-
凝块石野外呈现斑状结构,由暗色粗晶和浅色微晶组成(图 2a)凝块石镜下明显分为两个部分,浅色粗晶颗粒和暗色微晶颗粒,呈现斑块状结构(图 2b)。
镜下观察显示,粗晶部分主要为方解石晶体颗粒,而细小的微晶颗粒主要为白云石组成。粗晶方解石表面以及孔隙中分布菱形白云石。
在深色微晶内发现微小腹足类,双壳类、蠕虫虫管、介形虫和有孔虫化石(图 2),而被认为可能是Gakhumella微生物化石主要出现在粗晶中[3-5](图 3)。
-
凝块石阴极发光照片显示三种明显的发光特征(图 4)。粗晶部分阴极发光弱,显示为暗色(图 4中Ⅰ),其与微晶接触边界显示为丛状特征(图 4b,h),在其中可以看到规则的管状的发光;微晶部分阴极发光中等,表现为无发光到红色发光特征(图 4中Ⅱ);而菱形的白云石阴极发光强,表现出强烈的红色发光特征(图 4中Ⅲ),白云石也显示环带的发光特征。
图 4 (a)(d)(g)(j)作登剖面凝块石偏光镜照片;(b)(e)(h)(k)作登剖面凝块石阴极发光照片;(c)(f)(i)(l)修图后的凝块石阴极发光照片
Figure 4. (a)(d)(g)(j) Photomicrographs of thrombolites in transmitted light in the Zuodeng section; (b)(e)(h)(k) Photomicrographs of thrombolites in cathodoluminescence (CL) images in the Zuodeng section; (c)(f)(i)(l) Photomicrographs of thrombolites in CL images after revision
Gakhumella微化石和介形虫等化石壳体阴极发光弱(图 4h)。
海相碳酸盐的成岩过程伴随对Mn、Fe元素的吸收过程[34],而碳酸盐岩的阴极发光特征与Mn、Fe含量相关[35-37]。碳酸盐岩中的沉积、成岩组分往往显示不同程度的阴极发光特征,因此海相碳酸盐矿物的阴极发光性也成为判断其成岩蚀变强度的有效方法之一[38-40]。
作登剖面凝块石中三种不同阴极发光特征说明了在其沉积成岩过程中不同的层次,为重新还原其沉积成岩过程提供了依据。
-
凝块石背散射照片也显示了三个不同等级的灰度(图 5)。粗晶为浅灰色,晶体多显示为无定形(图 5中Ⅰ),连成片状,与微晶交界处也表现出丛状特征(图 5c);微晶则为灰黑色,晶体颗粒感明显(图 5中Ⅱ);菱形的白云石则显示出黑色(图 5中Ⅲ),点状分布在粗晶和微晶中。
图 5 作登剖面凝块石背散射照片
Figure 5. Photomicrographs of thrombolites in backscattered electron images of Zuodeng section
凝块石中介形虫化石壳体背散射为灰黑色,壳内晶体为灰色(图 5)。Gakhumella微化石也为灰黑色。
背散射照片灰度变化主要和矿物类型有关,作登剖面凝块石中三种不同的背散射灰度特征中,表现出灰色特征主要为方解石颗粒,而黑色主要是白云石颗粒,依据颗粒大小将白云石颗粒分为了Ⅱ和Ⅲ。
-
探针测试显示,微晶中Fe平均含量明显高于粗晶,其平均含量达到34 325×10-6,微晶中Mg,Al,Si,S含量也明显高于粗晶,分别为69 647×10-6,7 635×10-6、24 272×10-6和325×10-6(表 1)。微晶元素含量特征与白云石总体一致。
表 1 作登剖面凝块石不同部分元素平均含量(×10-6)
Table 1. Average element content in different parts of the thrombolites in the Zoudeng section (×10-6)
Ca Mg Fe Mn Al Si S Sr 微晶 247 504 69 647 34 325 138 7 635 24 272 325 481 粗晶 351 086 24 644 372 102 4 889 14 231 188 516 白云石 233 880 101 516 28 695 221 3 977 6 585 431 386 介形虫化石 396 767 3 596 90 51 25 167 139 362 微化石 212 569 62 668 1 607 235 13 160 50 198 2 843 731 对凝块石中的Gakhumella微化石和介形虫化石的元素分析显示,两者特征明显不一样。Gakhumella微化石中Mg、Fe、Al、Si和S均远高于介形虫化石中这些元素的含量。
元素投点图明显显示了这个特征,微晶中Si,Fe,Al含量明显高于粗晶(图 6a,b,d)。粗晶中Mg含量分布范围较大(图 6c),部分Mg含量与白云石一致,显示粗晶中包含了白云石颗粒。
图 6 作登剖面凝块石中不同部分元素含量散点图
Figure 6. Scatter plots of elements in different parts of the thrombolites in the Zuodeng section
同为化石,介形虫和Gakhumella微化石之间元素组成上明显存在区别,Gakhumella微化石元素组成分布完全不同于介形虫。
Sedimentary and Diagenetic Processes of Thrombolites near the Permian-Triassic Boundary in the Zuodeng Section, Baise Area, Guangxi Province, South China
-
摘要: 二叠纪末大灭绝之后,在我国华南地区广泛发育了一套钙质微生物岩,这套微生物岩以凝块石为主,代表了大灭绝事件后特殊环境下的生物沉积建造。早期对凝块石的分布以及沉积特征有详细研究。通过镜下显微观察,阴极发光照相,背散射成像以及探针元素分析,对凝块石的显微特征进行了详细研究。通过对凝块石中化石的分布,矿物组成以及元素分布规律观察,对比现代凝块石沉积成岩过程总结了二叠纪末凝块石的沉积成岩过程,即早期生长阶段,沉积阶段,早期成岩阶段和后期成岩阶段。清晰的凝块石的沉积成岩过程为解析该时期微生物沉积建造打下基础。Abstract: Following the mass extinction at the end of the Permian, a set of calcareous microbialites was widely developed in South China. These mainly consist of clotted limestone, which may represent bio-sedimentary formation in a specific environment after the mass extinction. The microstructures of the clotted limestone were studied in detail by microscopic observation, cathodoluminescence photography, backscattered imaging and probe element analysis. The distribution of fossil elements and mineral composition in the clotted limestone were observed and the findings compared with the diagenesis process of modern clotted limestone. The sedimentary and diagenetic process of the end-Permian clotted limestone are summarized, including early growth stage, sedimentary stage, early diagenetic stage and late diagenetic stage. The clear sedimentary and diagenetic processes of clotted limestone lays a foundation for the analysis of microbial sedimentary formation during this critical period.
-
图 1 (a)南盘江盆地位置;(b)早三叠世南盘江盆地,盆内孤立台地,及相邻的扬子台地古地理图(依据Lehrmann et al. [21]修改),作登剖面位于南盘江盆地内的一个孤立台地;(c)作登剖面岩性柱状图,PTB灭绝线位于合山组骨架泥粒灰岩顶部,以二叠纪动物群的最后一次出现为标志,由于Hindeodus parvus的首次出现,P / T界线被置于生物碎屑灰岩的上部(“←”代表二叠纪末大灭绝的位置)
Figure 1. (a) Geographical map of China showing the Nanpanjiang Basin region. (b) Paleogeographical map showing the Nanpenjiang Basin, isolated platform within the basin and adjacent Yangtze Platform during the Lower Triassic (modified from Lehrmann et al. [21]). Note the Zuodeng section located at an isolated platform within the Nanpenjiang Basin. (c) Columnar section of the P-Tr succession exposed at the Zuodeng section. The PTB extinction event horizon is marked by the last occurrence of diverse Permian fauna at the top of skeletal packstone of the Heshan Formation. PTB is placed at the upper part of the microbialite deposit due to the first appearance of Hindeodus parvus ("←" represents the location of the end-Permian mass extinction)
图 2 (a)作登剖面凝块石野外特征照片;(b)作登剖面微生物岩中凝块石偏光镜下的凝块结构照片,黄色圈内为介形虫化石;(c)凝块石阴极发光照片;(d)凝块石背散射照片
Figure 2. (a) Field photograph showing features of thrombolites in Zuodeng; (b) Thin-section photomicrograph under plane light microscope showing clotted textures of thrombolites in the Zuodeng microbialites. The yellow circles indicate ostracoda fossils; (c) Photomicrographs of thrombolites in transmitted cathodoluminescence (TCL) images; (d) Photomicrographs of thrombolites in backscattered electron images
图 4 (a)(d)(g)(j)作登剖面凝块石偏光镜照片;(b)(e)(h)(k)作登剖面凝块石阴极发光照片;(c)(f)(i)(l)修图后的凝块石阴极发光照片
Figure 4. (a)(d)(g)(j) Photomicrographs of thrombolites in transmitted light in the Zuodeng section; (b)(e)(h)(k) Photomicrographs of thrombolites in cathodoluminescence (CL) images in the Zuodeng section; (c)(f)(i)(l) Photomicrographs of thrombolites in CL images after revision
表 1 作登剖面凝块石不同部分元素平均含量(×10-6)
Table 1. Average element content in different parts of the thrombolites in the Zoudeng section (×10-6)
Ca Mg Fe Mn Al Si S Sr 微晶 247 504 69 647 34 325 138 7 635 24 272 325 481 粗晶 351 086 24 644 372 102 4 889 14 231 188 516 白云石 233 880 101 516 28 695 221 3 977 6 585 431 386 介形虫化石 396 767 3 596 90 51 25 167 139 362 微化石 212 569 62 668 1 607 235 13 160 50 198 2 843 731 -
[1] Raup D M. Size of the Permo-Triassic bottleneck and its evolutionary implications[J]. Science, 1979, 206(4415):217-218. doi: 10.1126/science.206.4415.217 [2] Erwin D H. The great Paleozoic crisis[M]. New York:Columbia University Press, 1993:327. [3] 王永标, 童金南, 王家生, 等.华南二叠纪末大绝灭后的钙质微生物岩及古环境意义[J].科学通报, 2005, 50(6):552-558. doi: 10.3321/j.issn:0023-074X.2005.06.009 Wang Yongbiao, Tong Jinnan, Wang Jiasheng, et al. Calcimicrobialite after End-Permian mass extinction in South China and its palaeoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(6):552-558. doi: 10.3321/j.issn:0023-074X.2005.06.009 [4] Yang H, Chen Z Q, Wang Y B, et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2):111-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec360794f274d8c8313e5808ae187718 [5] Fang Y H, Chen Z Q, Kershaw S, et al., Permian-Triassic boundary microbialites at Zuodeng section, Guangxi province, South China:Geobiology and palaeoceanographic implications[J]. Global and Planetary Change, 2017, 152:115-128. doi: 10.1016/j.gloplacha.2017.02.011 [6] Ezaki Y, Liu J B, Nagano T, et al. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform:Initiation and cessation of a microbial regime[J]. Palaios, 2008, 23(6):356-369. doi: 10.2110/palo.2007.p07-035r [7] Kershaw S, Zhang T S, Lan G Z. A? microbialite carbonate crust at the Permian-Triassic boundary in South China, and its palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 146(1/2/3/4):1-18. https://www.sciencedirect.com/science/article/pii/S0031018298001394 [8] Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China[J]. Geology, 1999, 27(4):359-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b874230a403846eb4e376dea777a28e [9] Ezaki Y, Liu J B, Adachi N. Earliest Triassic microbialite microto megastructures in the Huaying area of Sichuan province, South China:Implications for the nature of oceanic conditions after the end-Permian extinction[J]. Palaios, 2003, 18(4/5):388-402. http://cn.bing.com/academic/profile?id=3bd042d14859d5c7fbfa6356738ff8f0&encoded=0&v=paper_preview&mkt=zh-cn [10] 杨浩, 张素新, 江海水, 等.湖北崇阳二叠纪-三叠纪之交钙质微生物岩的时代及基本特征[J].地球科学——中国地质大学学报, 2006, 31(2):165-170. http://d.old.wanfangdata.com.cn/Periodical/dqkx200602004 Yang Hao, Zhang Suxin, Jiang Haishui, et al. Age and general characteristics of calcimicrobialite near the Permian-Triassic boundary in Chongyang, Hubei province[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(2):165-170. http://d.old.wanfangdata.com.cn/Periodical/dqkx200602004 [11] 吴亚生, 姜红霞, 廖太平.重庆老龙洞二叠系-三叠系界线地层的海平面下降事件[J].岩石学报, 2006, 22(9):2405-2412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609017 Wu Yasheng, Jiang Hongxia, Liao Taiping. Sea-level drops in the Permian-Triassic boundary section at Laolongdong, Chong-qing, Sichuan province[J]. Acta Petrologica Sinica, 2006, 22(9):2405-2412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609017 [12] 吴亚生, 姜红霞, Wan Yang, 等.二叠纪-三叠纪之交缺氧环境的微生物和微生物岩[J].中国科学(D辑):地球科学, 2007, 37(5):618-628. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200705005 Wu Yasheng, Jiang Hongxia, Wan Yang, et al. Microbialite of anoxic condition from Permian-Triassic transition in Guizhou, China[J]. Science China (Seri. D):Earth Sciences, 2007, 37(5):618-628. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200705005 [13] Kershaw S, Li Y, Crasquin-Soleau S, et al. Earliest Triassic microbialites in the South China block and other areas:Controls on their growth and distribution[J]. Facies, 2007, 53(3):409-425. doi: 10.1007/s10347-007-0105-5 [14] 姜红霞, 吴亚生.江西修水二叠系-三叠系界线地层树枝状微生物岩状岩石成因初解[J].地质论评, 2007, 53(3):323-328. doi: 10.3321/j.issn:0371-5736.2007.03.005 Jiang Hongxia, Wu Yasheng. Origin of microbialite-like dendroid rocks in the Permian-Triassic boundary section in Xiu-shui, Jiangxi province[J]. Geological Review, 2007, 53(3):323-328. doi: 10.3321/j.issn:0371-5736.2007.03.005 [15] 姜红霞, 吴亚生.重庆二叠系-三叠系界线地层微生物岩新认识[J].岩石学报, 2007, 23(5):1189-1196. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705032 Jiang Hongxia, Wu Yasheng. Restudy of the microbialite from the Permian-Triassic boundary section, Chongqing[J]. Acta Petrologica Sinica, 2007, 23(5):1189-1196. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705032 [16] 姜红霞, 吴亚生, 袁生虎.重庆二叠-三叠系界线地层的干裂缝和侵蚀面及其意义[J].高校地质学报, 2007, 13(1):53-59. doi: 10.3969/j.issn.1006-7493.2007.01.007 Jiang Hongxia, Wu Yasheng, Yuan Shenghu. Dessication cracks and erosional surface in the Permian-Triassic boundary section in Chongqing[J]. Geological Journal of China Universities, 2007, 13(1):53-59. doi: 10.3969/j.issn.1006-7493.2007.01.007 [17] 刘建波, 江崎洋一, 杨守仁, 等.贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征[J].古地理学报, 2007, 9(5):473-486. doi: 10.3969/j.issn.1671-1505.2007.05.005 Liu Jianbo, Yoichi E, Yang Shouren, et al. Age and sedimentology of microbialites after the End-Permian mass extinction in Luodian, Guizhou province[J]. Journal of Palaeogeography, 2007, 9(5):473-486. doi: 10.3969/j.issn.1671-1505.2007.05.005 [18] Zheng Q F, Cao C Q, Wang Y, et al. Microbialite concretions in a dolostone crust at the Permian-Triassic boundary of the Xishan section in Jiangsu province, South China[J]. Palaeoworld, 2016, 25(2):188-198. doi: 10.1016/j.palwor.2015.02.002 [19] 冯增昭, 彭勇民, 金振奎, 等.中国寒武纪和奥陶纪岩相古地理[M].北京:石油工业出版社, 2004:82. Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies paleogeography of the Cambrian and Ordovician in China[M]. Beijing:Petroleum Industry Press, 2004:82. [20] Enos P, Lehrmann D L, Wei J Y, et al. Triassic evolution of the Yangtze platform in Guizhou province, People's Republic of China[J]. Geological Society of America Special Paper, 2006, 417:1-105. [21] Lehrmann D J, Payne J L, Felix S V, et al. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China:Implications for oceanic conditions associated with the end-Permian extinction and its aftermath[J]. Palaios, 2003, 18(2):138-152. doi: 10.1669/0883-1351(2003)18<138:PBSFSC>2.0.CO;2 [22] Adachi N, Ezaki Y, Liu J B. The fabrics and origins of Peloids immediately after the End-Permian extinction, Guizhou province, South China[J]. Sedimentary Geology, 2004, 164(1/2):161-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88d4cd3ee9069867b6751f59a67fb054 [23] Galfetti T, Bucher H, Martini R, et al. Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery[J]. Sedimentary Geology, 2008, 204(1/2):36-60. http://cn.bing.com/academic/profile?id=4f3fc9c9ca6fe19fdd0c421b0df60988&encoded=0&v=paper_preview&mkt=zh-cn [24] Lehrmann D J, Ramezani J, Bowring S A, et al. Timing of recovery from the End-Permian extinction:Geochronologic and biostratigraphic constraints from South China[J]. Geology, 2006, 34(12):1053-1056. doi: 10.1130/G22827A.1 [25] Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events[J]. Geological Society of America Bulletin, 2007, 119(7/8):771-784. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c1b828a8e3d0802d44cd719644455c5 [26] Song H, Tong J, Chen Z Q. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China[J]. Australian Journal of Earth Sciences, 2009, 56(6):765-773. doi: 10.1080/08120090903002599 [27] Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events:Comment[J]. Geological Society of America Bulletin, 2009, 121(5/6):954-956. http://cn.bing.com/academic/profile?id=908e59060c838a0cbc77bb6fd8493d1e&encoded=0&v=paper_preview&mkt=zh-cn [28] Yin H F, Jiang H S, Xia W C, et al. The End-Permian regression in South China and its implication on mass extinction[J]. Earth-Science Reviews, 2014, 137:19-33. doi: 10.1016/j.earscirev.2013.06.003 [29] Jiang H S, Lai X L, Sun Y D, et al. Permian-Triassic conodonts from Dajiang (Guizhou, South China) and their implication for the age of microbialite deposition in the aftermath of the End-Permian mass extinction[J]. Journal of Earth Science, 2014, 25(3):413-430. doi: 10.1007/s12583-014-0444-4 [30] Song H J, Tong J N, Chen Z Q, et al. End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China[J]. Journal of Paleontology, 2009, 83(5):718-738. doi: 10.1666/08-175.1 [31] Chen Z Q, Yang H, Luo M, et al. Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China:Ecologically assessing mass extinction and its aftermath[J]. Earth-Science Reviews, 2015, 149:67-107. doi: 10.1016/j.earscirev.2014.10.005 [32] Yang S, Hao W, Wang X. Conodont evolutionary lineages, zonation, and P-T boundary beds in Guangxi, China[M]//Yao A, Ezaki Y, Hao W, et al. Biotic and Geological Developments in the Paleo-Tethys in China. Beijing: Peking University Press, 1999: 81-95. [33] Luo G M, Wang Y B, Yang H, et al. Stepwise and large-magnitude negative shift in δ13C carb preceded the main marine mass extinction of the Permian-Triassic crisis interval[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2):70-82. [34] Brand U, Veizer J. Chemical diagenesis of multicomponent carbonate system-1:Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4):1219-1236. http://cn.bing.com/academic/profile?id=bd508244d2fb70aa60de7efff3534d0a&encoded=0&v=paper_preview&mkt=zh-cn [35] Pierson B J. The control of cathodoluminescence in dolomite by iron and manganese[J]. Sedimentology, 1981, 28(5):601-610. doi: 10.1111/j.1365-3091.1981.tb01924.x [36] Ten Have A H M, Heijnen W. Cathodoluminescence activation and zonation in carbonate rocks:An experimental approach[J]. Geologie en Mijnbouw, 1985, 64(3):297-310. [37] 黄思静.碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系[J].矿物岩石, 1992, 12(4):74-79. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199204010.htm Huang Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology, 1992, 12(4):74-79. http://www.cnki.com.cn/Article/CJFDTotal-KWYS199204010.htm [38] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3):59-88. [39] Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precambrian Research, 2000, 100(1/3):371-433. http://cn.bing.com/academic/profile?id=6b6fd9353466dc07ebca4593faf703b6&encoded=0&v=paper_preview&mkt=zh-cn [40] 黄思静.海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理, 1990(4):9-15. http://www.cnki.com.cn/Article/CJFDTotal-TTSD199004001.htm Huang Sijing. Cathodoluminescence and diagenetic alteration of marine carbonate minerals[J]. Sedimentary Facies and Palaeogeography, 1990(4):9-15. http://www.cnki.com.cn/Article/CJFDTotal-TTSD199004001.htm