-
前人研究普遍认为,致密低渗储层中油气运聚的主要动力是超压,浮力和构造力在致密砂岩油气成藏过程中的作用甚微[22⁃25]。前期研究结果表明,红河油田上三叠统延长组现今处于正常地层压力或微弱负压状态,但在主成藏期(早白垩世中晚期),长7段泥岩由于欠压实而存在较小幅度的超压,剩余压力约在3~4 MPa之间,压力系数为1.1~1.3[26]。因此,这种低幅超压构成了延长组致密低渗储层的成藏动力学背景。
在镇原—泾川地区,长7段上部是有机碳含量较低的泥岩,下部是主力烃源岩张家滩页岩,长8段砂岩的成藏需要长7段烃源岩向下排烃。张家滩页岩与长8段有效储层之间存在一套5~40 m厚的泥质砂岩和砂质泥岩,构成了油气运移的隔层。前期研究结果显示,主成藏期存在较小的源储压差,分布在0.8~1.35 MPa[26]。这种较小的源储压差很难满足突破隔挡层向下运聚成藏的动力要求。因此,单一的压差驱动机制不能完全解释低动力背景下的成藏问题,应该还存在其他的机制。
笔者注意到,在显微镜下,研究区长8段砂岩储层中原油早期充注的现象较为常见,后期又有不同期次(荧光)的烃类充注(图7)。图7a、b为HH37井长8段(2 003.41 m)砂岩孔隙内沥青及不同荧光石油的充注现象,其中黑色碳质沥青(红色箭头处)充填于粒间孔内,在单偏光(图7a)和紫外光(图7b)下均呈不透明的黑色。在粒间孔内同时充填黄绿色和蓝白色荧光的石油(绿色箭头处),代表了不同期次的石油充注。
图 7 砂岩孔隙和裂缝中沥青及不同荧光石油的充注现象
Figure 7. Filling phenomena of bitumen and different fluorescent petroleum in sandstone pores and fractures
在单井上,多数油层的不同部位均检测到早期石油充注的情况,预示在研究区内这是一种普遍的机制。已有研究表明,早期充注的低成熟度原油中含有大量有机极性分子,可改变长石、石英、方解石等矿物颗粒表面的润湿性而具有亲油倾向[10]。笔者通过自吸实验分析了研究区部分砂岩储层样品的润湿性,结果表明,红河油田延长组长8油层组岩石润湿指数介于-0.18~0.61,以弱亲油—亲水为主。对相关样品的测井解释含油饱和度统计表明,岩石含油饱和度与润湿指数呈明显的负相关关系,表现为含油饱和度越高,岩石润湿指数越小,岩石润湿性越趋向于亲油(图8)。同时,对自吸实验样品的高压压汞测试结果统计显示,岩石排驱压力与润湿指数呈正相关关系(图8),表明岩石的亲油性越强,其排驱压力越小,油气在其中越易发生运移。烃类充注造成储层排替压力大幅下降,从而减小了石油运移的阻力,即便在较小的源储压差下石油也能运移成藏[10]。因此,普遍存在的早期石油充注是低动力背景下致密砂岩中石油运移成藏的重要机制。
图 8 长8油层组储层含油饱和度、排驱压力与润湿指数关系图
Figure 8. Relationship between oil saturation, displacement pressure, and wettability index of the Chang 8 reservoir
在致密砂岩油气成藏中,除了源储压差驱动和早期原油充注外,裂缝的发育也是低动力背景下石油运移的重要因素。在研究区长8段岩心和显微镜下均可观察到重质油沿着微裂缝分布的现象(图7c,d)。笔者对部分钻井岩心中观察到的裂缝产状进行统计,并采用渝渗模型计算其渗透率,结果显示裂缝的渗透率在(0.046 8~85.88)×10-3 μm2之间,平均渗透率可达9.85×10-3 μm2(表1)。可见,裂缝具有很好的渗透性能,在石油运移中起着优势通道的作用。
表 1 镇原—泾川地区延长组中的裂缝渗透率计算值
井名 裂缝长度/m 裂缝间距/m 裂缝宽度/m 渗透率/×10-3 μm2 ZJ25 0.208 5 2.325 6 0.000 5 0.046 8 HH26 0.176 6 3.125 0.000 5 0.058 5 HH105 0.158 4 3.448 3 0.000 5 0.092 3 HH105-27 0.032 4 14.285 7 0.000 5 0.105 3 HH105-19 0.041 8 12.5 0.000 5 0.222 9 HH105-22 0.053 6 9.090 9 0.000 5 0.250 1 HH105-24 0.028 8 16.666 7 0.000 5 0.321 9 HH105-25 0.037 4 12.5 0.000 5 0.570 4 HH105-26 0.022 2 25 0.000 5 0.614 7 HH105-29 0.050 6 9.090 9 0.000 5 0.839 8 HH105-36 0.047 0 11.111 1 0.000 5 1.357 HH105-41 0.102 6 4.761 9 0.000 5 6.377 4 HH1054-10 0.076 0 7.142 9 0.000 5 7.989 8 HH1054-12 0.063 0 7.692 3 0.000 5 12.938 7 HH105-42 0.041 8 12.5 0.000 5 40.030 7 HH1054-5 0.107 1 4.545 5 0.000 5 85.881 6 从前面的论述中可知,在低动力背景下,源储压差驱动、早期原油充注、裂缝优势路径等多种机制共同作用,控制了致密低渗砂岩中石油的运移成藏过程。
Reservoir Forming Mechanism of the Yanchang Tight Sandstone in Honghe Oilfield, Ordos Basin
-
摘要: 红河油田位于鄂尔多斯盆地天环坳陷南部,上三叠统延长组处于常压或负压状态,储层致密低渗,成岩与成藏的时间关系在致密砂岩油气成藏动力学机制分析中至关重要。将流体包裹体显微岩相学分析、自生伊利石同位素年代学分析、生烃演化数值模拟和显微镜下观测统计等多种方法结合,研究了延长组储层致密化与石油成藏的时间关系,分析了低动力背景下的致密砂岩成藏机制。结果表明:红河油田延长组储层成岩与石油成藏协同发生,大规模成藏早于关键致密化事件。延长组油藏是在低动力背景下早期充注、优势通道、压差驱动等多种机制共同作用的结果,表现出早期选择性充注、后期继承性充注和浸染式扩展的特点。不同类型砂岩的成藏动、阻力耦合演变关系决定了强非均质性储层的差异成藏富集。Abstract: Honghe oilfield is located in the southern Tianhuan Depression of the Ordos Basin. The Upper Triassic Yanchang Formation is in a normal or negative pressure state. The reservoir is tight with low permeability. The time relationship between reservoir densification and formation is very important in the dynamic mechanism analysis of hydrocarbon accumulation in tight sandstones. Combined with microfacies analysis of fluid inclusions, isotopic chronology of authigenic illite, numerical simulation of hydrocarbon generation evolution, and observation statistics under a microscope, this relationship is studied in the Yanchang Formation, and the reservoir forming mechanism of a tight sandstone under low dynamic background is analyzed. The results show that diagenesis and oil accumulation of the Yanchang Formation in the Honghe oilfield occur synergistically, and large-scale reservoir formation is earlier than the key densification event. The Yanchang Formation reservoir is the result of early filling, dominant channel, differential pressure driving, and other mechanisms under a low dynamic background, which shows the characteristics of early selective filling, late inherited filling, and disseminated expansion. The coupling evolution relationship between reservoir forming dynamics and resistance of different sandstones determines the differential accumulation and enrichment of strongly heterogeneous reservoirs.
-
Key words:
- tight sandstone /
- reservoir forming mechanism /
- Yanchang Formation /
- Honghe oilfield /
- Ordors Basin
-
表 1 镇原—泾川地区延长组中的裂缝渗透率计算值
井名 裂缝长度/m 裂缝间距/m 裂缝宽度/m 渗透率/×10-3 μm2 ZJ25 0.208 5 2.325 6 0.000 5 0.046 8 HH26 0.176 6 3.125 0.000 5 0.058 5 HH105 0.158 4 3.448 3 0.000 5 0.092 3 HH105-27 0.032 4 14.285 7 0.000 5 0.105 3 HH105-19 0.041 8 12.5 0.000 5 0.222 9 HH105-22 0.053 6 9.090 9 0.000 5 0.250 1 HH105-24 0.028 8 16.666 7 0.000 5 0.321 9 HH105-25 0.037 4 12.5 0.000 5 0.570 4 HH105-26 0.022 2 25 0.000 5 0.614 7 HH105-29 0.050 6 9.090 9 0.000 5 0.839 8 HH105-36 0.047 0 11.111 1 0.000 5 1.357 HH105-41 0.102 6 4.761 9 0.000 5 6.377 4 HH1054-10 0.076 0 7.142 9 0.000 5 7.989 8 HH1054-12 0.063 0 7.692 3 0.000 5 12.938 7 HH105-42 0.041 8 12.5 0.000 5 40.030 7 HH1054-5 0.107 1 4.545 5 0.000 5 85.881 6 -
[1] 宋子齐,王瑞飞,孙颖,等. 基于成岩储集相定量分类模式确定特低渗透相对优质储层:以AS油田长61特低渗透储层成岩储集相定量评价为例[J]. 沉积学报,2011,29(1):88-96. Song Ziqi, Wang Ruifei, Sun Ying, et al. Based on the quantitative classification mode of diagenetic reservoir facies to filter relatively excellent quality: Taking the quantitative assessment of diagenetic facies of Chang 61 reservoir of AS oilfield hyposmosis reservoirs for an example[J]. Acta Sedimentologica Sinica, 2011, 29(1): 88-96. [2] 郭秋麟,陈宁生,宋焕琪,等. 致密油聚集模型与数值模拟探讨:以鄂尔多斯盆地延长组致密油为例[J]. 岩性油气藏,2013,25(1):4-10. Guo Qiulin, Chen Ningsheng, Song Huanqi, et al. Accumulation models and numerical models of tight oil: A case study from Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2013, 25(1): 4-10. [3] 庞正炼,陶士振,张琴,等. 致密油二次运移动力和阻力实验研究:以四川盆地中部侏罗系为例[J]. 中国矿业大学学报,2016,45(4):754-764. Pang Zhenglian, Tao Shizhen, Zhang Qin, et al. Simulation experiments of tight oil secondary migration driving force and resistance: A case study of Jurassic oilfield in middle Sichuan Basin[J]. Journal of China University of Mining & Technology, 2016,45(4):754-764. [4] 马中良,郑伦举,秦建中,等. 盆地沉降、抬升过程中源储压差的生排烃效应[J]. 石油实验地质,2011,33(4):402-407. Ma Zhongliang, Zheng Lunju, Qin Jianzhong, et al. Hydrocarbon generation and expulsion caused by pressure difference between source rock and reservoir during basin subsiding and uplifting[J]. Petroleum Geology & Experiment, 2011,33(4):402-407. [5] 李明诚,李剑. “动力圈闭”:低渗透致密储层中油气充注成藏的主要作用[J]. 石油学报,2010,31(5):718-722. Li Mingcheng, Li Jian. “Dynamic trap”: A main action of hydrocarbon charging to form accumulations in low permeability-tight reservoir[J]. Acta Petrolei Sinica, 2010, 31(5): 718-722. [6] 张潇文,陈世加,姚宜同,等. 鄂尔多斯盆地上三叠统延长组超低渗储层油气成藏启动压力研究[J]. 地质论评,2015,61(4):925-934. Zhang Xiaowen, Chen Shijia, Yao Yitong, et al. Study on start-up pressure of charging for super-low permeability reservoir, Upper Triassic Yanchang Formation, Ordos Basin[J]. Geological Review, 2015, 61(4): 925-934. [7] 肖承钰,尹伟,张颖,等. 鄂尔多斯镇泾地区延长组成藏体系与油气富集模式[J]. 石油实验地质,2015,37(3):347-353. Xiao Chengyu, Yin Wei, Zhang Ying, et al. Petroleum accumulation systems and oil enrichment patterns of Yanchang Formation in Zhenjing area, southern Ordos Basin[J]. Petroleum Geology & Experiment, 2015, 37(3): 347-353. [8] 邓虎成,周文. 镇泾地区三叠系延长组油气成藏条件研究[J]. 石油天然气学报,2008,30(5):11-17. Deng Hucheng, Zhou Wen. Research on hydrocarbon accumulation conditions of Triassic Yanchang Formation in Zhenjing area[J]. Journal of Oil and Gas Technology, 2008, 30(5): 11-17. [9] 丁晓琪,张哨楠,谢世文,等. 鄂尔多斯盆地镇泾地区中生界成藏系统[J]. 石油与天然气地质,2011,32(2):157-164. Ding Xiaoqi, Zhang Shaonan, Xie Shiwen, et al. Hydrocarbon accumulation system of the Mesozoic in Zhenjing oilfield, the Ordos Basin[J]. Oil & Gas Geology, 2011, 32(2): 157-164. [10] 马立元,邱桂强,刘春燕,等. 鄂尔多斯盆地红河油田延长组储层致密化与石油成藏的关系[J]. 沉积学报,2020,38(3):620-634. Ma Liyuan, Qiu Guiqiang, Liu Chunyan, et al. The relationship between reservoir densification and petroleum accumulation of the Yanchang Formation in the Honghe oilfield, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(3): 620-634. [11] 黄思静,谢连文,张萌,等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版),2004,31(3):273-281. Huang Sijing, Xie Lianwen, Zhang Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3): 273-281. [12] 郑庆华,柳益群. 鄂尔多斯盆地镇北地区延长组长4+5致密油层成岩作用及成岩相[J]. 沉积学报,2015,33(5):1000-1012. Zheng Qinghua, Liu Yiqun. Diagenesis and diagenetic lithofacies of tight reservoir of Chang4+5 member of Yanchang Formation in Zhenbei, Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 1000-1012. [13] 周晓峰,丁黎,杨卫国,等. 鄂尔多斯盆地延长组长8油层组砂岩中绿泥石膜的生长模式[J]. 岩性油气藏,2017,29(4):1-10. Zhou Xiaofeng, Ding Li, Yang Weiguo, et al. Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2017, 29(4): 1-10. [14] 刘春燕. 致密碎屑岩储层“甜点”形成及保持机理:以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例[J]. 石油与天然气地质,2015,36(6):873-879. Liu Chunyan. Formation and preservation mechanism of sweet spot in tight clastic reservoirs: A case study of Chang 8 oil layer of Yanchang Formation in Zhenjing area, southwest Ordos Basin[J]. Oil & Gas Geology, 2015, 36(6): 873-879. [15] 郭小文,刘可禹,宋岩,等. 库车坳陷克拉2气田油气充注和超压对储层孔隙的影响[J]. 石油与天然气地质,2016,37(6):935-943. Guo Xiaowen, Liu Keyu, Song Yan, et al. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(6): 935-943. [16] 胡海燕. 油气充注对成岩作用的影响[J]. 海相油气地质,2004,9(1/2):85-89. Hu Haiyan. Effects of hydrocarbon emplacement to diagenesis of reservoirs[J]. Marine Origin Petroleum Geology, 2004, 9(1/2): 85-89. [17] 罗静兰,刘小洪,林潼,等. 成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J]. 地质学报,2006,80(5):664-673. Luo Jinglan, Liu Xiaohong, Lin Tong, et al. Impact of diagenesis and hydrocarbon emplacement on sandstone reservoir quality of the Yanchang Formation (Upper Triassic) in the Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 664-673. [18] 刘文汇,王杰,陶成,等. 中国海相层系油气成藏年代学[J]. 天然气地球科学,2013,24(2):199-209. Liu Wenhui, Wang Jie, Tao Cheng, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geoscience, 2013, 24(2): 199-209. [19] 陈红汉. 油气成藏年代学研究进展[J]. 石油与天然气地质,2007,28(2):143-150. Chen Honghan. Advances in geochronology of hydrocarbon accumulation[J]. Oil & Gas Geology, 2007, 28(2): 143-150. [20] 王飞宇,何萍,张水昌,等. 利用自生伊利石K-Ar定年分析烃类进入储集层的时间[J]. 地质论评,1997,43(5):540-546. Wang Feiyu, He Ping, Zhang Shuichang, et al. The K-Ar isotopic dating of authigenic illites and timing of hydrocarbon fluid emplacement in sandstone reservoir[J]. Geological Review, 1997, 43(5): 540-546. [21] 张有瑜,罗修泉,宋健. 油气储层中自生伊利石K-Ar同位素年代学研究若干问题的初步探讨[J]. 现代地质,2002,16(4):403-407. Zhang Youyu, Luo Xiuquan, Song Jian. Discussions on K-Ar isotopic geochronological studies of authigenic illites in hydrocarbon reservoirs[J]. Geoscience, 2002, 16(4): 403-407. [22] 刘新社,席胜利,黄道军,等. 鄂尔多斯盆地中生界石油二次运移动力条件[J]. 石油勘探与开发,2008,35(2):143-147. Liu Xinshe, Xi Shengli, Huang Daojun, et al. Dynamic conditions of Mesozoic petroleum secondary migration, Ordos Basin[J]. Petroleum Exploration and Development, 2008, 35(2): 143-147. [23] 赵靖舟,白玉彬,曹青,等. 鄂尔多斯盆地准连续型低渗透—致密砂岩大油田成藏模式[J]. 石油与天然气地质,2012,33(6):811-827. Zhao Jingzhou, Bai Yubin, Cao Qing, et al. Quasi-continuous hydrocarbon accumulation: A new pattern for large tight sand oilfields in the Ordos Basin[J]. Oil & Gas Geology, 2012, 33(6): 811-827. [24] 范玉海,屈红军,王辉,等. 鄂尔多斯盆地西部延长组下组合异常压力与油气分布[J]. 新疆石油地质,2013,34(1):14-16. Fan Yuhai, Qu Hongjun, Wang Hui, et al. Abnormal pressure of lower assemblage of Yanchang Formation and its hydrocarbon distribution in western Ordos Basin[J]. Xinjiang Petroleum Geology, 2013, 34(1): 14-16. [25] 楚美娟,李士祥,刘显阳,等. 鄂尔多斯盆地延长组长8油层组石油成藏机理及成藏模式[J]. 沉积学报,2013,31(4):683-692. Chu Meijuan, Li Shixiang, Liu Xianyang, et al. Accumulation mechanisms and modes of Yanchang Formation Chang 8 interval hydrocarbons in Ordos Basin[J]. Acta Sedimentologica Sinica, 2013, 31(4): 683-692. [26] 马立元,邱桂强,李超,等. 鄂尔多斯盆地镇泾地区延长组异常压力演化及其成藏意义[J]. 地质通报,2020,39(4):503-511. Ma Liyuan, Qiu Guiqiang, Li Chao, et al. The evolution of abnormal pressure of Yanchang Formation in Zhenjing area of Ordos Basin and its reservoir-forming significance[J]. Geological Bulletin of China, 2020, 39(4): 503-511.