高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

克里雅河沿线沙丘沉积物石英砂表面特征分析

王姣 王笑辰 张峰

王姣, 王笑辰, 张峰. 克里雅河沿线沙丘沉积物石英砂表面特征分析[J]. 沉积学报, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
引用本文: 王姣, 王笑辰, 张峰. 克里雅河沿线沙丘沉积物石英砂表面特征分析[J]. 沉积学报, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
WANG Jiao, WANG XiaoChen, ZHANG Feng. Surface Features of Quartz Sand Grains in Dune Sediments, Keriya River Basin[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
Citation: WANG Jiao, WANG XiaoChen, ZHANG Feng. Surface Features of Quartz Sand Grains in Dune Sediments, Keriya River Basin[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044

克里雅河沿线沙丘沉积物石英砂表面特征分析

doi: 10.14027/j.issn.1000-0550.2021.044
基金项目: 

国家自然科学基金 U1503381

国家科技基础资源调查专项课题 2017FY101004

新疆维吾尔自治区天山雪松计划 2017XS21

详细信息

Surface Features of Quartz Sand Grains in Dune Sediments, Keriya River Basin

Funds: 

National Natural Science Foundation of China U1503381

National Science & Technology Infrastructure Center of China 2017FY101004

Tianshan Cedar Project of Xinjiang Uygur Autonomous Region 2017XS21

  • 摘要: 对沙漠内部典型河流沿线沙丘石英颗粒表面微形态特征的系统研究尚少。沿塔里木盆地南缘克里雅河下游丹丹乌里克、喀拉墩、圆沙古城、北方墓地及其北部塔里木河一带的沙丘顶部采到5件表沙样品。扫描电镜观察172颗经能谱挑选的石英颗粒表面微形态,筛析法测定5件样品的粒度。结果表明:1)丹丹乌里克样品以极细沙为主,其余均以细沙为主,各样品几乎不含黏土;2)样品磨圆度特征以次棱和次圆状为主,圆状很少,未见棱状特征,次棱状与次圆状特征之间消长关系显著,沙漠南北边缘样品的次棱状特征出现频率较腹地高;3)颗粒中V形坑频率呈现出沙漠边缘较高腹地低的特征,而沙漠边缘的化学作用结构特征低于腹地。石英砂表面特征结构以机械作用为主,同时伴生化学环境作用特征,可认为克里雅河下游沙物质包括了河流、冰川与戈壁成因及风输送而来的颗粒;颗粒表面特征总体新鲜,沙丘应较年轻。纵穿塔克拉玛干沙漠沉积物样品的表面微形态观察与粒度测定,为该地区沉积环境分析与沙丘砂溯源研究增添了新数据。
  • 图  1  研究区及采样点分布[29]

    Figure  1.  Map of study area and sampling sites[29]

    图  2  样品采集点的部位与环境

    Figure  2.  Location and environment of samples

    图  3  表层沙样粒度分布的直方图与累积概率曲线

    Figure  3.  Histogram and cumulative probability curve of grain size distribution of surface sand samples

    图  4  各样品磨圆度特征对比

    Figure  4.  Comparison of the psephicity features of quartz sand grains

    图  5  石英颗粒表面特征成因类型的颗粒频率统计

    Figure  5.  Statistical grain frequency for genetic types of quartz grain surface features

    图  6  不同样品石英表面微形态特征出现频率统计

    Figure  6.  Frequency distribution of quartz grains with microtextures in different samples

    图  7  沙丘砂样品部分石英颗粒形态

    Figure  7.  Morphology of quartz grains in sand dune samples

  • [1] 朱震达,陈治平,吴正,等. 塔克拉玛干沙漠风沙地貌研究[M]. 北京:科学出版社,1981:4-8.

    Zhu Zhenda, Chen Zhiping, Wu Zheng, et al. Study on the geomorphology of wind-drift sands in the Taklamakan Desert[M]. Beijing: Science Press, 1981: 4-8.
    [2] 朱震达,郭恒文,吴功成. 塔克拉玛干沙漠西南地区绿洲附近沙丘移动的研究[J]. 地理学报,1964,30(1):35-50.

    Zhu Zhenda, Guo Hengwen, Wu Gongcheng. Study on dune movement near oasis in southwest Taklimakan Desert[J]. Acta Geographica Sinica, 1964, 30(1): 35-50.
    [3] Krinsley D H, Doornkamp J C. Atlas of quartz sand surface textures[M]. Cambridge: Cambridge University Press, 1973: 37.
    [4] Xie J, Ding Z L. Compositions of heavy minerals in northeastern China sandlands and provenance analysis[J]. Science in China Series D: Earth Sciences, 2007, 50(11): 1715-1723.
    [5] 陈丽华,缪昕,魏宝和. 扫描电镜在石油地质上的应用[M]. 北京:石油工业出版社,1990:51-61.

    Chen Lihua, Miao Xin, Wei Baohe. Application of SEM in petroleum geology[M]. Beijing: Petroleum Industry Press, 1990: 51-61.
    [6] 王晶,陈震. 华南沿海黄色粉土石英颗粒的扫描电镜特征及其对成因的指示[J]. 电子显微学报,2020,39(4):370-376.

    Wang Jing, Chen Zhen. SEM study of quartz grains of yellow silt in the coastal area of South China and the interpretation of its origin[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(4): 370-376.
    [7] 侯圣山. 灵台剖面石英颗粒表面形态初步研究及其古气候意义[J]. 中国科学院研究生院学报,2002,19(1):59-68.

    Hou Shengshan. Preliminary SEM study of quartz surface features from Lingtai section and its palaeoclimatic significance[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(1): 59-68.
    [8] 朱春鸣,董治宝,刘铮瑶,等. 古尔班通古特沙漠树枝状沙丘沉积物粒度和微形态特征的空间分异[J]. 中国沙漠,2021,41(2):9-18.

    Zhu Chunming, Dong Zhibao, Liu Zhengyao, et al. Grain size and micro-morphology characteristics of the surface ediments of dendritic sand dunes in the Gurbantunggut Desert[J]. Journal of Desert Research, 2021, 41(2): 9-18.
    [9] Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987: 334.
    [10] 方小敏,史正涛,沈明智. 试从兰州地区黄土石英砂表面特征探讨黄土物质来源、成因及环境变迁[M]//中国第四纪冰川与环境研究中心,中国第四纪研究委员会. 中国西部第四纪冰川与环境. 北京:科学出版社,1991:138-148.

    Fang Xiaomin, Shi Zhengtao, Shen Mingzhi. Exploring the source, genesis and environmental changes of loess from the surface characteristics of loess quartz sand in Lanzhou area[M]//China Quaternary Glacier and Environment Research Center, China Quaternary Research Committee. Quaternary glaciers and environment in western China. Beijing: Science Press, 1991: 138-148.
    [11] Woronko B, Pisarska-Jamroży M. Micro-scale frost weathering of sand-sized quartz grains[J]. Permafrost and Periglacial Processes, 2016, 27(1): 109-122.
    [12] Szerakowska S, Woronko B, Sulewska M J, et al. Spectral method as a tool to examine microtextures of quartz sand-sized grains[J]. Micron, 2018, 110: 36-45.
    [13] 陈国祥,董治宝,崔徐甲,等. 毛乌素沙地中部风成沙的组成与微形态特征[J]. 中国沙漠,2018,38(3):473-483.

    Chen Guoxiang, Dong Zhibao, Cui Xujia, et al. Composition and micro-morphological characteristics of aeolian sand in the middle of the Mu Us sandy land[J]. Journal of Desert Research, 2018, 38(3): 473-483.
    [14] Kalińska-Nartiša E, Woronko B, Wen X X. Microtextural inheritance on quartz sand grains from Pleistocene periglacial environments of the Mazovian lowland, central Poland[J]. Permafrost and Periglacial Processes, 2017, 28(4): 741-756.
    [15] 钱亦兵,赵元杰. 塔克拉玛干沙漠麻札塔格山地区石英砂颗粒表面结构特征分析[J]. 干旱区地理,1990,13(4):91-95.

    Qian Yibing, Zhao Yuanjie. Features of quartz grains surface textures and formation environment in the Mazhatag Mountain region of the Takalimakan Desert[J]. Arid Land Geography, 1990, 13(4): 91-95.
    [16] 高存海,穆桂金,闫顺,等. 塔克拉玛干沙漠深部石英砂微结构特征及其环境意义[J]. 地质论评,1995,41(2):152-158.

    Gao Cunhai, Mu Guijin, Yan Shun, et al. Features of surface microtextures of quartz sand grains in the hinterland of the Taklimakan Desert and their environmental significance[J]. Geological Review, 1995, 41(2): 152-158.
    [17] 康国定,戴枫年. 塔克拉玛干沙漠克里雅河流域石英砂粒表面结构特征[J]. 中国沙漠,1988,8(4):46-51.

    Kang Guoding, Dai Fengnian. Features of quartz grains surface textures in the Keriya Riever basin Takalimakan Desert[J]. Journal of Desert Research, 1988, 8(4): 46-51.
    [18] 钱亦兵,吴兆宁,石井武政,等. 塔克拉玛干沙漠沙物质成分特征及其来源[J]. 中国沙漠,1993,13(4):32-38.

    Qian Yibing, Wu Zhaoning, Ishii T, et al. The constituent cheracteristics of sand materials and sand sources of the Taklamakan Desert[J]. Journal of Desert Research, 1993, 13(4): 32-38.
    [19] Honda M, Shimizu H. Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands[J]. Sedimentology, 1998, 45(6): 1125-1143.
    [20] Heermance R V, Pearson J, Moe A, et al. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma[J]. Geology, 2018, 46(10): 919-922.
    [21] Rittner M, Vermeesch P, Carter A, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
    [22] Rao W B, Tan H B, Chen J, et al. Nd-Sr isotope geochemistry of fine-grained sands in the basin-type deserts, West China: Implications for the source mechanism and atmospheric transport[J]. Geomorphology, 2015, 246: 458-471.
    [23] Chang Q, Mishima T, Yabuki S, et al. Sr and Nd isotope ratios and REE abundances of moraines in the mountain areas surrounding the Taklimakan Desert, NW China[J]. Geochemical Journal, 2000, 34(6): 407-427.
    [24] Liu W G, Liu Z H, Sun J M, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 2020, 48(8): 782-786.
    [25] Jiang Q D, Yang X P. Sedimentological and geochemical composition of aeolian sediments in the Taklamakan Desert: Implications for provenance and sediment supply mechanisms[J]. Journal of Geophysical Research, 2019, 124(5): 1217-1237.
    [26] 穆桂金. 塔克拉玛干沙漠的形成时代及发展过程[J]. 干旱区地理,1994,17(3):1-9.

    Mu Guijin. On the age and evolution of the Taklimakan Desert[J]. Arid Land Geography, 1994, 17(3): 1-9.
    [27] 倪频融. 达里雅博依绿洲的历史、现状及其演变前景[J]. 干旱区研究,1993,10(4):12-18.

    Ni Pinrong. History, present situation and evolution prospect of DaliyaBeyi oasis[J]. Arid Zone Research, 1993, 10(4): 12-18.
    [28] 朱震达,陆锦华,江伟铮. 塔克拉玛干沙漠克里雅河下游地区风沙地貌的形成发育与环境变化趋势的初步研究[J]. 中国沙漠,1988,8(2):1-9.

    Zhu Zhenda, Lu Jinhua, Jiang Weizheng. Study on formation and development of aeolian landform and trend of environmental change at lower reach of the Keriya River, Taklimakan Desert[J]. Journal of Desert Research, 1988, 8(2): 1-9.
    [29] 朱震达,吴正,刘恕,等. 中国沙漠概论[M]. 北京:科学出版社,1980:10-52.

    Zhu Zhenda, Wu Zheng, Liu Shu, et al. An outline of Chinese deserts[M]. Beijing: Science Press, 1980: 10-52.
    [30] 杨逸畴. 克里雅河地貌的形成与演化[J]. 干旱区地理,1990,13(1):37-45.

    Yang Yichou. Formation and evolution on Keliya River landforms[J]. Arid Land Geography, 1990, 13(1): 37-45.
    [31] 新疆文物考古研究所,法国科学研究中心,315所中法克里雅河考古队. 新疆克里雅河流域考古调查概述[J]. 考古,1998(12):28-37.

    Xinjiang Institute of Cultural Relics and Archaeology, The 3l5 Institute of French National Cener for Scientific Research. Summaries of the archaeological investigation along the Keriya River in Xinjian[J]. Archaeology, 1998(12): 28-37.
    [32] 中国新疆文物考古研究所,日本佛教大学尼雅遗址学术研究机构. 丹丹乌里克遗址—中日共同考察研究报告[M]. 北京:文物出版社,2009:32-156.

    Xinjiang Institute of Cultural Relics and Archaeology, China, Japanese Buddhist University Niya Site Academic Research Institute. Dandan Oilik site: report of the Sino-Japanese joint expedition[M]. Beijing: Cultural Relics Publishing House, 2009: 32-156.
    [33] 张峰,王涛,海米提·依米提,等. 2.7~1.6ka BP塔克拉玛干沙漠腹地克里雅河尾闾绿洲的变迁[J]. 中国科学:地球科学,2011,41(10):1495-1504.

    Zhang Feng, Wang Tao, Yimiti Heimiti, et al. 2.7~1.6ka BP changes of the oasis at the tail of the Keriya River in the hinterland of the Taklimakan Desert[J]. Chinese Science: Geosciences, 2011, 41(10): 1495-1504.
    [34] 夏倩倩,张峰. 塔克拉玛干沙漠腹地克里雅河尾闾圆沙三角洲AMS 14C年代学测定及相关历史地理问题刍议[J]. 第四纪研究,2016,36(5):1280-1292.

    Xia Qianqian, Zhang Feng. AMS 14C dating and related historical geography question proposal at the Yuansha delta in the central Taklamakan Desert[J]. Quaternary Sciences, 2016, 36(5): 1280-1292.
    [35] Vos K, Vandenberghe N, Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation[J]. Earth-Science Reviews, 2014, 128: 93-104.
    [36] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
    [37] 陈丽华,缪昕,于众. 扫描电镜在地质上的应用[M]. 北京:科学出版社,1986:21-44.

    Chen Lihua, Miao Xin, Yu Zhong. The applications of scanning electron microscope in geology[M]. Beijing: Science Press, 1986: 21-44.
    [38] 中国第四纪冰川与环境研究中心中国第四纪研究委员会. 中国西部第四纪冰川与环境[M]. 北京:科学出版社,1991:138-148.

    China Quaternary Glacier and Environment Research Center. The Quaternary glacier and environment of western China [M]. Beijing: Science Press, 1991: 138-148.
    [39] 窦国仁. 论泥沙起动流速[J]. 水利学报,1960(4):44-60.

    Dou Guoren. On the incipient velocity of sediment[J]. Journal of Hydraulic Engineering, 1960(4): 44-60.
    [40] 韩其为. 泥沙起动规律及起动流速[J]. 泥沙研究,1982(2):11-26.

    Han Qiwei. Characteristics of incipient sediment motion and incipient veloeity[J]. Journal of Sediment Research, 1982(2): 11-26.
    [41] Gehrig W. 推移质泥沙起动的计算方法[J]. 孙新文,译.水道港口,1983(2):30-37,7.

    Gehrig W. A method for calculating the initiation of bed load[J]. Sun Xinwen, trans. Journal of Waterway and Harbor, 1983(2): 30-37, 7.
    [42] 赵苏磊,马睿,郑军,等. 泥沙起动流速公式在天然河流中的验证[J]. 人民黄河,2012,34(2):42-46.

    Zhao Sulei, Ma Rui, Zheng Jun, et al. Verification on sediment incipient velocity formula in natural river[J]. Yellow River, 2012, 34(2): 42-46.
    [43] 吴正. 风沙地貌学[M]. 北京:科学出版社,1987:35-37.

    Wu Zheng. Aeolian geomorphology[M]. Beijing: Science Press, 1987: 35-37.
    [44] 陈渭南,董治宝,杨佐涛,等. 塔克拉玛干沙漠的起沙风速[J]. 地理学报,1995,50(4):360-367.

    Chen Weinan, Dong Zhibao, Yang Zuotao, et al. Threshold velocities of sand-driving wind in the Taklimakan Desert[J]. Acta Geographica Sinica, 1995, 50(4): 360-367.
    [45] 杨兴华,何清,艾力·买买提明,等. 1996—2008年塔中地区的风沙环境特征[J]. 沙漠与绿洲气象,2010,4(2):21-25.

    Yang Xinghua, He Qing, Ali·Mamtimin, et al. Characteristics of blown sand environment in Tazhong area of the Taklimakan Desert from 1996 to 2008[J]. Desert and Oasis Meteorology, 2010, 4(2): 21-25.
    [46] 谢又予,崔之久,李洪云. 扫描电镜下石英砂的表面结构特征及其地质解译[J]. 石油与天然气地质,1981,2(1):66-74.

    Xie Youyu, Cui Zhijiu, Li Hongyun. Quartz grain surface textures as revealed by the Scanning Electron Microscope and their geological explanation[J]. Oil & Gas Geology, 1981, 2(1): 66-74.
    [47] 王永焱,滕志宏,岳乐平. 黄土中石英颗粒表面结构与中国黄土的成因[J]. 地理学报,1982,37(1):35-40.

    Wang Yongyan, Teng Zhihong, Yue Leping. Surface texture of quartz grains under the scaning electron microscope and the genesis of loess in China[J]. Acta Geographica Sinica, 1982, 37(1): 35-40.
    [48] Mahaney W C, Dirszowsky R W, Milner M W, et al. Quartz microtextures and microstructures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes[J]. Journal of Quaternary Science, 2004, 19(1): 23-33.
    [49] 谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社,1984:4-10.

    Xie Youyu. Atlas of quartz sand surface textural features of China micrographs[M]. Beijing: Ocean Press, 1984: 4-10.
    [50] Cardona J P M, Gutiérrez Mas J M, Bellón A S, et al. Surface textures of heavy-mineral grains: A new contribution to provenance studies[J]. Sedimentary Geology, 2005, 174(3/4): 223-235.
    [51] 李志民. 从石英砂粒表面结构特征探讨吉林省西部沙地沙丘砂的成因[J]. 东北师大学报(自然科学版),1991,4(1):113-118.

    Li Zhimin. A approach to the cause of forming of the dunes in west Jilin according to the surface features of quartz grains[J]. Journal of Northeast Normal University, 1991, 4(1): 113-118.
    [52] 缪昕. 石英颗粒表面“V”形撞击坑与化学溶蚀坑的鉴别[J]. 地质科学,1981,16(3):291-293.

    Miao Xin. The recognition of “V”-shaped impact pit and chemical etching on the quartz-grain surface[J]. Scientia Geologica Sinica, 1981(3): 291-293.
    [53] 江新胜,徐金沙,潘忠习. 四川盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积与特提斯地质,2000,23(1):60-68.

    Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. The surface features of the quartz sand grains from the Cretaceous desert in the Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology, 2000, 23(1): 60-68.
    [54] 戴枫年. 我国北方沙漠地区沙丘石英砂的表面特征与沉积环境的关系[J]. 干旱区资源与环境, 1988, 2(2): 25-35.

    Dai Fengnian. The relationship between sedimentary environment and features of surface textures of quartz sand in sand dunes of desert areas in northern China[J]. Journal of Arid Land Resources and Environment, 1988, 2(2): 25-35.
    [55] 石磊,张跃,陈艺鑫,等. 贡嘎山海螺沟冰川沉积的石英砂扫描电镜形态特征分析[J]. 北京大学学报(自然科学版),2010,46(1):96-102.

    Shi Lei, Zhang Yue, Chen Yixin, et al. Quartz grain SEM microtextures analyses of sub-glacial deposits at Hailuogou glacier[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(1): 96-102.
    [56] 邹学勇,董光荣,王周龙. 戈壁风沙流若干特征研究[J]. 中国沙漠,1995,15(4):368-373.

    Zou Xueyong, Dong Guangrong, Wang Zhoulong. A study on some characteristics of drifting sand flux over Gobi[J]. Journal of Desert Research, 1995, 15(4): 368-373.
    [57] 张克存,屈建军,俎瑞平,等. 戈壁风沙流结构和风速廓线特征研究[J]. 水土保持研究,2005,12(1):54-55,58.

    Zhang Kecun, Qu Jianjun, Zu Ruiping, et al. Research on the characteristics of structure of drifting sand flux and wind velocity profile over Gobi[J]. Research of Soil and Water Conservation, 2005, 12(1): 54-55, 58.
    [58] 陈国祥,董治宝,李超,等. 察尔汗盐湖北侧沙丘沉积物颗粒微结构特征[J]. 中国沙漠,2018,38(5):954-962.

    Chen Guoxiang, Dong Zhibao, Li Chao, et al. Surface texture of quartz grains from dune sediments of northern Qarhan Salt Lake of China[J]. Journal of Desert Research, 2018, 38(5): 954-962.
    [59] 陈安东,顾佳妮,赵志中,等. 云南大理点苍山末次冰期冰碛物石英砂扫描电镜形态特征分析[J]. 冰川冻土,2016,38(2):453-462.

    Chen Andong, Gu Jiani, Zhao Zhizhong, et al. Quartz grains SEM surface microtextures of Quaternary glacial sediments along the Diancang Mountain in Yunnan, Southwest China[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 453-462.
    [60]
    [61] 杨利荣,岳乐平,弓虎军. 呼伦贝尔沙地末次冰盛期晚期至全新世风成沙表面矿物特征及环境意义[J]. 地理研究,2015,34(6):1066-1076.

    Yang Lirong, Yue Leping, Gong Hujun. The environmental implication from microscopic texture of eolian sand of Hulun Buir duneland centred on late last glacial maximum and Holocene[J]. Geographical Research, 2015, 34(6): 1066-1076.
    [62] 张鸿义,许风林. 塔克拉玛干沙漠中的古河道与地下水[J]. 新疆地质,1994,12(3):249-258.

    Zhang Hongyi, Xu Fenglin. Ancient river courses and ground water in Taklimakan Desert[J]. Xinjiang Geology, 1994, 12(3): 249-258.
    [63] 纳麦提·托合提,张峰,师庆东. 克里雅河流域水中氟离子的空间分布特征[J]. 干旱区研究,2016,33(5):1125-1131.

    Tohti N, Zhang Feng, Shi Qingdong. Spatial distribution of fluorion in water in the Keriya River basin[J]. Arid Zone Research, 2016, 33(5): 1125-1131.
    [64] 任明达,缪昕. 石英砂表面的微结构:一种沉积环境标志[J]. 地质论评,1984,30(1):36-41.

    Ren Mingda, Miao Xin. Surface microtextures of quartz sand grains: A guide to sedimentary environments[J]. Geological Review, 1984, 30(1): 36-41.
    [65] 李保生,董光荣,张甲坤,等. 塔克拉玛干沙漠及其以南风成相带划分和认识[J]. 地质学报,1995,69(1):78-87.

    Li Baosheng, Dong Guangrong, Zhang Jiakun, et al. Division and recognition of the aeolian facies belts in the Taklimakan Desert and areas to its south[J]. Acta Geologica Sinica, 1995, 69(1): 78-87.
    [66] 靳鹤龄,董光荣. 试论干旱区河流在沙漠地貌发育中的作用:以塔克拉玛干沙漠和田河流域为例[J]. 中国沙漠,2001,21(4):367-373.

    Jin Heling, Dong Guangrong. Preliminary study on the role of river wriggling in the evolution of aeolian landforms in arid region: Taking Hotan River as an example[J]. Journal of Desert Research, 2001, 21(4): 367-373.
    [67] 周兴佳. 历史时期塔里木盆地沙漠化探讨[J]. 干旱区研究, 1989(1): 9-18.

    Zhou Xingjia. Probe into the historical period of Tarim Basin[J]. Arid Zone Research, 1989(1): 9-18.
    [68] 李振山,陈广庭. 塔克拉玛干沙漠起沙风况[J]. 中国沙漠,1999,19(1):43-45.

    Li Zhenshan, Chen Guangting. Effective wind regime in the Taklimakan Desert[J]. Journal of Desert Research, 1999, 19(1): 43-45.
    [69] 雍天寿,单金榜,王诗佾. 玛扎塔克山区的几个地质问题:兼谈塔克拉玛干大沙漠形成的地质时代[J]. 新疆石油地质,1983(4):1-9.

    Yong Tianshou, Shan Jinbang, Wang Shiyi. Several geological issues in the Mazatak Mountain area—also on the geological age of the Taklimakan Desert[J]. Xinjiang Petroleum Geology, 1983(4): 1-9.
    [70] 闫顺,穆桂金. 塔里木盆地晚新生代环境演变[J]. 干旱区地理,1990,13(1):1-9.

    Yan Shun, Mu Guijin. The environmental evolution of the Tarim Basin in Late Cenozoic Era[J]. Arid Land Geography, 1990, 13(1): 1-9.
    [71] Zheng H B, Wei X C, Tada R, et al. Late Oligocene-Early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7662-7667.
    [72] 周兴佳. 克里雅河曾流入塔里木河的考证[M]//新疆克里雅河及塔克拉玛干科学探险考察队. 克里雅河及塔克拉玛干科学探险考察报告. 北京:中国科学技术出版社,1991:40-46.

    Zhou Xingjia. Textual research on the matter of the Keriya River flowed into the Tarim River[M]//Scientific Exploration Team of Xinjiang Keriya River and Taklimakan. The report of scientific exploration and investigation in the Keliya river valley and the Taklamakan Desert. Beijing: China Science and Technology Press, 1991: 40-46.
    [73] 吴正. 塔克拉玛干沙漠成因的探讨[J]. 地理学报,1981,36(3):280-291.

    Wu Zheng. Approach to the genesis of the Taklamakan Desert[J]. Acta Geographica Sinica, 1981, 36(3): 280-291.
    [74] 王颖. 沙漠·古海洋:追溯塔克拉玛干沙漠砂源[J]. 海洋地质与第四纪地质,2011,31(4):11-20.

    Wang Ying. The provenance of Taklamakan Desert sands: To trace the Cenozoic palaeo-ocean[J]. Marine Geology & Quaternary Geology, 2011, 31(4): 11-20.
    [75] 张峰,王姣,王金花,等. 克里雅河尾闾遗址群序列:考察回顾与年代研究综述[J]. 新疆大学学报(自然科学版)(中英文),2020,37(4):204-212.

    Zhang Feng, Wang Jiao, Wang Jinhua, et al. A review of investigation and excavation of oasis relics from the lower reaches of the Keriya River[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2020, 37(4): 204-212.
    [76] 杨小平. 绿洲演化与自然和人为因素的关系初探:以克里雅河下游地区为例[J]. 地学前缘,2001,8(1):83-89.

    Yang Xiaoping. The relationship between oases evolution and natural as well as human factors: Evidences from the lower reaches of the Keriya River, southern Xinjiang, China[J]. Earth Science Frontiers, 2001, 8(1): 83-89.
    [77] 周兴佳,李保生,朱峰,等. 南疆克里雅河绿洲发育和演化过程研究[J]. 云南地理环境研究,1996,8(2):44-57.

    Zhou Xingjia, Li Baosheng, Zhu Feng, et al. The research on the development and evolution of the oasis of Keria River in the Tarim Basin of Xinjiang[J]. Yunnan Geographic Environment Research, 1996, 8(2): 44-57.
    [78] 曹琼英,夏训诚. 新疆克里雅河下游地貌与第四纪地质的初步研究[J]. 地理科学,1992,12(1):34-43.

    Cao Qiongying, Xia Xuncheng. A preliminary study on the geomorphology and Quaternary geology in the lower reaches of the Keliya River[J]. Scientia Geographica Sinica, 1992, 12(1): 34-43.
    [79] 李保生,董光荣,祝一志,等. 末次冰期以来塔里木盆地沙漠、黄土的沉积环境与演化[J]. 中国科学(B辑),1993,23(6):644-651.

    Li Baosheng, Dong Guangrong, Zhu Yizhi, et al. Sedimentary environment and evolution of desert and loess in Tarim Basin since the last glacial period[J]. Science in China (Series B), 1993, 23(6): 644-651.
    [80] 张峰,夏倩倩,迪丽拜尔·吐尔孙,等. 克里雅河尾闾圆沙三角洲古河道剖面所记录全新世古绿洲环境变化[J]. 干旱区地理,2021,44(1):178-187.

    Zhang Feng, Xia Qianqian, Tuersun D, et al. Holocene hydrology and environment changes in the Keriya River delta in 13.8-2.3 ka in Taklimakan Desert: Inferred from the stratigraphy[J]. Arid Land Geography, 2021, 44(1): 178-187.
  • [1] 赵子霖, 周雪威, 李夔洲, 郭涛, 彭靖松, 侯明才.  辽东湾海域新元古界长龙山组石英砂岩物源特征及其地质意义 . 沉积学报, 2024, 42(4): 1342-1353. doi: 10.14027/j.issn.1000-0550.2022.093
    [2] 郭爱鹏, 毛龙江, 莫多闻, 张兴国, 邹春辉, 李烨, 吴又进.  长沙铜官窑遗址剖面地球化学元素特征与物源变化 . 沉积学报, 2023, 41(3): 735-747. doi: 10.14027/j.issn.1000-0550.2021.128
    [3] 吴金旭, 张玉修, 刘浩宇, 高峰, 杨石霞.  洞穴堆积物的微形态研究进展及其应用 . 沉积学报, 2023, 41(4): 968-991. doi: 10.14027/j.issn.1000-0550.2022.127
    [4] 肖春晖, 王永红, 林间.  近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示 . 沉积学报, 2022, 40(2): 508-524. doi: 10.14027/j.issn.1000-0550.2020.091
    [5] 张兴泽, 朱丽东, 胡凯程, 张晓, 熊文婷, 王牛牛, 周汪洋, 李凤全.  浙闽沿岸泥质潮滩沉积磁性特征及其物源判别 . 沉积学报, 2022, 40(3): 774-786. doi: 10.14027/j.issn.1000-0550.2020.116
    [6] 王兆夺, 黄春长, 庞奖励, 刘安娜, 周亚利, 查小春.  甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建 . 沉积学报, 2020, 38(4): 781-789. doi: 10.14027/j.issn.1000-0550.2019.077
    [7] 丛静艺, 袁忠鹏, 胡刚, 毕世普, 张勇, 王永红, 马晓红, 江云水, 宁泽.  长江远端三角洲多源沉积分异作用及其动力机制 . 沉积学报, 2020, 38(3): 528-537. doi: 10.14027/j.issn.1000-0550.2019.064
    [8] 郭望, 张卫刚, 李玉宏, 雷迅, 李永红, 陈刚, 张云鹏, 陈磊, 徐学敏.  柴北缘大煤沟组七段页岩地球化学特征——对中侏罗世晚期物源及风化作用的指示及意义 . 沉积学报, 2020, 38(3): 676-686. doi: 10.14027/j.issn.1000-0550.2019.103
    [9] 梁飞, 黄文辉, 牛君.  鄂尔多斯盆地西南缘二叠系山西组山1段-下石盒子组盒8段物源分析 . 沉积学报, 2018, 36(1): 142-153. doi: 10.3969/j.issn.1000-0550.2018.016
    [10] 徐洪阳, 郑祥民, 周立旻, 任少芳, 王小玉, 玄晓娜.  南京周家山下蜀黄土石英颗粒特征及其物源意义 . 沉积学报, 2016, 34(6): 1176-1186. doi: 10.14027/j.cnki.cjxb.2016.06.015
    [11] 张凯棣, 李安春, 董江, 张晋.  东海表层沉积物碎屑矿物组合分布特征及其物源环境指示 . 沉积学报, 2016, 34(5): 902-911. doi: 10.14027/j.cnki.cjxb.2016.05.009
    [12] 乔淑卿.  黄河口及邻近渤海海域悬浮体和沉积物中有机碳、氮的分布特征及其影响因素 . 沉积学报, 2011, 29(2): 354-362.
    [13] 贺静.  物源对鄂尔多斯盆地中部延长组x长6砂岩孔隙发育的控制作用 . 沉积学报, 2011, 29(1): 80-87.
    [14] 徐亚军.  甘肃靖远上泥盆统沙流水组沉积地球化学特征及其物源分析 . 沉积学报, 2011, 29(1): 41-54.
    [15] 何梦颖.  长江流域沉积物黏土矿物组合特征及物源指示意义 . 沉积学报, 2011, 29(3): 544-551.
    [16] 闫晓丽.  临夏盆地黑林顶剖面沉积物在8.6Ma前后岩石磁学特征及其意义 . 沉积学报, 2010, 28(6): 1190-1197.
    [17] 李 萍.  冲绳海槽现代沉积物磁学性质分布特征与环境的关系 . 沉积学报, 2007, 25(5): 753-758.
    [18] 操应长.  特征元素比值在沉积物物源分析中的应用——以东营凹陷王58井区沙四上亚段研究为例 . 沉积学报, 2007, 25(2): 230-238.
    [19] 李双建.  碎屑重矿物分析对库车坳陷白垩—第三纪物源变化的指示 . 沉积学报, 2006, 24(1): 28-35.
    [20] 程振波, 石学法, 陈志华, 鞠小华.  南黄海表层沉积物中微体化石的沉积特点及物源分析 . 沉积学报, 1999, 17(S1): 775-781.
  • 加载中
图(7)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  87
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 刊出日期:  2022-10-10

目录

    克里雅河沿线沙丘沉积物石英砂表面特征分析

    doi: 10.14027/j.issn.1000-0550.2021.044
      基金项目:

      国家自然科学基金 U1503381

      国家科技基础资源调查专项课题 2017FY101004

      新疆维吾尔自治区天山雪松计划 2017XS21

      通讯作者: 张峰,男,副教授,E-mail: zhang-f-eng@sohu.com
    • 中图分类号: P931.3

    摘要: 对沙漠内部典型河流沿线沙丘石英颗粒表面微形态特征的系统研究尚少。沿塔里木盆地南缘克里雅河下游丹丹乌里克、喀拉墩、圆沙古城、北方墓地及其北部塔里木河一带的沙丘顶部采到5件表沙样品。扫描电镜观察172颗经能谱挑选的石英颗粒表面微形态,筛析法测定5件样品的粒度。结果表明:1)丹丹乌里克样品以极细沙为主,其余均以细沙为主,各样品几乎不含黏土;2)样品磨圆度特征以次棱和次圆状为主,圆状很少,未见棱状特征,次棱状与次圆状特征之间消长关系显著,沙漠南北边缘样品的次棱状特征出现频率较腹地高;3)颗粒中V形坑频率呈现出沙漠边缘较高腹地低的特征,而沙漠边缘的化学作用结构特征低于腹地。石英砂表面特征结构以机械作用为主,同时伴生化学环境作用特征,可认为克里雅河下游沙物质包括了河流、冰川与戈壁成因及风输送而来的颗粒;颗粒表面特征总体新鲜,沙丘应较年轻。纵穿塔克拉玛干沙漠沉积物样品的表面微形态观察与粒度测定,为该地区沉积环境分析与沙丘砂溯源研究增添了新数据。

    English Abstract

    王姣, 王笑辰, 张峰. 克里雅河沿线沙丘沉积物石英砂表面特征分析[J]. 沉积学报, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
    引用本文: 王姣, 王笑辰, 张峰. 克里雅河沿线沙丘沉积物石英砂表面特征分析[J]. 沉积学报, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
    WANG Jiao, WANG XiaoChen, ZHANG Feng. Surface Features of Quartz Sand Grains in Dune Sediments, Keriya River Basin[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
    Citation: WANG Jiao, WANG XiaoChen, ZHANG Feng. Surface Features of Quartz Sand Grains in Dune Sediments, Keriya River Basin[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1289-1301. doi: 10.14027/j.issn.1000-0550.2021.044
      • 塔克拉玛干沙漠面积约3.37×105 km2[1],是世界第二大流动性沙漠[2],也是我国面积最大的沙漠。对该沙漠沙物质来源、搬运机制以及沉积环境[3]的认识,有利于了解沙漠形成和演化[4],为合理治理沙漠化提供有效数据。石英砂颗粒分布广泛,具有较大的硬度和较高的化学稳定性[5-6],各种外力作用都会在颗粒表面留下不易消失的微形态结构特征[7-8],因此其表面特征在追溯沙物质来源、探讨环境变迁等方面[9-14]应用广泛。

        目前对塔克拉玛干沙漠石英砂微形态特征已有一些研究。麻扎塔格山一带的工作发现该区域沙丘砂既保留了冰川作用特征,也存有后期流水和风作用特征[15];沙漠腹地钻井岩心石英砂表面呈现出多种外力作用叠加痕迹,而地表风沙较为年轻,并不具备发育成熟的风成结构及形态[16];克里雅河研究发现沙物质同时具备河流带入的冰川成因特征和原地下伏沉积物特征(康定国等[17]推断)。这些研究已经初步判断沙漠石英颗粒来源的冰川和戈壁成因,以及搬运过程中水与风营力作用,但相对于如此广袤的沙漠,工作依然较少,且多局限于某区域,在塔克拉玛干沙漠沿着一条具有代表性河流进行的研究较少。由于塔克拉玛干沙漠沙物质主要为河流沉积[1,18-22],而河流沉积又主要来自盆地周围山地冰碛物[23-25]、山前戈壁等[26],因此,系统地沿河流研究沙粒微形态有助于揭示沙粒物源、搬运和沉积环境等。沿克里雅河流域丹丹乌里克到塔河南部纵穿沙漠,在各期干三角洲一带的沙丘采集5件表沙样品,提供表面微形态和粒度数据,为丰富塔克拉玛干沙漠地区物源与沉积环境的研究材料提供了可靠依据。

      • 克里雅河位于塔里木盆地南缘,发源于昆仑山主峰乌什腾格山北坡,向北经山前戈壁、绿洲,进入塔克拉玛干沙漠腹地,并在下游平缓的地形条件下河流改道漫流分散为辫状多枝叉的河流[27],全长438 km,河流年输沙量3.51×106 t[28]。克里雅河处于塔里木地块中轴部位,使其成为塔克拉玛干沙漠东北风和西北风的交汇地带(图1),从而造成了河流东西两岸不同的地貌类型[30]。克里雅河下游下段为季节性洪水作用段,地势较为平坦,河流作扇状分散,东部为一处天然绿洲,以孤立复合形的沙丘地貌类形为主[28],西部干三角洲上断断续续分布着干河床,新月形沙丘和沙丘链分布在河床内[30]。沙漠中古河道等痕迹显示古克里雅河曾流入古塔里木河,形成一条贯穿塔克拉玛干沙漠的绿洲地带[28],西部干三角洲上存在多个古遗址[31-34],代表河流曾在那里活动。

        图  1  研究区及采样点分布[29]

        Figure 1.  Map of study area and sampling sites[29]

      • 在克里雅河下游自丹丹乌里克、喀拉墩、圆沙、北方干三角洲至塔里木河(图1),使用套管法采集现代沙丘顶部0~15 cm表沙5件。MG-03样品采集于丹丹乌里克遗址的西北方向,距遗址中心点约0.5 km,位于沙丘顶部,沙丘类型为新月形沙丘,周围分布有多个新月形沙丘链(图2a)。080327-2样品采集于喀拉墩遗址北部,距遗址点约0.1 km,采样点同样位于沙丘顶部,沙丘类型为流动新月形沙丘,周围除分布有新月形沙丘链外,还有多个红柳沙包(图2b)。值得注意的是,图2b拍摄于2018年,距离采样时间较远,周围的沙丘和红柳沙包的情况可能有所改变。081106-10样品采样点位于圆沙古城东南方向,距遗址区域约10 km,样品采集于风蚀河谷东岸的沙丘顶部,沙丘类型为新月形沙丘,周围分布着新月形沙丘链(图2c)。20181120-1样品采集于北方墓地东北方向的沙丘顶部,距离遗址区域约60 km,沙丘类型为新月形沙丘,周围分布着多个高大沙丘(图2d)。20181113-1样品采集于塔里木河南部的沙丘顶部,与塔河的直线距离大致为50 km,沙丘类型为鱼鳞状沙丘,周围分布着大量的同类型沙丘(图2e)。

        图  2  样品采集点的部位与环境

        Figure 2.  Location and environment of samples

      • 实验室样品置于锥形瓶中,先后使用30%H2O2和10%HCl去除有机质与碳酸盐等;去离子水洗至中性并烘干后选取0.125~0.5 mm[10]各样品80~120颗于光学显微镜下目视挑选石英,并成行粘在导电胶带上真空镀金120 s,在新疆大学理化测试中心经Oxford能谱筛选石英,用LEO1430VP扫描电子显微镜观察172颗石英表面形态,其中丹丹乌里克样品(MG-03)和圆沙样品(081106-10)均有34颗石英颗粒用于观察;喀拉墩样品(080327-2)有25颗;北方样品(20181120-1)有37颗;塔河南部样品(20181113-1)共有42颗石英颗粒。以机械成因和化学成因[35]划分石英砂颗粒表面特征。称取经过前处理样品50 g并使用新疆大学(教育部)绿洲重点实验室Retsch200震筛仪Tyler筛测定粒度。

      • 五件表沙样品的粒度分布均呈单众数(图3)。喀拉墩(080327-2)、北方(20181120-1)和塔河(20181113-1)样品粒度分布较为接近,峰值主要出现在0.25~0.125 mm,占比均大于50%,分选好,峰态较宽,偏度为近对称。丹丹乌里克(MG-03)和圆沙(081106-10)样品粒径众数出现在0.075 mm,但MG-03样品0.25~0.063 mm粒级占总含量90%左右,分选好;081106-10样品分选中等,峰态较宽,偏度为近对称。根据Udden-Went-worth标准[36]来看,样品除MG-03以极细沙为主外,其余皆以细沙为主,极细沙次之,所有样品粉沙含量少,几乎不含黏土组分。

        图  3  表层沙样粒度分布的直方图与累积概率曲线

        Figure 3.  Histogram and cumulative probability curve of grain size distribution of surface sand samples

      • 磨圆度划分参照陈丽华等[37]标准,分为棱角状、次棱角状、次圆状、圆状及浑圆状5个圆度等级。各样品石英颗粒磨圆度特征以次棱(平均频率55.52%)和次圆状(41.49%)为主,二者存在明显的消长关系(图4)。次棱状出现频率以沙漠南北边缘高,内部较低,而次圆状则相反,呈现出从沙漠边缘到腹地递增趋势。最南端的丹丹乌里克(MG-03)样品石英颗粒次棱状最多,占67.65%,次圆状较其他样品最少,为29.41%;塔河南部(20181113-1)样品次棱状出现频率仅次于MG-03样品,为59.52%,次圆状出现频率较MG-03样品高,占38.10%;北方墓地样品(20181120-1)与喀拉墩样品(080327-2)磨圆度分布相近,次棱状出现频率分别为51.35%和52%,次圆状出现频率分别为45.95%与44%,两件样品中次棱状出现频率均高于次圆状;圆沙样品(081106-10)次棱状与次圆状出现频率相当,分别为47.06%和50.00%,次圆状出现频率最多。各样品中圆状均极少出现(低于5%),棱状特征则未出现(图4)。

        图  4  各样品磨圆度特征对比

        Figure 4.  Comparison of the psephicity features of quartz sand grains

        新月形撞击坑和碟形坑出现的平均概率相近,分别为39.24%、38.65%。其中新月形撞击坑在丹丹乌里克、塔河及圆沙样品中出现频率较高,分别为47.06%、50%和44.12%,在其他两个样品中出现频率均较低,喀拉墩样品为28%,北方样品为27.03%(图5)。蝶形坑特征主要出现在塔河、喀拉墩和圆沙样品中,出现概率分别为40.48%、64%和41.18%。

        图  5  石英颗粒表面特征成因类型的颗粒频率统计

        Figure 5.  Statistical grain frequency for genetic types of quartz grain surface features

        麻面结构出现频率最高,均高达80%以上,其中喀拉墩样品(080327-2)出现频率最高,为96%。V形坑出现的平均概率较高,为73.8%,具有沙漠边缘高腹地低的特征。位于沙漠南北缘的丹丹乌里克样品(MG-03)和塔河样品(20181113-1)出现频率分别为82.35%和80.95%;沙漠腹地的喀拉墩样品、圆沙样品(081106-10)和北方样品(20181120-1)出现频率分别为68%、64.71%和72.97%。贝壳状断口出现的平均频率为37.03%,样品中靠近现代克里雅河流域的样品出现频率相对较高,丹丹乌里克、喀拉墩和圆沙样品出现频率分别为35.29%、44%和52.94%。黏附碎片在5件样品中出现频率较低,不超过30%。

      • 样品中出现溶蚀坑/沟和硅质沉淀典型特征的平均概率较为接近,分别为44.65%和44.96%(图5)。溶蚀坑/沟和硅质沉淀结构在沙漠腹地较高,其中北方样品(20181120-1)为54.05%和43.24%,喀拉墩样品(080327-2)均为44%,圆沙样品(081106-10)为47.06%和55.88%(图5);在沙漠边缘则较少,丹丹乌里克(MG-03)样品中出现频率分别为35.29%和41.18%,塔河样品(20181113-1)为42.86%和40.48%。

      • 图6显示了不同样品中石英颗粒微形态特征出现的频率。五件样品中均含有较多次棱状形态的石英颗粒,麻面和V形坑出现频率都较高,通常还会出现新月形撞击坑、硅质沉淀、贝壳状断口和溶蚀坑。丹丹乌里克样品中石英微形态特征以V形坑和麻面为主,化学作用相对较少;喀拉墩样品的石英表面形态主要为麻面、V形坑和蝶形坑;圆沙样品中石英颗粒表面微形态特征主要有贝壳状断口、V形坑、麻面和硅质沉淀,化学作用较前两个样品多;北方样品以V形坑、麻面和溶蚀坑为主;塔河南部样品中石英的微形态特征与丹丹乌里克样品较为相似,主要有V形坑和麻面,化学作用也较少。

        图  6  不同样品石英表面微形态特征出现频率统计

        Figure 6.  Frequency distribution of quartz grains with microtextures in different samples

      • 本文观察的石英颗粒粒径分布于0.125~0.5 mm,累积百分比曲线均达60%,以中沙和细沙为主(图3)。该沙粒为沉积物中最活跃组分之一[38],在流水中主要以推移方式运动[39-42],在风力(2 m高度的起沙风风速一般在4.0~5.6 m/s[43],塔克拉玛干沙漠2 m高度的起沙风速约4.1~5.0 m/s[44-45])作用下通常以跃移形式运动,表面结构成因组合发育齐全,比较灵敏和全面地记录了石英砂的成因信息。岩石分化后,石英砂颗粒在侵蚀、搬运和沉积的过程中,必然受到外营力、气候及沉积速度等因素的影响,产生各种表面形态,且不同环境下对石英砂颗粒的作用是各不相同的[46]

      • 石英砂颗粒磨圆度特征可以反映沉积物在特定环境下的搬运距离和动力条件[47-48]。距离较短、搬运动力较弱或经历过冰川作用的样品石英砂颗粒磨圆度较差[48-50],在流水和风成环境下磨圆度较好,多呈次圆状[51]。沙漠边缘的丹丹乌里克和塔河南部样品磨圆度总体较差,主要呈次棱状,应该是保留了较多的原始特征(图7a,e),说明其可能经历了冰川挤压、水下撞击、戈壁碰撞破碎等作用,且风对沙物质的磨损等作用时间较短;位于腹地的喀拉墩、圆沙和北方古绿洲样品,磨圆度较好,以次圆状为主,显示流水和风力中碰撞磨蚀作用明显,或经历了相对较久的搬运过程(图7b~d)。

        图  7  沙丘砂样品部分石英颗粒形态

        Figure 7.  Morphology of quartz grains in sand dune samples

        V形坑形成与水下环境的能量密切相关[52],代表高能的机械环境[53],是水下磨蚀作用的标志特征[52]。5件样品中V形坑出现频率较高,均超过了60%,这些沙物质应均经历过流水作用。解理面特征一般在较强的外力碰撞、物理分化条件下较为发育[54]。本文样品均有不同程度类似擦痕的平行解理发现,或形成于流水和戈壁环境,但解理已受磨损并不清晰(图7f),可能是后期风沙作用的结果。贝壳状断口在流水作用下,石英颗粒之间高强度的挤擦和碰撞会导致颗粒破碎形成[37];虽然沙粒之间或沙粒与粗糙表面之间因风力相互挤压也会导致破碎[55],但多发生在戈壁,其原因可能是戈壁地表裸露,风力强劲,沙粒运动速度快而能量较大[56-57],沙粒挤压碰撞破裂形成贝壳状断口,但沙漠内部应少见[58]。本文样品贝壳状断口大部分有不同程度磨损,表明石英砂颗粒经历了风力磨蚀作用。黏附碎片是冰川环境的典型特征[59],是冰川运动时石英颗粒处于高压挤擦的环境中形成的[60]。本文所分析的样品中黏附碎片出现频率较低,或因后期受到流水和风力侵蚀作用。

        康国定等[17]认为,沙漠环境昼夜温差大,热胀冷缩会使石英砂表面出现裂隙(纹)。夜间水汽的pH值因有溶解盐类而升高,使得石英砂表面少量SiO2被溶解,白昼气温升高,水汽蒸发,SiO2重新沉淀在颗粒表面,形成硅质沉淀[61]。塔克拉玛干沙漠古河道众多,许多丘间地地下水埋深较浅,在强烈蒸发条件下,地下水中的K和Na等析出[62],表层沉积物湿度大,且pH值高[63],在这种条件下石英容易遭受化学侵蚀[64]。研究区样品石英表面有硅质沉淀和溶蚀坑出现,代表塔克拉玛干沙漠干旱的蒸发环境下所具备的化学风化条件(图7d)。克里雅河流域样品石英砂颗粒表面呈现后期风力作用特征叠加早期水成环境下的特征,同时经历了化学环境作用。

      • 沉积物的物质来源及其复杂,除母岩类型会影响沉积物的最终组成外,搬运过程中经历的磨蚀和分选等作用也会改变沉积物的组成。沙漠发育必须具备一定的物质基础,许多学者认为河流为塔克拉玛干沙漠的发育提供了大量物质[1,65-66]。在塔里木盆地南缘,发源于昆仑山脉的河流自南至北为沙漠提供物源[66],特别是克里雅河,将大量山区及沿途沙物质带到丹丹乌里克、喀拉墩、圆沙和北方遗址一带沉积[17],河床经风蚀后为沙丘提供物源。Rittner et al.[21]也认为发源于昆仑山和阿尔金山的河流为沙漠沙丘砂提供了主要物源。在丹丹乌里克(MG-03)、圆沙(081106-10)和喀拉墩(080327-2)样品中,代表水流、冰川作用或戈壁风能环境的贝壳状断口出现频率较其他两件离克里雅河较远的样品高,而具有这类特征的沙粒多在河流上游,说明克里雅河上游沙物质进入沙漠,特别是样品石英颗粒中还可见冰川成因的黏附碎片(图7b)。同时位于沙漠边缘的丹丹乌里克样品中代表河流成因特征的V形坑出现频率较沙漠腹地高,这与河流对沙漠物源的供给自沙漠边缘向腹地递减也是一致的。沙漠边缘丹丹乌里克样品麻面和表面化学特征频率也比沙漠腹地的样品少,而这两类特征主要是沙漠内部物理和化学作用的结果,显示沙漠边缘沙粒所经历的化学侵蚀和风沙撞击过程不及腹地久远。位于沙漠腹地的3件样品次圆状出现频率明显比丹丹乌里克高,可能是由于沙物质经过了较远地搬运,所受外力作用较久。

        在盆地北缘,塔里木河自西向东所携带大量沙物质在主干河道摆动过程中沉积下来[67],成为塔河两侧沙物质主要来源。同时,由于沙漠北部边缘多数以北风为主[68],使得沉积的河流沙物质向偏南方向移动。20181113-1样品贝壳状、V形坑、次棱状出现频率均较高,表明塔河样品离物源区较近,北部河床和戈壁沉积物均有可能是其主要物质来源。

        塔克拉玛干沙漠周缘分布的砂质沉积如麻扎塔格第三纪砂岩[69-71],以及塔克拉玛干沙漠早期形成阶段[1,72-73]发源于天山和昆仑山山系的河流携带的泥沙,也均可能为塔克拉玛干沙漠提供物源[74]。本文研究的172颗石英砂以次棱状为主,经历冰川挤压、流水搬运及后期风力磨蚀等作用,结构较为清晰,表明塔克拉玛干沙漠大多现代沙丘砂颗粒是较新形成的,沙丘也应较为年轻,这与高存海等[16]的研究结论是一致的。丹丹乌里克、喀拉墩、圆沙和北方墓地等遗址的年代大致处于夏商时期—唐代[75-76];周兴佳等[77]认为克里雅绿洲形成时间大致在全新世以后;曹琼英等[78]认为自中更新世晚期开始,沙漠面积才逐渐扩大;李保生等[79]测得沙漠腹地沙丘顶部年代为8 600±430 a B.P.;张峰等[80]测得圆沙遗址附近相关剖面的光释光年代约13.8 ka,大致位于晚更新世末与全新世初;朱震达等[28]根据沙丘形成的“就地起沙”,及克里雅河西岸保留有汉唐时代的遗址,认为沙丘发育也是汉唐以来的产物。综上表明克里雅河沿线沉积物时间并不久远,沙丘形成年代较晚。

      • 本文从丹丹乌里克至塔河南部纵贯塔克拉玛干沙漠采集5件现代沙丘表沙样品,通过扫描电镜和筛析法对沉积物的表面特征与粒度进行测定,得出以下结论:

        (1) 研究区样品粒度分布呈单众数,以细沙和极细沙为主,不含黏土颗粒。沉积物中石英砂颗粒磨圆度特征以次棱状和次圆状为主,并具有明显的消长关系。

        (2) 麻面和V形坑特征结构的石英颗粒出现频率高,V形坑出现频率沙漠边缘高,腹地低,而化学作用形成的表面结构出现频率则相反。克里雅河流域样品石英砂颗粒表面特征结构以机械作用为主,后期风力作用特征叠加早期水成环境下的特征十分显著,同时具有一定程度的化学作用特征。

        (3) 克里雅河、塔里木河和和田河等河流带来的沉积物成为克里雅河沿线沉积物的主要物质来源;冰川、河流与风力作用使得沙漠物质来源具有多样性;现代沙丘砂表面外营力作用特征较为清晰,沙丘形成时期较晚。

    参考文献 (80)

    目录

      /

      返回文章
      返回