Characteristics of Oligocene Conglomerates and Their Sedimentary Environment in the Northern Margin of West Qinling: Constraints on the tectonic setting of the Oligocene-Miocene basin
-
摘要: 西秦岭北缘漳县—武山地区沿漳河两岸出露一套厚度近300 m的渐新统红色砾岩、砂砾岩夹粗砂岩组成的砾岩组合。这套砾岩角度不整合在古生代、中生代不同时代地层之上或以断层与前新生代地层相接触,其在孙家峡一带出露典型,层序完整,故称其为孙家峡砾岩。这套砾岩向上逐渐过渡为红色或灰色泥岩、粉砂质泥岩、钙质泥岩等湖相沉积,构成了一个下粗上细正旋回沉积组合。这套沉积组合是漳县渐新世—中新世含盐盆地最下部的一个沉积旋回,其沉积旋回、沉积环境及其沉积的构造背景研究对于漳县渐新世—中新世含盐盆地的构造属性确定和认识印度—欧亚板块碰撞汇聚动力学的远程地质响应等具有重要意义。通过对孙家峡砾岩的沉积旋回、沉积构造、砾石特征、古流向等详细研究,结合控制这套砾岩组合的边界断层多期变形资料和区域上同时代相应沉积地层的对比,取得了如下认识:(1)孙家峡砾岩沉积旋回、沉积构造和砾石分选、磨圆、排列等特征指示了其除底部为冲洪积扇和扇上河道沉积外,主体为山区辫状河道相、曲流河道相夹洪泛相沉积为主的河流加积沉积;砾石成分和古流向指示了F1断层之南的志留纪—三叠纪造山带地层虽对其物源有一定贡献,但其主要物源区更可能是来自西部祁连地块;(2)依据孙家峡砾岩及上覆湖相沉积共同构成的具有断陷盆地的正旋回沉积特征和控制盆地沉积的F1断层早期伸展正断层作用,证实这套砾岩组合为伸展断陷河谷盆地沉积,砾岩之上的湖相沉积是持续快速伸展断陷而形成的湖相沉积;(3)西秦岭北缘渐新世断陷盆地性质确认,澄清了地学界长期持有的压陷盆地或前陆挠曲盆地的模糊认识,也指示了西秦岭北缘渐新世—中新世盆地发育初期无疑是处于伸展拉张状态,这与印度—欧亚碰撞汇聚向北扩展的挤压缩短构造相悖。因此,推测渐新世印度—欧亚碰撞汇聚的动力学效应尚未波及到该区域。Abstract: The Oligocene conglomerate association is exposed along both banks of the Zhanghe River in the Zhangxian-Wushan area of the northern margin of West Qinling mountains. This conglomerate association, which is bounded by a disconformity or fault on the different Palaeozoic and Mesozoic strata, is mainly composed of red conglomerate and glutenite interbedded with coarse sandstone with a thickness of nearly 300 m. It is called the Sunjiaxia conglomerate for the well exposed and complete preserved sequence. Furthermore, the Sunjiaxia conglomerate with the upper red or grey, silty mudstone interbedded with marletal lacustrine deposits formed a relative complete normal sedimentary cycle, going from coarse to fine from bottom to top. This normal cycle sedimentary sequence is the lowest sedimentary sequence of the Zhangxian Oligocene-Miocene saline basin. The study of its sedimentary characteristics and tectonic setting could provide the constraints to the tectonic attributes of the Cenozoic Zhangxian saline basin, the Cenozoic basin-mountain evolution in the northern margin of the West Qinling, and the remote geological response to the Indian-Eurasian Plate collisional convergence. Based on the detailed study of the sedimentary cycle, sedimentary structure, gravel characteristics and paleocurrent direction of the Sunjiaxia conglomerate, combined with the multiple phase deformation of the basin-controlled boundary fault, and the comparison with the corresponding the same era sedimentary strata in the norther margin of West Qinling, the following understandings are obtained: (1) The characteristics of the sedimentary cycle, sedimentary structure, and sorting, rounding and arrangement of gravels of the Sunjiaxia conglomerate association indicate that, except for the bottom alluvial fan with channel deposits, most are river aggradation deposits, which include the braided channel, meandering channel, and flood facies; Gravel composition and paleocurrent direction show that though the Silurian-Triassic orogenic strata to the south of fault F1 had little contribution to its provenance, but its main provenance area is more likely to come from the Western Qilian block; (2) The normal cycle sedimentary sequence of the Sunjiaxia conglomerate association with the conformable overlying lacustrine sedimentation and early extensional normal faulting of the basin-controlled boundary fault F1 supported that the Sunjiaxa conglomerate association developed at an extensional tectonic setting, i.e., extensional faulted sag basin sedimentation. The lacustrine sedimentation covering the conglomerate could be attributed to continuous and rapid extensional faulting. (3) The confirmation of the Oligocene faulted basin in the northern margin of West Qinling clarifies the existing misunderstanding about whether the Oligocene-Miocene sedimentary basins are compressive sag, foreland flexure, or pull-apart basins. Furthermore, existence of the Oligocene-Miocene extensional faulted sag basins in the northern margin of West Qinling imply that at this duration, the compressional shortening resulting from the Indian-Eurasia convergence has not yet spread to this region. Therefore, the dynamic response of the India-Eurasia convergence to the northeast margin of Qinhai-Tibetan Plateau occurred after the Miocene, i.e., a Pliocene geological event.
-
图 3 西秦岭北缘漳县—武山地区孙家峡砾岩地质剖面图(位置见图1中的C—D)
(a,b)孙家峡砾岩露头照片;(c)漳河两岸的孙家峡砾岩地貌;(d)图1中的C—D地质剖面图
Figure 3. Geological profile of the Sunjiaxia conglomerate in the Zhangxian⁃Wushan area, northern margin of West Qinling (C-D in Fig.1)
(a,b) photo of the Sunjiaxia conglomerate outcrop; (c) the landform of the Sunjiaxia conglomerate on both sides of the Zhanghe River; (d) C-D profile in Fig.1
图 4 西秦岭北缘漳县—武山地区孙家峡砾岩及上覆地层综合柱状图
(a)砾岩、含砾粗砂岩和含砾砂质黏土岩层;(b)厚层—巨厚层砾岩和粉砂岩互层;(c)砾岩、砂岩、泥岩互层;(d)砾岩夹细砾岩层;(e)整合在孙家峡砾岩之上灰色泥岩;(f)红色—紫红色泥岩夹土黄色钙质泥岩
Figure 4. Comprehensive stratigraphic column of the Sunjiaxia conglomerate with upper strata in the Zhangxian⁃Wushan area, northern margin of West Qinling
(a) conglomerate, gravelly coarse sandstone and gravelly sandy claystone strata; (b) thick⁃very thick bedded and interbedded conglomerate and siltstone; (c) interbedded conglomerate, sandstone and mudstone; (d) conglomerates interbedded with fine conglomerates; (e) grey mudstones conformally covering the Sunjiaxia conglomerate; (f) red purplish red mudstone interbedded with earthy yellow calcareous mudstones
图 6 西秦岭北缘漳县—武山地区孙家峡砾岩典型沉积构造(观测点位置见图3,4)
(a,b)河流相沉积的砾岩、含砾砂岩、砂质黏土岩中的冲刷面构造,冲蚀槽走向为东西向,指示河流自西向东流;(c)冲洪积扇砾岩层中砾石的叠瓦状斜列;(d)河流相粗砂岩中的平行层理;(e)河流相砂岩与砾岩互层,砂岩中的斜层理,前积层朝东倾,指示古水流自西向东流;(f)河流相砂岩中的斜层理,倾角平缓,前积层倾向为300°,指示自北西到南东的古水流方向
Figure 6. Typical sedimentary structures developed in the Sunjiaxia conglomerate in the ZhangxianWushan area, northern margin of West Qinling (the location of observation points are shown in Figs. 3 and 4)
(a, b) the erosion surface structure with east⁃west (EW) trending erosion trough in conglomerate, pebbly sandstone and sandy clay rock deposited in fluvial, indicating the paleocurrent form west to east. (c) imbricate oblique arrangement of gravels in alluvial fan conglomerate; (d) parallel bedding in fluvial coarse sandstone; (e) interbedding of fluvial conglomerates and sandstones with cross bedding and its east⁃dipping fore⁃set indicate the paleocurrent flows from west to east; (f) cross bedding with a gentle dip angle in fluvial sandstone, and 300° dipping fore⁃set beds indicating the paleocurrent direction from the northwest (NW) to southeast (SE)
图 7 西秦岭北缘漳县—武山地区孙家峡砾岩砾石特征(观测点位置见图3,4)
(a)洪积相砾岩、砂砾岩和含砾粗砂岩;(b)辫状河道相砾岩,砾石以各种砂岩为主,含少量灰岩和脉石英砾石,砾石以次棱角状和圆状为主,砾石粒径相对均匀;(c)曲流河道相砾岩、粗砂岩,砾岩中砾石主要为灰绿色长石砂岩、少量角闪岩或角闪石岩、灰黑色石英岩、白色脉石英和灰黑色石灰岩,砾石磨圆度较好,分选中等,发育平行层理、斜层理和砂脉;(d)曲流河道相细砾岩,砾石大小均匀,分选性好,磨圆度较差
Figure 7. Gravel characteristics of the Sunjiaxia conglomerate in the Zhangxian⁃Wushan area, northern margin of West Qinling (the location of observation points are shown in Figs. 3 and 4)
(a) alluvial facies conglomerates, sandy conglomerates and gravelly coarse sandstones; (b) braided channel facies conglomerates in which gravels are composed of various sandstones, containing a small amount of limestone and vein quartz gravels and are subangular and round with the relatively uniform gravel diameter; (c) meandering channel facies conglomerates and coarse sandstones with parallel bedding, cross bedding and sand veins. The gravels in the conglomerates are primarily grayish green arkose, a small amount of amphibolite, grayish⁃black quartzites, white vein quartz and grayish black limestone with good roundness and medium sorting; (d) meandering channel facies fine conglomerates with uniform gravel size, better sorting and poor roundness
图 12 西秦岭北缘F1断层多期变形特征
(a)F1断层的韧性剪切带(A)、断层角砾岩带(B)和脆韧性变形的透镜化片理化带(C),早期韧性剪切带中S-C面理和不对称构造指示了北倾的伸展正断作用,晚期的脆性斜向逆冲—走滑断层角砾岩带;(b)F1断层晚期脆性逆冲作用在渐新统砾岩中形成的断层滑动核部带(A和C)和破碎带(B),指示砾岩卷入晚期脆性逆冲断层作用
Figure 12. Characteristics of multiple deformations of fault F1 in the northern margin of West Qinling
(a) ductile shear zone (A), fault breccia zone (B) and brittle⁃ductile lenticular schistosity zone (C) in fault F1 and S-C foliation and asymmetric structure in the early ductile shear zone indicating north dipping extensional normal faulting, and the late brittle oblique thrust⁃strike slip fault breccia zone; (b) the fault core zone (A and C) and fracture zone (B) in Oligocene conglomerate formed by the late brittle thrust of fault F1 indicate that the conglomerate is involved in the late brittle thrusting
-
[1] Fang X M, Garzione C, van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. [2] Fang X M, Yan M D, van der Voo R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai province, China[J]. GSA Bulletin, 2005, 117(9/10): 1208-1225. [3] Fang X M, Fang Y H, Zan J B, et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews, 2019, 190: 460-485. [4] Liu J H, Zhang P Z, Lease R O, et al. Eocene onset and Late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 2013, 584: 281-296. [5] Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. [6] Lease R O, Burbank D W, Hough B, et al. Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance[J]. GSA Bulletin, 2012, 124(5/6): 657-677. [7] Hough B G, Garzione C N, Wang Z C, et al. Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau[J]. GSA Bulletin, 2011, 123(1/2): 168-185. [8] Horton B K, Dupont-Nivet G, Zhou J, et al. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang Basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results[J]. Journal of Geophysical Research, 2004, 109(B4): B04402. [9] Garzione C N, Ikari M J, Basu A R. Source of Oligocene to Pliocene sedimentary rocks in the Linxia Basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate[J]. GSA Bulletin, 2005, 117(9/10): 1156-1166. [10] Wang X X, Zattin M, Li J J, et al. Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite fission track thermochronology: Implications for evolution of the northeastern Tibetan Plateau margin[J]. Journal of Asian Earth Sciences, 2011, 42(1/2): 97-110. [11] Wang X X, Li J J, Song C H, et al. Late Cenozoic orogenic history of Western Qinling inferred from sedimentation of Tianshui Basin, northeastern margin of Tibetan Plateau[J]. International Journal of Earth Sciences, 2012, 101(5): 1345-1356. [12] Wang Z C, Zhang P Z, Garzione C N, et al. Magnetostratigraphy and depositional history of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for Middle Miocene tectonics of the West Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44: 189-202. [13] 李吉均,方小敏,马海洲,等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑):地球科学,1996,26(4):316-322. Li Jijun, Fang Xiaomin, Ma Haizhou, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science China (Seri. D): Earth Sciences, 1996, 26(4): 316-322. [14] 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质,1999,19(1):1-11. Li Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang (Tibetan) Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, (1): 1-11. [15] 李吉均,方小敏,潘保田,等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究,2001,21(5):381-391. Li Jijun, Fang Xiaomin, Pan Baotian, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391. [16] 方小敏,李吉均,朱俊杰,等. 甘肃临夏盆地新生代地层绝对年代测定与划分[J]. 科学通报,1997,42(14):1457-1471. Fang Xiaomin, Li Jijun, Zhu Junjie, et al. Absolute age determination and division of Cenozoic stratigraphy in the Linxia Basin of Gansu province, China[J]. Chinese Science Bulletin, 1997, 42(14): 1457-1471. [17] 方小敏,宋春晖,戴霜,等. 青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J]. 地学前缘,2007,14(1):230-242. Fang Xiaomin, Song Chunhui, Dai Shuang, et al. Cenozoic deformation and uplift of the NE Qinghai-Tibet Plateau: Evidence from high-resolution magnetostratigraphy and basin evolution[J]. Earth Science Frontiers, 2007, 14(1): 230-242. [18] 刘少峰,张国伟, Heller P L. 循化—贵德地区新生代盆地发育及其对高原增生的指示[J]. 中国科学(D辑):地球科学,2007,37(增刊1):235-248. Liu Shaofeng, Zhang Guowei, Heller P L. Cenozoic basin development and its indication of plateau growth in the Xunhua-Guide district[J]. Science China (Seri. D): Earth Sciences, 2007, 37(Suppl.1): 235-248. [19] 骆满生,张克信,林启祥,等. 青藏高原东北缘循化—化隆地区新生代沉积古地理演化[J]. 地质科技情报,2010,29(3):23-31. Luo Mansheng, Zhang Kexin, Lin Qixiang, et al. Cenozoic sedimentary paleogeography evolution of Xunhua-Hualong area, northwestern Qinghai-Tibet Plateau[J]. Geological Science and Technology Information, 2010, 29(3): 23-31. [20] 张楗钰,张克信,季军良,等. 青藏高原东北缘循化盆地渐新世—上新世沉积相分析与沉积演化[J]. 地球科学:中国地质大学学报,2010,35(5):774-788. Zhang Jianyu, Zhang Kexin, Ji Junliang, et al. Oligocene-Pliocene sedimentary facies analysis and sedimentary evolution of Xunhua Basin in northeastern margin of Qinghai-Tibet Plateau[J]. Earth Science: Journal of China University of Geosciences, 2010, 35(5): 774-788. [21] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 198-208. [22] Wang C S, Dai J G, Zhao X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 2014, 621: 1-43. [23] 王成善,戴紧根,刘志飞,等. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,2009,16(3):1-30. Wang Chengshan, Dai Jingen, Liu Zhifei, et al. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3): 1-30. [24] 葛肖虹,任收麦,马立祥,等. 青藏高原多期次隆升的环境效应[J]. 地学前缘,2006,13(6):118-130. Ge Xiaohong, Ren Shoumai, Ma Lixiang, et al. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effects[J]. Earth Science Frontiers, 2006, 13(6): 118-130. [25] 郭进京,韩文峰,胡晓隆,等. 西秦岭北缘漳县新生代伸展断陷盆地确定及其地质意义[J]. 地学前缘,2017,24(5):230-244. Guo Jinjing, Han Wenfeng, Hu Xiaolong, et al. Cenozoic extensional rift basin in the northern margin of Western Qinling: Constraints on the remote tectonic responses to the India-Eurasia collision in the northeastern margin of Tibetan Plateau[J]. Earth Science Frontiers, 2017, 24(5): 230-244. [26] 郭进京,赵海涛,刘重庆,等. 青藏高原东北缘何时卷入现今青藏高原构造系统?:来自西秦岭北缘漳县盆地新生代沉积记录的约束[J]. 地学前缘,2021,28(5):337-361. Guo Jinjing, Zhao Haitao, Liu Chongqing, et al. When the northeastern margin of the Qinghai-Tibet Plateau was involved in its present tectonic system: Constraints from the Cenozoic sedimentary sequences[J]. Earth Science Frontiers, 2021, 28(5): 337-361. [27] 郭进京,吉夏,赵海涛,等. 西秦岭北缘漳县韩家沟砾岩对青藏高原东北缘地壳隆升的约束[J]. 地质科学,2017,52(4):1011-1025. Guo Jinjing, Ji Xia, Zhao Haitao, et al. The geological characteristics of Hanjiagou conglomerates in north margin of the West Qinling, and its geological constraint on uplift of the northeast margin of Qinghai-Tibet Plateau[J]. Chinese Journal of Geology, 2017, 52(4): 1011-1025. [28] 许何弘昕,郭进京,刘重庆,等. 西秦岭北缘漳县地区上新统砾岩砾石特征及其地质意义[J]. 地质通报,2020,39(10):1561-1572. Xu Hehongxin, Guo Jinjing, Liu Chongqing, et al. The gravel characteristics of Pliocene conglomerates in Zhangxian area on the northern margin of the West Qinling and its geological significance[J]. Geological Bulletin of China, 2020, 39(10): 1561-1572. [29] 于美娜,郭进京,沈迪,等. 西秦岭北缘两套新生代砾岩沉积特征比较及地质意义[J]. 地质科学,2021,56(3):792-807. Yu Meina, Guo Jinjing, Shen Di, et al. Comparison of characteristics of two sets of Cenozoic conglomerates and its geological significance in Zhangxian area, northern margin of Western Qinling[J]. Chinese Journal of Geology, 2021, 56(3): 792-807. [30] 甘肃省地质调查院. 岷县幅1:250000区域地质调查报告[R]. 兰州:甘肃省地质调查院,2007. Institute of Geology Investigation of Gansu Province. Regional geological survey report of Minxian[R]. Lanzhou: Institute of Geology Investigation of Gansu Province, 2007. [31] 郭进京,韩文峰,赵海涛,等. 西秦岭北缘漳县中—新生代红层地层格架厘定及其地质意义[J]. 西北地质,2016,49(1):82-91. Guo Jinjing, Han Wenfeng, Zhao Haitao, et al. Stratigraphic framework of Mesozoic-Cenozoic red bed in Zhang county, northern margin of Western Qinling and its geological significance[J]. Northwestern Geology, 2016, 49(1): 82-91. [32] 郭进京,韩文峰,赵海涛,等. 西秦岭晚白垩世原型盆地:新生代青藏高原隆起的背景[J]. 地质科学,2015,50(2):364-376. Guo Jinjing, Han Wenfeng, Zhao Haitao, et al. Late Cretaceous proto-type basin in the western Qinling: Background of Cenozoic uplifting of Tibet Plateau[J]. Chinese Journal of Geology, 2015, 50(2): 364-376. [33] 惠浪波,郭进京,韩文峰,等. 西秦岭北缘武山地区上白垩统沙漠相沉积特征[J]. 沉积学报,2017,35(4):649-663. Hui Langbo, Guo Jinjing, Han Wenfeng, et al. Sedimentary characteristics of the Cretaceous desert facies in the Wushan area, northern margin of the Western Qinling mountains[J]. Acta Sedimentologica Sinica, 2017, 35(4): 649-663. [34] 陕西地质局区测队. 陇西(I-48-IX)幅1:200000地质图及说明书[R]. 1970. Geological Survey Team of Shanxi Province. Longxi(I-48-IX) Geological map and explanatory book (scale: 1: 200000)[R]. 1970. [35] 沈迪,郭进京,于美娜,等. 西秦岭北缘上新统木梯寺砾岩成因:兼论青藏高原东北缘隆升[J]. 沉积学报: 2023,41(2):409-424. Shen Di, Guo Jinjing, Yu Meina, et al. Genesis of the Pliocene Muti temple conglomerates in the northern margin of West Qinling mountains: Implication for the uplift of the northeastern margin of the Qinghai-Tibet Plateau[J]. Acta Sedimentologica Sinica: 2023,41(2):409-424. [36] Friedman G M, Sanders J E. Principles of sedimentology[M]. New York: Wiley, 1978: 1-792. [37] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology[M]. Berlin: Springer-Verlag, 1996: 1-582. [38] 陈发景,汪新文,陈昭年. 前陆盆地分析[M]. 北京:地质出版社,2007:1-282. Chen Fajing, Wang Xinwen, Chen Zhaonian. Analysis of foreland basin[M]. Beijing: Geological Publishing House, 2007: 1-282. [39] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:1-478. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 1-478. [40] 王剑,谭富文,付修根,等. 沉积岩工作方法[M]. 北京:地质出版社,2015:1-281. Wang Jian, Tan Fuwen, Fu Xiugen, et al. Working method of sedimentary rock[M]. Beijing: Geological Publishing House, 2015: 1-281. [41] 陈景山,陈昌明,孙永传,等. 沉积构造与环境解释[M]. 北京:科学出版社,1984:1-163. Chen Jingshan, Chen Changming, Sun Yongchuan, et al. Sedimentary structure and environmental interpretation[M]. Beijing: Science Press, 1984: 1-163. [42] Collinson J D, Mountney N P, Thompson D B. Sedimentary structures[M]. 3rd ed. Dunedin Academic Press, 2006: 1-255. [43] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:1-494. Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 1-494. [44] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:1-529. Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 1-529. [45] 高志勇,石雨昕,冯佳睿,等. 砾石在分析盆地物源区迁移与湖岸线演化中的作用[J]. 古地理学报,2021,23(3):507-524. Gao Zhiyong, Shi Yuxin, Feng Jiarui, et al. Role of gravel in analysis on migration of source area and lake shorelines in lacustrine basin[J]. Journal of Palaeogeography, 2021, 23(3): 507-524. [46] 刘少峰,张国伟. 盆山关系研究的基本思路、内容和方法[J]. 地学前缘,2005,12(3):101-111. Liu Shaofeng, Zhang Guowei. Fundamental ideas, contents and methods in study of basin and mountain relationships[J]. Earth Science Frontiers, 2005, 12(3): 101-111. [47] 陈建强,周洪瑞,王训练. 沉积学及古地理学教程[M]. 北京:地质出版社,2004:91-95. Chen Jianqiang, Zhou Hongrui, Wang Xunlian. Sedimentology and sedimentary palaeogeography[M]. Beijing: Geological Publishing House, 2004: 91-95. [48] 梅志超. 沉积相与古地理重建[M]. 西安:西北大学出版社,1994:240-245. Mei Zhichao. Sedimentary facies and paleogeographic reconstruction[M]. Xi'an: Northwest University Press, 1994: 240-245. [49] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010:1-424. Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010: 1-424. [50] Liu S F, Zhang G W, Heller P L. Cenozoic basin development and its indication of plateau growth in the Xunhua-Guide district[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 277-291. [51] Wang W T, Kirby E, Zhang P Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 2013, 125(3/4): 377-400. [52] 郭进京,张琛,吉夏,等. 西秦岭北缘一个新生代伸展型角度不整合及其地质意义[J]. 地质通报,2018,37(10):1831-1841. Guo Jinjing, Zhang Chen, Ji Xia, et al. A Cenozoic extensional angular unconformity on the northern margin of West Qinling mountain and its geological significance[J]. Geological Bulletin of China, 2018, 37(10): 1831-1841. [53] 郭进京,宫恩麟,赵海涛,等. 西秦岭北缘构造带新生代盆地南部边界断层带结构与构造变形演化[J]. 地质科学,2020,55(4):1073-1088. Guo Jinjing, Gong Enlin, Zhao Haitao, et al. The structural characteristics of the southern boundary fault zone of the Cenozoic basin and its tectonic deformation evolution in the northern margin of the Western Qinling[J]. Chinese Journal of Geology, 2020, 55(4): 1073-1088. [54] 陈发景,汪新文,陈昭年,等. 伸展断陷盆地分析[M]. 北京:地质出版社,2004:1-282. Chen Fajing, Wang Xinwen, Chen Zhaonian, et al. Analysis of fault basin[M]. Beijing: Geological Publishing House, 2004: 1-282. [55] 刘池洋,王建强,赵红格,等. 沉积盆地类型划分及其相关问题讨论[J]. 地学前缘,2015,22(3):1-26. Liu Chiyang, Wang Jianqiang, Zhao Hongge, et al. The classification of sedimentary basins and discussion on relevant issues[J]. Earth Science Frontiers, 2015, 22(3): 1-26.