonic evolution of Nanhua-Permian in South China[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(8):929-953. http://d.old.wanfangdata.com.cn/Periodical/dqkx201408002 [4] Charvet J, Shu L S, Faure M, et al. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39(4):309-330. doi: 10.1016/j.jseaes.2010.03.006 [5] 周恳恳, 牟传龙, 葛祥英, 等.新一轮岩相古地理编图对华南重大地质问题的反映:早古生代晚期"华南统一板块"演化[J].沉积学报, 2017, 35(3):449-459. http://www.cjxb.ac.cn/CN/abstract/abstract3764.shtml Zhou Kenken, Mou Chuanlong, Ge Xiangying, et al. Lithofacies paleogeography of the South China in Early Paleozoic and its reflection on key geological problems[J]. Acta Sedimentologica Sinica, 2017, 35(3):449-459. http://www.cjxb.ac.cn/CN/abstract/abstract3764.shtml [6] 牟传龙, 葛祥英, 许效松, 等.中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J].古地理学报, 2014, 16(4):427-440. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201404001 Mou Chuanlong, Ge Xiangying, Xu Xiaosong, et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in middle-upper Yangtze region[J]. Journal of Palaeogeography, 2014, 16(4):427-440. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201404001 [7] 赵宗举, 范国章, 吴兴宁, 等.中国海相碳酸盐岩的储层类型、勘探领域及勘探战略[J].海相油气地质, 2007, 12(1):1-11. doi: 10.3969/j.issn.1672-9854.2007.01.001 Zhao Zongju, Fan Guozhang, Wu Xingning, et al. Reservoir types, exploration domains and exploration strategy of marine carbonates in China[J]. Marine Origin Petroleum Geology, 2007, 12(1):1-11. doi: 10.3969/j.issn.1672-9854.2007.01.001 [8] 张水昌, 梁狄刚, 朱光有, 等.中国海相油气田形成的地质基础[J].科学通报, 2007, 52(增刊1):19-31. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2007S1003.htm Zhang Shuichang, Liang Digang, Zhu Guangyou. Fundamental geological elements for the occurrence of Chinese marine oil and gas accumulations[J]. Chinese Science Bulletin, 2007, 52(Suppl. 1):19-31. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2007S1003.htm [9] 陈洪德, 覃建雄, 田景春, 等.中国南方古生界层序格架中的生储盖组合类型及特征[J].石油与天然气地质, 2004, 25(1):62-69. doi: 10.3321/j.issn:0253-9985.2004.01.012 Chen Hongde, Qin Jianxiong, Tian Jingchun, et al. Types and features of source-reservoir-cap rock combinations in Paleozoic sequence in southern China[J]. Oil & Gas Geology, 2004, 25(1):62-69. doi: 10.3321/j.issn:0253-9985.2004.01.012 [10] 焦方正, 冯建辉, 易积正, 等.中扬子地区海相天然气勘探方向、关键问题与勘探对策[J].中国石油勘探, 2015, 20(2):1-8. doi: 10.3969/j.issn.1672-7703.2015.02.001 Jiao Fangzheng, Feng Jianhui, Yi Jizheng, et al. Direction, key factors and solution of marine natural gas exploration in Yangtze area[J]. China Petroleum Exploration, 2015, 20(2):1-8. doi: 10.3969/j.issn.1672-7703.2015.02.001 [11] 陈洪德, 黄福喜, 徐胜林, 等.中上扬子地区碳酸盐岩储层发育分布规律及主控因素[J].矿物岩石, 2009, 29(4):7-15. doi: 10.3969/j.issn.1001-6872.2009.04.002 Chen Hongde, Huang Fuxi, Xu Shenglin, et al. Distribution rule and main controlling factors of the carbonate rock reservoirs in the middle and upper Yangtze region[J]. Journal of Mineralogy and Petrology, 2009, 29(4):7-15. doi: 10.3969/j.issn.1001-6872.2009.04.002 [12] 陈洪德, 庞林, 倪新峰, 等.中上扬子地区海相油气勘探前景[J].石油实验地质, 2007, 29(1):13-18. doi: 10.3969/j.issn.1001-6112.2007.01.003 Chen Hongde, Pang Lin, Ni Xinfeng, et al. New brief remarks on hydrocarbon prospecting of marine strata in the middle and upper Yangtze region[J]. Petroleum Geology and Experiment, 2007, 29(1):13-18. doi: 10.3969/j.issn.1001-6112.2007.01.003 [13] 王河锦, 周健, 徐庆生, 等.湘中北黄土店-仙溪中新元古界-下古生界的甚低级变质作用[J].中国科学(D辑):地球科学, 2002, 32(9):742-750. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200209005 Wang Hejin, Zhou Jian, Xu Qing-sheng, et al. Very low-grade metamorphism of the Meso-Neoproterozoic and the Lower Paleozoic along the profile from Huangtu-dian to Xianxi in the central-northern part of Hunan province, China[J]. Science China (Seri. D):Earth Sciences, 2002, 32(9):742-750. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200209005 [14] 戴宗林.南方海相油气地质特征及勘探方向的选择[J].海相油气地质, 1997, 2(4):20-29. http://www.cnki.com.cn/Article/CJFDTotal-HXYQ199704006.htm Dai Zonglin. Marine oil-gas geological characteristics in South China and exploration direction[J]. Marine Origin Petroleum Geology, 1997, 2(4):20-29. http://www.cnki.com.cn/Article/CJFDTotal-HXYQ199704006.htm [15] 康玉柱.中国古生界油气勘探成果及勘探战略思考[J].天然气工业, 2015, 35(9):1-7. doi: 10.3787/j.issn.1000-0976.2015.09.001 Kang Yuzhu. Palaeozoic hydrocarbon exploration achievements and strategies in China[J]. Natural Gas Industry, 2015, 35(9):1-7. doi: 10.3787/j.issn.1000-0976.2015.09.001 [16] 聂海宽, 金之钧, 边瑞康, 等.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集[J].石油学报, 2016, 37(5):557-571. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201605001.htm Nie Haikuan, Jin Zhijun, Bian Ruikang, et al. The "source-cap hydrocarbon-controlling" enrichment of shale gas in Upper Ordovician Wufeng FormationLower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5):557-571. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201605001.htm [17] 刘绍濂.湘中锰矿控岩控矿构造遥感地质分析[J].地质与勘探, 1996, 32(2):33-39. http://www.cnki.com.cn/Article/CJFDTotal-DZKT602.007.htm Liu Shaolian. Remote sensing geologic analysis of the controlling factors of ore-forinng and lithology of Xian Tan and Tao Jiang Type Mn deposit[J]. Geology and Prospecting, 1996, 32(2):33-39. http://www.cnki.com.cn/Article/CJFDTotal-DZKT602.007.htm [18] 赵东旭.湖南桃江奥陶系磨刀溪组锰质岩的内碎屑结构和重力流沉积[J].岩石学报, 1992, 8(4):386-396. doi: 10.3321/j.issn:1000-0569.1992.04.009 Zhao Dongxu. Intraclastic structure and gravity-flow sedimentation of manganese rock in Ordovician Modaoxi Formation, Taojiang county, Hunan province[J]. Acta Petrologica Sinica, 1992, 8(4):386-396. doi: 10.3321/j.issn:1000-0569.1992.04.009 [19] 蒋德和, 杨振强, 赵时久.湘中地区中奥陶统"桃江式"锰矿的成矿作用研究[J].沉积学报, 1995, 13(1):59-68. http://www.cjxb.ac.cn/CN/abstract/abstract2175.shtml Jiang Dehe, Yang Zhenqiang, Zhao Shijiu. Studies of ore-forming process of "Taojiang-type manganese", Middle Ordivician in central Hunan province[J]. Acta Sedimentologica Sinica, 1995, 13(1):59-68. http://www.cjxb.ac.cn/CN/abstract/abstract2175.shtml [20] 王海峰, 俞剑华, 方一亭.皖南赣北宁国组和胡乐组沉积环境的古盐度特征及其地质意义[J].地层学杂志, 1994, 18(1):9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400025451 Wang Haifeng, Yu Jianhua, Fang Yiting. The palaeosalinity and its geological signification of the depositional environment of the Ningkuo and Hulo formations from South Anhui and North Jiangxi[J]. Journal of Stratigraphy, 1994, 18(1):9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400025451 [21] 张春明, 张维生, 郭英海.川东南-黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘, 2012, 19(1):136-145. Zhang Chunming, Zhang Weisheng, Guo Yinghai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhoun[J]. Earth Science Frontiers. 2012.19(1):136-145. [22] 王峰, 刘玄春, 邓秀芹, 等.鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报, 2017, 35(6):1265-1273. http://www.cjxb.ac.cn/CN/abstract/abstract3835.shtml Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6):1265-1273. http://www.cjxb.ac.cn/CN/abstract/abstract3835.shtml