The 170 kyr Astronomical Cycles in the Paleozoic Terrestrial Basin
-
摘要: 目的 米兰科维奇周期通过调控地球天文轨道参数来影响地球气候系统和有机碳埋藏。除通过线性过程调控气候系统的常规周期外,还存在通过一系列“非线性”正负反馈进程调控气候系统的“非常规”天文周期,如17万年斜率振幅调制周期。先前研究已证明17万年天文周期对中新生代地球中高纬度有机碳埋藏具有调控作用,然而由于缺乏准确的天文解和高分辨率的地质记录,17万年信号在古生代鲜有报道。 方法 对准噶尔盆地早二叠世芦草沟组的总有机碳含量和自然伽马测井数据进行旋回地层学分析,认为芦草沟组保存了短偏心率、斜率、岁差周期信号。 结果 根据短偏心率周期进行了天文调谐,结果显示芦草沟组沉积持续时间约为2.8 Myr,沉积速率估算为9.1 cm/kyr。除常规周期外,17万年周期信号也在去趋势数据序列和斜率振幅调制曲线中被发现。 结论 对古生代陆相地层中的17万年天文周期进行系统探讨,基于强烈的斜率信号,推测该17万年周期信号来源于斜率振幅调制周期s3-s6。它通过调控早二叠世地球中高纬度水循环过程影响有机碳埋藏,而沉积盆地中的阈值响应效应将高频的斜率周期中的较低频17万年振幅调制周期放大,并出现在地质记录中。Abstract: Objective Milankovitch cycles affect the Earth's climate system and organic carbon burial by regulating the Earth's astronomical orbital parameters. In addition to the conventional astronomical cycles that regulate the climate system through linear processes,there are "unconventional" astronomical cycles that regulate the climate system through a series of "non-linear" positive or negative feedback processes,such as the 170 kyr obliquity amplitude modulation (AM) cycle. Previous studies have demonstrated the modulating effect of the 170 kyr cycle on organic carbon burial in the middle to high latitudes of the Earth during the Mesozoic-Cenozoic. However,owing to the lack of accurate astronomical solutions and high-resolution geological records,the 170 kyr cycle has rarely been reported in the Paleozoic. Methods In this study,the total organic carbon content and natural gamma logging data of the Early Permian Lucaogou Formation in the Junggar Basin were analyzed with cyclostratigraphy,which concluded that the Lucaogou Formation has preserved short eccentricity,obliquity,and precession cycles. Results and Discussions The astronomical tuning results based on the short eccentricity cycle show that the deposition duration of the Lucaogou Formation is ~2.8 Myr,and the sedimentary rate is estimated at 9.1 cm / kyr. In addition to conventional astronomical cycles,the 170 kyr cycle was found in detrended data series and their obliquity AM series,which is the first systematic exploration of the 170 kyr cycle in a Paleozoic terrestrial basin. Conclusions Based on the strong obliquity signals,this 170 kyr cycle likely originates from the s3-s6 obliquity AM cycle. It can affect organic carbon burial by modulating water circulation processes in the middle to high latitudes of the earth during the Early Permian. Furthermore,the threshold response effect in sedimentary basins amplifies the 170 kyr AM cycle in the obliquity cycle and appears in the geological record.
-
Key words:
- cyclostratigraphy /
- 170 kyr astronomical cycle /
- Permian /
- Junggar Basin /
- Lucaogou Formation
-
图 1 准噶尔盆地吉木萨尔凹陷概况
(a) Early Permian (~290 Ma) paleogeography and the location of the Junggar Basin (modified from Sun et al.[28]), the light yellow, blue, and gray areas represent the land, ocean, and ice cap, respectively; (b) location of Jimusar Sag and well Ji174 in the Junggar Basin; (c) the Permian stratigraphy and chronological framework of southern Junggar Basin (modified from Tang et al.[29])
图 3 吉174井TOC数据深度域旋回地层学分析结果
(a) detrended TOC series were extracted from the interpreted short eccentricity cycle (~10 m, blue curve), obliquity cycle (~3.2 m, green curve), and s3-s6 obliquity amplitude modulation (15⁃18 m, blue curve) cycle; (b) 2π MTM power spectrum and evolutive harmonic analysis (EHA) results; (c) COCO analysis of the detrended TOC series. The target astronomical series are from Berger et al.[43] and Laskar et al.[44] solutions at 290 Ma. The number of Monte Carlo simulations is 4 000. Sedimentation rates range from 0 to 20 cm/kyr with a step of 0.1 cm/kyr
图 5 TOC和NGR时间序列及其斜率振幅曲线的频谱分析结果
(a, d) obliquity signals in TOC and NGR series and ~170 kyr obliquity amplitude modulation cycles, the gray line represents the ~170 kyr cycles extracted from the detrended time series with a bandpass of 0.005 8±0.001 cycles / kyr; the obliquity cycles were extracted from the detrended TOC series with a bandpass of 0.026±0.006 cycles/kyr, and from detrended NGR series with a bandpass of 0.026 5±0.006 cycles/kyr; the s3-s6 obliquity amplitude modulation cycles were extracted with a bandpass of 0.005 8±0.001 cycles/kyr; (b, c, e, f) spectral analysis of the detrended TOC and NGR time series and their obliquity amplitude series
-
[1] Hinnov L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475. [2] 吴怀春,张世红,冯庆来,等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学:中国地质大学学报,2011,36(3):409-428. Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science: Journal of China University of Geosciences, 2011, 36(3): 409-428. [3] Li M S, Hinnov L A, Huang C J, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9(1): 1004. [4] Huang C J, Hinnov L. Astronomically forced climate evolution in a saline lake record of the Middle Eocene to Oligocene, Jianghan Basin, China[J]. Earth and Planetary Science Letters, 2019, 528: 115846. [5] Huang H, Gao Y, Ma C, et al. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489. [6] Zhang Z F, Huang Y J, Li M S, et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022, 596: 117800. [7] Raymo M E, Nisancioglu K. The 41 kyr world: Milankovitch's other unsolved mystery[J]. Paleoceanography and Paleoclimatology, 2003, 18(1): 1011. [8] Bosmans J H C, Hilgen F J, Tuenter E, et al. Obliquity forcing of low-latitude climate[J]. Climate of the Past, 2015, 11(10): 1335-1346. [9] Wang M, Chen H H, Huang C J, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116. [10] Boulila S, Vahlenkamp M, de Vleeschouwer D, et al. Towards a robust and consistent Middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 2018, 486: 94-107. [11] Charbonnier G, Boulila S, Spangenberg J E, et al. Obliquity pacing of the hydrological cycle during the oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2018, 499: 266-277. [12] Zhang R, Li X J, Xu Y, et al. The 173-kyr obliquity cycle pacing the Asian monsoon in the eastern Chinese Loess Plateau from Late Miocene to Pliocene[J]. Geophysical Research Letters, 2022, 49(2): e2021GL097008. [13] Gambacorta G, Menichetti E, Trincianti E, et al. Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian Stage (Early Silurian)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 495: 152-162. [14] Fang J C, Wu H C, Fang Q, et al. Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109530. [15] Ma K Y, Hinnov L A, Zhang X S, et al. Astronomical time calibration of the Upper Devonian Lali section, South China[J]. Global and Planetary Change, 2020, 193: 103267. [16] Yao X, Hinnov L A. Advances in characterizing the cyclostratigraphy of binary chert-mudstone lithologic successions, Permian (Roadian-Lower Capitanian), Chaohu, Lower Yangtze, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 258-271. [17] Fang Q, Wu H C, Wang X L, et al. Astronomical cycles in the Serpukhovian-Moscovian (Carboniferous) marine sequence, South China and their implications for geochronology and icehouse dynamics[J]. Journal of Asian Earth Sciences, 2018, 156: 302-315. [18] Fang Q, Wu H C, Wang X L, et al. An astronomically forced cooling event during the Middle Ordovician[J]. Global and Planetary Change, 2019, 173: 96-108. [19] Sørensen A L, Nielsen A T, Thibault N, et al. Astronomically forced climate change in the Late Cambrian[J]. Earth and Planetary Science Letters, 2020, 548: 116475. [20] Wu H C, Fang Q, Wang X D, et al. An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm[J]. Geology, 2018, 47(1): 83-86. [21] Zhang T, Li Y F, Fan T L, et al. Orbitally-paced climate change in the Early Cambrian and its implications for the history of the Solar System[J]. Earth and Planetary Science Letters, 2022, 583: 117420. [22] Zhao Z F, Thibault N R, Dahl T W, et al. Synchronizing rock clocks in the Late Cambrian[J]. Nature Communications, 2022, 13(1): 1990. [23] 马坤元,李若琛,龚一鸣. 秦皇岛石门寨亮甲山奥陶系剖面化学地层和旋回地层研究[J]. 地学前缘,2016,23(6):268-286. Ma Kunyuan, Li Ruochen, Gong Yiming. Chemostratigraphy and cyclostratigraphy of the Ordovician Liangjiashan section from Shimenzhai of Qinhuangdao in North China[J]. Earth Science Frontiers, 2016, 23(6): 268-286. [24] Huang H, Gao Y, Jones M M, et al. Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109735. [25] Zhong Y Y, Wu H C, Fan J X, et al. Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109520. [26] Bian W H, Hornung J, Liu Z H, et al. Sedimentary and palaeo- environmental evolution of the Junggar Basin, Xinjiang, Northwest China[J]. Palaeobiodiversity and Palaeoenvironments, 2010, 90(3): 175-186. [27] Gao Y, Huang H, Tao H F, et al. Paleoenvironmental setting, mechanism and consequence of massive organic carbon burial in the Permian Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104222. [28] Sun F N, Hu W X, Cao J, et al. Sustained and intensified lacustrine methane cycling during Early Permian climate warming[J]. Nature Communications, 2022, 13(1): 4856. [29] 唐勇,侯章帅,王霞田,等. 准噶尔盆地石炭纪—二叠纪地层对比框架新进展[J]. 地质论评,2022,68(2):385-407. Tang Yong, Hou Zhangshuai, Wang Xiatian, et al. Progress of the Carboniferous and Permian stratigraphic framework and correlation of the Junggar Basin, Xinjiang, Northwest China[J]. Geological Review, 2022, 68(2): 385-407. [30] Cao J, Xia L W, Wang T T, et al. An alkaline lake in the Late Paleozoic ice age (LPIA): A review and new insights into paleoenvironment and petroleum geology[J]. Earth-Science Reviews, 2020, 202: 103091. [31] Hu T, Pang X Q, Wang Q F, et al. Geochemical and geological characteristics of Permian Lucaogou Formation shale of the well Ji174, Jimusar Sag, Junggar Basin, China: Implications for shale oil exploration[J]. Geological Journal, 2018, 53(5): 2371-2385. [32] 邱振,姜琳,陶辉飞. 吉木萨尔凹陷二叠统芦草沟组地层与沉积环境特征研究[J]. 地质科学,2017,52(3):964-979. Qiu Zhen, Jiang Lin, Tao Huifei. Characteristics of strata and depositional environment of the Permian Lucaogou Formation in Jimusar Sag[J]. Chinese Journal of Geology, 2017, 52(3): 964-979. [33] Liu D D, Zhang C, Yao E D, et al. What generated the Late Permian to Triassic unconformities in the southern Junggar Basin and western Turpan Basin; tectonic uplift, or increasing aridity?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 1-17. [34] Yang W, Feng Q, Liu Y Q, et al. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China: A terrestrial paleoclimatic record of mid-latitude NE Pangea[J]. Global and Planetary Change, 2010, 73(1/2): 15-113. [35] Wu H C, Zhang S H, Jiang G Q, et al. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 308-323. [36] 吴怀春,张世红,黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘,2008,15(4):159-169. Wu Huaichun, Zhang Shihong, Huang Qinghua. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China[J]. Earth Science Frontiers, 2008, 15(4): 159-169. [37] Liu W G, Liu Z H, An Z S, et al. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16292-16296. [38] Melles M, Brigham-Grette J, Minyuk P S, et al. 2.8 million years of arctic climate change from Lake El'gygytgyn, NE Russia[J]. Science, 2012, 337(6092): 315-320. [39] Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Chichester: John Wiley & Sons, 2014: 52-89. [40] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. [41] Meyers S R. Astrochron: An R package for astrochronology[EB/OL]. [2021-10-05]. http://cran.r-project.org/package=astrochron. [42] Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. [43] Berger A, Loutre M F, Laskar J. Stability of the astronomical frequencies over the earth's history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566. [44] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. [45] Carroll A R, Wartes M A. Organic carbon burial by large Permian lakes, Northwest China[M]//Chan M A, Archer A W. Extreme depositional environments: Mega end members in geologic time. Boulder: Geological Society of America, 2003: 91-104. [46] Ma C, Li M S. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies[J]. Geoscience Frontiers, 2020, 11(4): 1345-1352. [47] Sageman B B, Singer B S, Meyers S R, et al. Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, western Interior Basin, USA[J]. GSA Bulletin, 2014, 126(7/8): 956-973. [48] Meyers S R, Siewert S E, Singer B S, et al. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, western interior basin, USA[J]. Geology, 2012, 40(1): 7-10. [49] Vieira L E A, Norton A, Dudok De Wit T, et al. How the inclination of earth's orbit affects incoming solar irradiance[J]. Geophysical Research Letters, 2012, 39(16): L16104. [50] de Vleeschouwer D, Rakociński M, Racki G, et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross mountains, Poland)[J]. Earth and Planetary Science Letters, 2013, 365: 25-37. [51] Rial J A, Pielke R A, Beniston M, et al. Nonlinearities, feedbacks and critical thresholds within the earth's climate system[J]. Climatic Change, 2004, 65(1/2): 11-38. [52] Huybers P. Early Pleistocene glacial cycles and the integrated summer insolation forcing[J]. Science, 2006, 313(5786): 508-511. [53] Scotese C R. An atlas of Phanerozoic Paleogeographic maps: The seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728.