-
长山组顶部厚层块状泥晶灰岩中发育一系列的米级穹窿状构造,这些穹窿状构造形成了图 4所示的生物丘。这些生物丘与围岩有明显界限,主体由无明显纹层状或凝块状组构发育的均一石构成。均一石这一概念最早由Braga et al. [26]提出,由Riding[3-4]与梅冥相[42]将其与叠层石、凝块石、树形石、核形石、纹理石并列为六种微生物岩。这些均一石为主体构成的生物丘,在形态上类似于“碳酸盐岩泥丘”[43],同时在成因上相近于“微生物礁”[44-45],由细粒泥晶为基本构成的均一石和长山组顶部灰岩的块状构造,代表低能环境产物与代表高能环境构造的矛盾,从而表明这些均一石生物丘来源于微生物席在动荡水环境中固着底栖沉积的碳酸盐岩建造。
-
野外针对均一石生物丘进行采样,并对灰岩样品进行全岩XRD矿物组分分析与全岩碳氧同位素分析。XRD分析结果显示,均一石生物丘主要矿物为方解石,含少量白云石,石英、黄铁矿与黏土矿物(表 1、图 5)。均一石生物丘碳氧同位素测试结果显示,δ 13CPDB值为低正值、δ18OPDB值为中负值,这一特征与均一石生物丘形成所需的水体环境相吻合:均一石生物丘形成于浅缓坡环境,海水中碳氧轻同位素蒸发,重同位素富集,从而使得灰岩中δ 13C、δ 18O同位素值升高。
表 1 祁家峪寒武系长山组均一石生物丘样品XRD分析结果
Table 1. XRD results of carbonate rocks forming the leiolitic bioherm
样品编号 矿物成分含量/% 石英石 方解石 白云石 黄铁矿 黏土矿物 QJCS-1 2 95 3 QJCS-2 3 95 QJCS-3 2 97 1 1 QJCS-4 2 95 2 1 -
前人研究表明,灰岩的碳氧同位素值与形成环境盐度具有相关性,Keith et al.[46]将碳酸盐岩的δ 13CPDB与δ 18OPDB,二者结合起来,用以指示古盐度,以Z值区分海相灰岩和淡水石灰岩。Z值大于120为海相,小于120为陆相,其中Z=2.048(δ 13C+50)+0.498(δ 18O+50),δ 13CPDB和δ 18OPDB采用PDB标准。从结果中可见(表 2),长山组均一石生物丘样品Z值均大于120,结果符合其海相成因。
表 2 祁家峪寒武系长山组均一石生物丘样品碳氧同位素分析结果
Table 2. Carbon and oxygen isotopic data for carbonate rocks from leiolitic bioherm in Qijiayu section
样品编号 δ 13CPDB/‰ 均值 δ 18OPDB/‰ 均值 Z值 t/℃ QJCS-1 0.42 0.36 -6.90 -7.19 124.72 52.08 QJCS-2 0.24 -6.88 124.37 51.97 QJCS-3 0.51 -6.85 124.93 51.81 QJCS-4 0.27 -8.16 123.79 58.90 注:成岩温度计算公式为:t =-258.4-5.41δ 18OPDB; 盐度Z值计算公式:Z =2.048×(δ 13CPDB+50)+0.498×(δ 18OPDB+50)。 -
灰岩形成过程中,温度对δ 18OPDB值影响较大,而δ 13CPDB值对温度变化反应不敏感,在盐度无剧烈变化情况下,δ 18OPDB值随温度升高而降低。因此,许多学者提出了应用δ 18OPDB值来测定其形成的温度[47]。本文采用t=-258.4-5.41δ 18OPDB来计算均一石生物丘中方解石的形成温度。结果显示最高温度计算值为58.90 ℃,最低温度计算值为51.81 ℃(表 2)。碳酸盐岩中δ 18OPDB值随着地质历史的变迁发生较大变化。时代越老、成岩作用时间越长,氧同位素交换愈强,δ 18OPDB值就愈低。所以上述方法的应用受到很大限制,计算出来的温度已不代表原始沉积水体温度。虽然如此,该值仍然具有一定参考价值,特别对反映成岩作用强弱,具有定性意义[48]。
Sedimentary Fabrics and Environmental Characteristics of Leiolite in Cambrian: A case study from the Changshan Formation in Laiyuan city, Hebei province
-
摘要: 均一石以隐晶质岩性、无纹层与凝块结构发育为特征,与叠层石、凝块石、树形石并列为典型的微生物岩。然而,由于均一石在1995年命名以来很少在地层记录中得到识别和描述,并且缺乏现代实例的类比物,使得关于均一石的报道极具研究价值 。 为研究华北地台寒武系均一石沉积组构与形成环境特征,系统性地针对河北涞源祁家峪剖面芙蓉统长山组均一石生物丘进行研究。芙蓉统长山组从下部陆棚相钙质泥岩向上变浅至浅缓坡相厚层块状泥晶灰岩,组成了一个淹没不整合型三级层序。三级层序顶部的浅缓坡相厚层块状泥晶灰岩层,代表强迫型海退过程沉积,其内部发育一系列米级均一石生物丘。研究结果表明,这些生物丘主体为致密泥晶及少量微量晶组成,其中可见到附枝菌(Epiphyton)、葛万菌(Girvanella)、肾形菌(Renalcis)等钙化微生物化石。这些钙化微生物(蓝细菌)化石的出现,代表了显生宙第一幕蓝细菌钙化作用事件的证据,同时间接的说明均一石生物丘形成于蓝细菌主导的微生物席的钙化作用过程之中。同时,生物丘内还局部集中发育底栖鲕粒与草莓状黄铁矿颗粒,表明了生物丘形成过程中复杂的微生物沉积作用机制。因此,河北涞源长山组顶部的均一石生物丘,尽管泥晶和微亮晶是其基本构成,但是各种钙化蓝细菌化石以及底栖鲕粒与草莓状黄铁矿颗粒的局部出现表明了在蓝细菌主导的微生物席中复杂的微生物活动信号,成为了解生物丘形成机制、显生宙第一幕蓝细菌钙化作用事件的典型实例。Abstract: Leiolite is characterized by relatively structureless, aphanitic, mesostructure, lacking lamination or clots, and is classified as typical microbial rocks together with stromatolites, thrombolites and dendrites. However, because of the lack of leiolite research reports in either modern or old records since it was named in 1995, the report of a leiolite example has great research value. The Cambrian Changshan Formation at the Qijiayu section constitutes the lower part of the Furongian series. The formation is characterized by a generally shallowing-upward succession of sedimentary facies ranging from mudstone of shelf marls to micrite of shallow ramp facies, and therefore comprises a third-order carbonate depositional sequence of the drowning-unconformity type in the north of the Taihang Mountain in Laiyuan city, Heibei province. A single bed of the micrite of shallow ramp facies in the upper part of the Changshan Formation contains many dome-shaped carbonate structures distributed similar to a string of beads. These structures are described as a leiolitic bioherm, and is evidence of a forced regression. Various kinds of calcified microorganisms such as Epiphyton, Girvanella and Renalcis developed within the leiolitic bioherm. These are evidence of the first episode of a cyanobacteria calcification event in the Phanerozoic, and describe a leiolitic bioherm formed from microbial mats dominated by cyanobacteria. Furthermore, the partial concentrations of benthic ooids in the bioherm show complex microbial sedimentation during its formation. Although the bioherm basic components are micrite and microspar, the presence of calcified microorganisms and benthic ooids offers a reference for studying the complex microbial activity signals in the microbial mats, which are dominated by calcified microorganisms. It can also be regarded as an instance for further research on the mechanism of bioherm formation and the first episode of cyanobacteria calcification event during the Phanerozoic.
-
图 1 研究区域概况
(a)华北地台寒武系出露(修改自Meng et al., [31]);(b)祁家峪剖面位置图
Figure 1. Location map of the study area
(a)Cambrian outcrops in North China Platform; (b)location of Qijiayu section and general traffic conditions of Laiyuan city
图 2 河北涞源祁家峪剖面寒武系长山组层序地层划分
祁家峪剖面寒武系芙蓉统可以划分三个沉积序列(DS1~DS3),其中长山组三级层序DS1的构成单元为:CS.凝缩段;HST.高水位体系域;FRST.强迫型海退体系域;星号剖面所在位置。岩性符号:(1)白云岩;(2)块状泥晶灰岩;(3)条带状泥晶灰岩;(4)泥灰岩(5)钙质泥岩;(6)鲕粒灰岩;(7)泥晶灰岩透镜体;(8)生物潜穴;(9)均一石生物丘;(10)冲刷面;(11)竹叶状灰岩;(12)层序界线
Figure 2. Sequence stratigraphic framework for the Changshan Formation at Qijiayu section in Laiyuan city, Heibei province
At Qijiayu section, the Furongian series is subdivided into three depositional sequences (DS1-DS3), of which DS1 comprises three parts of the Changshan Formation: CS (condensed section), HST (high-stand system tract) and FRST (forced-regression systems tract). The star shows location of the Qijiayu section introduced in this study. Lithologies: (1) dolomite; (2) micritic limestone; (3) muddy-banded micrite; (4) marl; (5) calcareous mudstones; (6) oolitic grainstone; (7) lens of micritic limestone; (8) burrow; (9) leiolitic bioherm; (10) scouring surface; (11) edgewise calcirudite; (12) sequence boundary
图 3 祁家峪剖面长山组沉积特征
(a)祁家峪剖面芙蓉统;(b)长山组底部竹叶状灰岩;(c)长山组中部泥晶灰岩透镜体;(d)长山组顶部厚层块状灰岩(红色箭头指沿生物潜穴发生的白云石化)[32]
Figure 3. Sedimentary features of Cambrian Changshan Formation in Qijiayu section
(a) Furongian Series strata; (b) edgewise calcirudite from lower part of Changshan Formation; (c) lens of micritic limestone from middle part of Changshan Formation; (d) massive limestone form upper part of Changshan Formation (red arrows show the dolomitic inside burrow)[32]
图 6 均一石生物丘内部的附枝菌
(a)均一石生物丘中房室状和扇状附枝菌菌落;(b)照片(a)的局部放大,可见明显的附枝菌丝状体二分叉特征;(c)丛状附枝菌菌落,可见球状或椭球状横切面;(d)(c)中的局部放大;(e)(f)超微尺度下扫描电镜观察的附枝菌形态(黄色箭头所示)
Figure 6. Images showing the basic features of Epiphyton in the leiolitic bioherm
(a) chambered or fan shape of Epiphyton within leiolitic bioherm; (b) enlarged section of 6a, showing branching dendritic structures of Epiphyton; (c) transverse section of Epiphyton is round or elliptical rodlike; and (d) enlarged section of Fig. 5c; (e)(f) SEM images of ultra micro-fabric of Epiphyton (yellow arrows)
图 7 均一石生物丘内部的葛万菌(Girvanella)
(a)构成均一石生物丘的致密泥晶内部的葛万菌菌落;(b)部分呈相互缠绕的丝状体聚集成的葛万菌;(c)不规则条带状分布的葛万菌,表现为不分节和不分叉的特点;(d)扫描电镜下可见丝状微生物化石
Figure 7. Images of fundamental features of Girvanella within leiolitic bioherm
(a) a colony of Girvanella within dense micrites making up the leiolitic bioherm; (b) interfilamentous twisting making up Girvanella; (c) irregular banded distribution of Girvanella, which appears with unsegmented and unbranched features; and (d) ultra micro-fabric of Girvanella within the leiolitic bioherm
图 8 均一石生物丘内部的肾形菌(Renalcis)
(a)相互联结成葡萄状的肾形菌;(b)不规则球状的肾形菌;(c)囊状的肾形菌;(d)扫描电镜下可见EPS钙化作用残余物,以及矿物元素定性分析点位
Figure 8. Basic features of Renalcis within dense micrites making up the leiolitic bioherm
(a) connective group-shaped colony of Renalcis; (b) irregular spherical Renalcis mixed with Epiphyton; (c) cystiform Renalcis; (d) EPS calcification remnants in thin plate honeycomb shape, and location of EDX
图 9 均一石生物丘中的微观特征与底栖鲕粒
(a)均一石生物丘围观特征,可见致密泥晶中的底栖鲕粒和三叶虫骨屑;(b)照片(a)的局部放大,可见有核心放射鲕,同时可见海绿石与黑色黄铁矿颗粒;(c)(d)单偏光下的有核心底栖放射鲕粒表,正交偏光下表现出十字消光;(e)(f)单偏光下的无核心底栖鲕粒,正交偏光下表现出十字消光
Figure 9. Images showing the microscopic features of the leiolitic bioherm and benthic ooids
(a) benthic ooids and trilobites fragments within dense micrites; (b) enlarged section of 9a, showing re-radiated ooids with glauconite and pyrite particles; (c)-(f) single polarized light and quadrature polarized light images of individual radiated ooids
表 1 祁家峪寒武系长山组均一石生物丘样品XRD分析结果
Table 1. XRD results of carbonate rocks forming the leiolitic bioherm
样品编号 矿物成分含量/% 石英石 方解石 白云石 黄铁矿 黏土矿物 QJCS-1 2 95 3 QJCS-2 3 95 QJCS-3 2 97 1 1 QJCS-4 2 95 2 1 表 2 祁家峪寒武系长山组均一石生物丘样品碳氧同位素分析结果
Table 2. Carbon and oxygen isotopic data for carbonate rocks from leiolitic bioherm in Qijiayu section
样品编号 δ 13CPDB/‰ 均值 δ 18OPDB/‰ 均值 Z值 t/℃ QJCS-1 0.42 0.36 -6.90 -7.19 124.72 52.08 QJCS-2 0.24 -6.88 124.37 51.97 QJCS-3 0.51 -6.85 124.93 51.81 QJCS-4 0.27 -8.16 123.79 58.90 注:成岩温度计算公式为:t =-258.4-5.41δ 18OPDB; 盐度Z值计算公式:Z =2.048×(δ 13CPDB+50)+0.498×(δ 18OPDB+50)。 -
[1] Bosence D W J, Gibbons K A, Heron D P L, et al. Microbial carbonates in space and time: Implications for global exploration and production[J]. Geological Society London Special Publications, 2015, 481: 437-454. [2] Dupraz C, Reid R P, Visscher P T. Microbialites, modern[M]//Reitner J, Thiel V. Encyclopedia of Geobiology. Netherlands: Springer, 2011: 617-635. [3] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl. 1):179-214. doi: 10.1046-j.1365-3091.2000.00003.x/ [4] Riding R. Microbialites, stromatolites, and thrombolites[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 635-654. [5] Riding R, Liang L Y. Geobiology of microbial carbonates:Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2):101-115. http://cn.bing.com/academic/profile?id=644f389fc78be4c0bf5254e2f318560e&encoded=0&v=paper_preview&mkt=zh-cn [6] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4):229-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c56d19de9a1d789e146a154c19b80e25 [7] 杨孝群, 李忠.微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J].沉积学报, 2018, 36(4):639-650. http://www.cjxb.ac.cn/CN/abstract/abstract3894.shtml Yang Xiaoqun, Li Zhong. Research progress in sedimentology of microbial carbonate rocks:A review based on the 33rd International Sedimentological Congress[J] Acta Sedimentologica Sinica, 2018, 36(4):639-650. http://www.cjxb.ac.cn/CN/abstract/abstract3894.shtml [8] Wood R. Reef evolution[M]. Oxford:Oxford University Press, 1999:1-414. [9] Kiessling W. Geologic and biologic controls on the evolution of reefs[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1):173-192. doi: 10.1146/annurev.ecolsys.110308.120251 [10] Myrow P M, Tice L, Archuleta B, et al. Flat-pebble conglomerate:Its multiple origins and relationship to metre-scale depositional cycles[J]. Sedimentology, 2004, 51(5):973-996. doi: 10.1111/j.1365-3091.2004.00657.x [11] Pratt B R, Bordonar O L. Tsunamis in a stormy sea:Middle Cambrian inner-shelf limestones of western Argentina[J]. Journal of Sedimentary Research, 2007, 77(4):256-262. doi: 10.2110/jsr.2007.032 [12] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeleton-poor seas:New insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25:73-84. doi: 10.2110/palo.2009.p09-101r [13] 梅冥相, 郭荣涛, 胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报, 2011, 27(8):2473-2486. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023 Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8):2473-2486. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108023 [14] Liu W, Zhang X L. Calcified biofilms from Cambrian oolitic limestones in China[J]. Acta Geologica Sinica (English Edition), 2015, 89(1):70-76. doi: 10.1111/1755-6724.12395 [15] 韩作振, 陈吉涛, 张晓蕾, 等.鲁西寒武系第三统张夏组附枝菌与附枝菌微生物灰岩特征研究[J].地质学报, 2009, 83(8):1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006 Han Zuozhen, Chen Jitao, Zhang Xiaolei, et al. Characteristics of Epiphyton and Epiphyton Microbialites in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Geologica Sinica, 2009, 83(8):1097-1103. doi: 10.3321/j.issn:0001-5717.2009.08.006 [16] 张文浩, 史晓颖, 汤冬杰, 等.华北地台西缘早-中寒武世过渡期核形石:微生物群落对浅海缺氧环境的响应[J].古地理学报, 2014, 16(3):305-318. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403002 Zhang Wenhao, Shi Xiaoying, Tang Dongjie, et al. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform:A response of microbial community to shallow marine anoxia[J]. Journal of Palaeogeography, 2014, 16(3):305-318. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201403002 [17] 王皓, 肖恩照.山西灵丘刁泉剖面寒武系第三统张夏组核形石[J].东北石油大学学报, 2018, 42(5):44-53. doi: 10.3969/j.issn.2095-4107.2018.05.005 Wang Hao, Xiao Enzhao. Oncolites in Cambrian Series 3 at Diaoquan section in Lingqiu, Shanxi[J]. Journal of Northeast Petroleum University, 2018, 42(5):44-53. doi: 10.3969/j.issn.2095-4107.2018.05.005 [18] 代明月, 齐永安, 常玉光, 等.河南登封地区寒武系第三统馒头组二段中的核形石及其意义[J].沉积学报, 2014, 32(3):410-417. http://www.cjxb.ac.cn/CN/abstract/abstract1065.shtml Dai Mingyue, Qi Yong'an, Chang Yuguang, et al. Oncoids and their significance from the Second member of the Mantou Formation (Cambrian Series 3), Dengfeng area, Henan[J]. Acta Sedimentologica Sinica, 2014, 32(3):410-417. http://www.cjxb.ac.cn/CN/abstract/abstract1065.shtml [19] 梅冥相, 刘丽, 胡媛.北京西郊寒武系凤山组叠层石生物层[J].地质学报, 2015, 89(2):440-460. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502018 Mei Ming-xiang, Liu Li, Hu Yuan. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2):440-460. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502018 [20] Woo J, Chough S K, Han Z. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong province, China[J]. Palaios, 2008, 23(1):55-64. doi: 10.2110/palo.2006.p06-103r [21] 陈金勇, 韩作振, 范洪海, 等.鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J].沉积学报, 2014, 32(3):494-502. http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml Chen Jinyong, Han Zuozhen, Fan Honghai, et al. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation (Third Series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3):494-502. http://www.cjxb.ac.cn/CN/abstract/abstract1074.shtml [22] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4):299-316. doi: 10.1111/j.1472-4669.2006.00087.x [23] Xiao E Z, Latif K, Riaz M, et al. Calcified microorganisms bloom in Furongian of the North China platform:Evidence from Microbialitic-Bioherm in Qijiayu Section, Hebei[J]. Open Geosciences, 2018, 10(1):250-260. doi: 10.1515/geo-2018-0019 [24] 梅冥相.淹没不整合型碳酸盐三级旋回层序:兼论碳酸盐台地的"凝缩作用"[J].岩相古地理, 1996, 16(6):24-33. doi: 10.1111-j.1751-553X.2008.01055.x/ Mei Mingxiang. The third-order carbonate cyclic sequences of drowned unconformity type with discussion on "condensation" of carbonate platform[J]. Sedimentary Facies and Palaeogeography, 1996, 16(6):24-33. doi: 10.1111-j.1751-553X.2008.01055.x/ [25] 肖恩照, 隋明园, 覃英伦, 等.河北涞源祁家峪剖面寒武系层序地层划分[J].大庆石油地质与开发, 2017, 36(6):16-25. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201706003 Xiao Enzhao, Sui Mingyuan, Qing Yinglun, et al. Cambrian sequence stratigraphic division for Qijiayu section in Hebei Laiyuan[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(6):16-25. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201706003 [26] Braga J C, Martin J M, Riding R. Controls on microbial dome fabric development along a carbonate-siliciclastic shelfbasin transect, Miocene, SE Spain[J]. Palaios, 1995, 10(4):347-361. doi: 10.2307/3515160 [27] Hillgärtner H, Dupraz C, Hug W A. Microbially induced cementation of carbonate sands:Are micritic meniscus cements good indicators of vadose diagenesis?[J]. Sedimentology, 2001, 48(1):117-131. doi: 10.1046/j.1365-3091.2001.00356.x [28] Dupraz C, Visscher P T, Baumgartner L K, et al. Microbemineral interactions:Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4):745-765. doi: 10.1111/j.1365-3091.2004.00649.x [29] 肖恩照, 覃英伦, Riaz M, 等.吕梁山东北缘寒武系层序地层划分:以文水苍尔会剖面为例[J].东北石油大学学报, 2017, 41(5):43-53. doi: 10.3969/j.issn.2095-4107.2017.05.005 Xiao Enzhao, Qin Yinglun, Riaz M, et al. Sequence stratigraphy division of Cambrian in the northeast area of Luliang Mountain:A case study of the Cangerhui section in Wenshui city[J]. Journal of Northeast Petroleum University, 2017, 41(5):43-53. doi: 10.3969/j.issn.2095-4107.2017.05.005 [30] 梅冥相.华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J].中国地质, 2011, 38(2):317-337. doi: 10.3969/j.issn.1000-3657.2011.02.008 Mei Mingxiang. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform:A case study of the Xiaweidian section in the western suburb of Beijing[J]. Geology in China, 2011, 38(2):317-337. doi: 10.3969/j.issn.1000-3657.2011.02.008 [31] Meng, X H, Ge, M, Tucker, M E, Sequence Sequence stratigraphy, sea-level changes and depositional systems in the CambroOrdovician of the North China carbonate platform[J]. Sedimentary Geology, 1997, 114(1):189-222 [32] 肖恩照, 隋明园, Latif K, 等微生物白云岩形成机制研究进展与存在问题[J].大庆石油地质与开发, 2017, 36(2):26-32. doi: 10.3969/J.ISSN.1000-3754.2017.02.004 Xiao Enzhao, Sui Mingyuan, Latif K, et al. Study advances and existed problem for the forming mechanism of the microbial dolomite[J]. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(2):26-32. doi: 10.3969/J.ISSN.1000-3754.2017.02.004 [33] 彭善池.华南寒武系年代地层系统的修订及相关问题[J].地层学杂志, 2008, 32(3):239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002 Peng Shanchi. Revision on Cambrian chronostratigraphy of South China and related remarks[J]. Journal of Stratigraphy, 2008, 32(3):239-245. doi: 10.3969/j.issn.0253-4959.2008.03.002 [34] 樊隽轩, 彭善池, 侯旭东, 等.国际地层委员会官网与《国际年代地层表》(2015/01版)[J].地层学杂志, 2015, 39(2):125-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201502001 Fan Junxuan, Peng Shanchi, Hou Xudong, et al. Official website of the International Commission on Stratigraphy and the release of the international chronostratigraphic chart (V2015/01)[J]. Journal of Stratigraphy, 2015, 39(2):125-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201502001 [35] Mei M M, Ma Y S, Deng J, et al. From cycles to sequences:Sequence stratigraphy and relative sea level change for the Late Cambrian of the North China Platform[J]. Acta Geologica Sinica (English Edition), 2005, 79(3):372-383. doi: 10.1111/j.1755-6724.2005.tb00902.x [36] Mei M M, Ma Y S, Zhang H, et al. From basin black shales to platform carbonate rocks:A study on sequence stratigraphy for the Lower Cambrian of the upper-Yangtze region in South China[J]. Acta Geologica Sinica (English Edition), 2015, 81(5):739-755. http://cn.bing.com/academic/profile?id=0c95f7c6f76c06fd4daed03f2c6ceaa0&encoded=0&v=paper_preview&mkt=zh-cn [37] Schlager W, Warrlich G. Record of sea-level fall in tropical carbonates[J]. Basin Research, 2009, 21(2):209-224. doi: 10.1111/j.1365-2117.2008.00383.x [38] Schlager W. Type 3 sequence boundaries[M]//Harris P, Saller A and Simo A. Carbonate sequence stratigraphy: Application to reservoirs, outcrops and models. SEPM Special Publication, Tulsa, 1999, 63: 35-46. [39] Hunt D, Tucker M E. Stranded parasequences and the forced regressive wedge systems tract:Deposition during base-level'fall[J]. Sedimentary Geology, 1992, 81(1/2):1-9. doi: 10.1016-0037-0738(92)90052-S/ [40] Helland-Hansen W, Gjelberg J G. Conceptual basis and variability in sequence stratigraphy:A different perspective[J]. Sedimentary Geology, 1994, 92(1/2):31-52. http://cn.bing.com/academic/profile?id=ad58f1a62db0a486eadb07b486a35f18&encoded=0&v=paper_preview&mkt=zh-cn [41] Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level: Part 3: Relative changes of sea level from coastal onlap[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulso, Okla: AAPG Memoir, 1977: 63-81. [42] 梅冥相.微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J].地学前缘, 2007, 14(5):222-234. doi: 10.3321/j.issn:1005-2321.2007.05.022 Mei Mingxiang. Revised classification of microbial carbonates:Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234. doi: 10.3321/j.issn:1005-2321.2007.05.022 [43] Riding R. Structure and composition of organic reefs and carbonate mud mounds:Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2):163-231. doi: 10.1016-S0012-8252(01)00089-7/ [44] Hong J, Cho S H, Choh S J, et al. Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi formation, Korea):Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event[J]. Sedimentary Geology, 2012, 253-254:47-57. doi: 10.1016/j.sedgeo.2012.01.011 [45] Chen J T, Lee J H, Woo J. Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:246-259. doi: 10.1016/j.palaeo.2014.09.004 [46] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 18(10/11):1787-1816. http://cn.bing.com/academic/profile?id=36662712188535a33640346719ee0864&encoded=0&v=paper_preview&mkt=zh-cn [47] 张秀莲.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J].沉积学报, 1985, 3(4):17-30. http://www.cjxb.ac.cn/CN/abstract/abstract1581.shtml Zhang Xiulian. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Journal of Sedimentology, 1985, 3(4):17-30. http://www.cjxb.ac.cn/CN/abstract/abstract1581.shtml [48] 刘德良, 孙先如, 李振生, 等.鄂尔多斯盆地奥陶系白云岩碳氧同位素分析[J].石油实验地质, 2006, 28(2):155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 Liu Deliang, Sun Xianru, Li Zhensheng, et al. Analysis of carbon and oxygen isotope on the Ordovician dolostones in the Ordos Basin[J]. Petroleum Geology & Experiment, 2006, 28(2):155-161. doi: 10.3969/j.issn.1001-6112.2006.02.012 [49] Woo J, Chough S K. Growth patterns of the Cambrian microbialite:Phototropism and speciation of Epiphyton[J]. Sedimentary Geology, 2010, 229(1/2):1-8. [50] Laval B, Cady S L, Pollack J C, et al. Modern freshwater microbialite analogues for ancient dendritic reef structures[J]. Nature, 2000, 407(6804):626-629. doi: 10.1038/35036579 [51] Adachi N, Ezaki Y, Liu J B. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 407:45-55. doi: 10.1016/j.palaeo.2014.04.013 [52] Adachi N, Kotani A, Ezaki Y, et al. Cambrian series 3 lithistid sponge-microbial reefs in Shandong province, North China:Reef development after the disappearance of archaeocyaths[J]. Lethaia, 2015, 48(3):405-416. doi: 10.1111/let.12118 [53] Luchinina V A, Terleev A A. The morphology of the genus Epiphyton bornemann[J]. Geologia Croatica, 2008, 61(2/3):105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002402367 [54] Latif K, Xiao E Z, Riaz M, et al. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation, Datong (North China Platform)[J]. Carbonates and Evaporites, 2019, 34:825-843. doi: 10.1007/s13146-018-0472-8 [55] Pratt B R. Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue-green algae[J]. Journal of Sedimentary Research, 1984, 54(3):948-971. [56] Riding R. Temporal variation in calcification in marine cyanobacteria[J]. Journal of the Geological Society, 1991, 149(6):979-989. doi: 10.1144-gsjgs.149.6.0979/ [57] Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Heidelberg: Springer, 2011: 211-223. [58] Săsăran E, Bucur I I, Pleş G, et al. Late Jurassic Epiphyton-like cyanobacteria:Indicators of long-term episodic variation in marine bioinduced microbial calcification[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 401:122-131. doi: 10.1016/j.palaeo.2014.02.026 [59] Adame M F, Pettit N E, Valdez D, et al. The contribution of epiphyton to the primary production of tropical floodplain wetlands[J]. Biotropica, 2017, 49(4):461-471. doi: 10.1111/btp.12445 [60] Hughes G W. Late Permian to Late Jurassic "microproblematica" of Saudi Arabia:Possible palaeobiological assignments and roles in the palaeoenviromental reconstructions[J]. GeoArabia, 2013, 18(1):57-92. [61] 常玉光, 孙凤余, 郑伟.豫西寒武纪叠层石微生物化石及其钙化特征[J].现代地质, 2014, 28(2):271-280. doi: 10.3969/j.issn.1000-8527.2014.02.004 Chang Yuguang, Sun Fengyu, Zheng Wei. Microorganism fossils and calcification characteristics of Cambrian stromatolites, western Henan[J]. Geoscience, 2014, 28(2):271-280. doi: 10.3969/j.issn.1000-8527.2014.02.004 [62] Liu L J, Wu Y S, Yang H J, et al. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China:Systematics and significance[J]. Journal of Systematic Palaeontology, 2016, 14(3):183-210. doi: 10.1080/14772019.2015.1030128 [63] Liu L J, Wu Y S, Jiang H X, et al. Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin, Northwest China[J]. Palaios, 2017, 32(7):462-489. doi: 10.2110/palo.2016.054 [64] Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 2006, 23(7):545-550. doi: 10.1080/01490450600897302 [65] Gerdes G, Dunajtschik-Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6):1273-1294. doi: 10.1111/j.1365-3091.1994.tb01453.x [66] Sack P J, Large R R, Gregory D D. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn Basin area, Yukon[J]. Mineralium Deposita, 2018, 53(7):997-1018. doi: 10.1007/s00126-018-0793-5 [67] Merinero R, Cárdenes, V. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth[J]. Mineralogy and Petrology, 2017, 112(4):577-589. [68] Baumgartner L K, Reid R P, Dupraz C, et al. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4):131-145. http://cn.bing.com/academic/profile?id=00a5c517aca39d67ca249e1bdec8b934&encoded=0&v=paper_preview&mkt=zh-cn [69] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G-L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440:1-14. doi: 10.1016/j.chemgeo.2016.07.009 [70] 周杰, 邱振, 王红岩, 等.草莓状黄铁矿形成机制及其研究意义[J].地质科学, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017 Zhou Jie, Qiu Zhen, Wang Hongyan, et al. Formation mechanism of pyrite framboid and its research significance[J]. Chinese Journal of Geology, 2017, 52(1):242-253. http://d.old.wanfangdata.com.cn/Periodical/dzkx201701017 [71] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time:A new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):855-862. doi: 10.1016/0016-7037(83)90151-5 [72] Maclean L C, Tyliszczak T, Gilbert P U, et al. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm[J]. Geobiology, 2010, 6(5):471-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc7aa809ab861b98a877718056c00d7f [73] Schieber J. Sedimentary pyrite:A window into the microbial past[J]. Geology, 2002, 30(6):531-534. doi: 10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2 [74] Fan R, Deng S H, Zhang X L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China Earth Sciences, 2011, 54(11):1686-1695 doi: 10.1007/s11430-011-4313-z [75] 郝松立, 李文厚, 刘建平, 等.鄂尔多斯南缘奥陶系生物礁相碳酸盐岩碳氧同位素地球化学特征[J].地质科技情报, 2011, 30(2):52-56. doi: 10.3969/j.issn.1000-7849.2011.02.009 Hao Songli, Li Wenhou, Liu Jianping, et al. Characteristics of carbon and oxygen isotopes geochemistry of organic reef facies carbonates of Ordovician in southern margin of Ordos[J]. Geological Science & Technology Information, 2011, 30(2):52-56. doi: 10.3969/j.issn.1000-7849.2011.02.009 [76] Perry R S, Mcloughlin N, Lynne B Y, et al. Defining biominerals and organominerals:Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1/2):157-179. http://cn.bing.com/academic/profile?id=90901e68d88fd4bd2e214becc0404063&encoded=0&v=paper_preview&mkt=zh-cn [77] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3):141-162. doi: 10.1016/j.earscirev.2008.10.005 [78] Bogs S Jr. Petrology of sedimentary rocks[M]. 2nd edition. Cambridge:Cambridge University Press, 2009, 1-600.