-
凹(洼)陷是独立的生烃单元,物源供给量和构造位置是控制烃源岩规模和质量的重要因素[6⁃8]。根据凹(洼)陷离盆外物源距离及陆源碎屑供给量可将渤海湾盆地的凹(洼)陷分为三类,即持续近源型、断续近源型和持续远源型(表1)。这三类凹(洼)陷因与盆外物源距离及陆源碎屑供给量不同,决定了烃源岩规模及油气富集程度的差异性。
表 1 三种类型凹陷参数对比表
类型 实例 凹陷面积/km2 凹陷中心距盆地边界距离/km 凹陷长度/km 凹陷最大宽度/km 基底最大埋深/m 持续远源型 辽中凹陷渤中凹陷黄河口凹陷歧口凹陷 3 6739 5493 0594 960 35354050 180808540 25854040 7 40011 7507 00011 000 断续近源型 金西B洼辽河西部凹陷金西A洼 1 2003 3151 132 222519 5513550 192421 5 0007 5005 300 持续近源型 北京凹陷保定凹陷石家庄凹陷 2 3002 8001 800 12911 12015050 203530 2 3007 0004 000 持续远源型凹(洼)陷位于盆地中部。古新世—渐新世渤海湾盆地主力烃源岩沉积时期,远离大物源区或盆外物源被阻隔,外部水系不能进入凹(洼)陷,陆源碎屑供给量少,加之断层活动强,断层下降盘为欠补偿沉积,湖水变深,沉积面积广,有利于形成较厚的半深湖—深湖相烃源岩,如辽中凹陷、渤中凹陷、黄河口凹陷及歧口凹陷等。
持续近源型凹(洼)陷位于盆地边缘。古新世—渐新世渤海湾盆地主力烃源岩沉积时期,邻近物源区,众多水系输入,物源充足,盆外物源易到达,虽然断层活动强,沉降速率大,但因陆源碎屑多,古新世—始新世时期,一些盆地边缘的凹(洼)陷仍处于过补偿沉积,缺乏半深湖—深湖相沉积,烃源岩不发育。如渤海湾盆地冀中坳陷西部的北京凹陷、保定凹陷和石家庄凹陷,均为西断东超的半地堑结构,凹陷宽度为20~40 km。三个凹陷的西边界以控凹大断层与太行山隆起相连,在始新世中—晚期控凹大断层活动性强,活动速率约为200 m/Ma[9]。一般情况下,渤海湾盆地凹陷宽度大于15 km,主断层活动速率大于150 m/Ma,沉降速度大于0.4 mm/a,即发育欠补偿半深湖—深湖相沉积,有利于形成烃源岩。但北京凹陷、保定凹陷和石家庄凹陷的沙三段主要为巨厚的杂色砂砾岩、砂岩夹薄层红色泥岩沉积,总有机碳(TOC)含量多小于0.5%,属于非烃源岩。这三个凹陷紧邻太行山隆起,母岩岩性主要为花岗片麻岩,易于风化,产生的大量粗碎屑物质经短距离搬运并在凹陷内沉积,使凹陷长期处于过补偿沉积状态,故烃源岩欠发育。目前,这三个凹陷内及周围凸起尚未发现油气田,表明凹陷位置及陆源碎屑补给量对烃源岩具有控制作用。
断续近源型凹(洼)陷也位于盆地边缘,但在凹陷与盆外剥蚀区之间存在一些洼地和低隆起,对物源向凹陷输入具有一定阻隔作用,在凹陷内靠近盆地中心一侧的次洼中,仍可以发育半深湖—深湖相沉积,有利于烃源岩发育,从而形成油气田,如金西B洼和辽河油田西部凹陷。金西B洼为东断西超的半地堑结构,面积约1 200 km2,洼陷最大宽度为19 km,始新世中—晚期控洼大断层活动速率为190 m/Ma[10⁃11],其西部缓坡带—燕山褶皱带间的河流规模较小、数量较少,陆源碎屑供给量相对较少,只在洼陷的西部边界沉积了长度为4~10 km,宽度为12~20 km的辫状河三角洲朵叶体,在辫状河三角洲前缘至东部大断层之间沉积了约200 km2的半深湖—深湖相。钻井揭示半深湖—深湖相沉积为大套厚层泥岩夹砂岩,泥岩为深灰色,单层厚度可达百米,有机质丰度平均为1.57%,干酪根主要为II1型,整体为优质烃源岩。辽河油田西部凹陷也位于盆地边界附近,面积为2 560 km2,其西侧是燕山褶皱带大型剥蚀区,西部凹陷也是东断西超的半地堑结构,凹陷长约135 km,宽度为15~30 km,始新世中—晚期东侧控凹大断层活动速率为170 m/Ma[12]。辽河西部凹陷的西侧燕山褶皱带可提供丰富的陆源碎屑,但由于西部凹陷与燕山褶皱带之间存在一个洼地和一个凸起,阻挡了部分陆源碎屑注入西部凹陷。西部凹陷在始新世中—晚期只在西侧南部及中北地区发育了裙边状扇三角洲,在扇三角洲前缘至东部大断层间为较大面积的欠补偿半深湖—深湖相沉积,发育厚度达百米的烃源岩,TOC含量为1%~3%[13⁃14],有机质类型以I~Ⅱ1型为主,为优质烃源岩。
-
金西A洼位于渤海湾盆地西北边缘,紧邻盆外物源区,属于断续近源型洼陷(图3)。古近纪陆源碎屑供给量对金西A洼烃源岩的形成起着重要作用。古新世中晚期—始新世早期,金西A洼与盆外物源供给区分隔,有利于有效烃源岩的形成;始新世中晚期—渐新世,金西A洼与盆外物源供给区不分隔,不利于有效烃源岩的形成。
古新世中晚期—始新世早期(沙四段—孔店组),金西A洼西部为缓坡带,中间为深洼带,东部为陡坡带。该时期金西1号断层活动强烈,洼陷分割性强,次洼之间彼此分隔,互不连接,金20洼、金21洼和金22洼均为东断西超的半地堑结构。东面的次洼(金21洼和金22洼)主要受盆地内凸起物源影响,陆源碎屑供给少;西面的次洼(金20洼)受西部燕山褶皱带盆外物源的影响,陆源碎屑供给充分。该时期洼陷内及西部盆外物源区为小洼小凸型的洼凸相间特点,盆外陆源碎屑优先在洼陷西部的金20洼内沉积下来,加之金20洼东面小凸起阻挡,盆外物源未到达东面的金21洼、金22洼。另外,东侧边界大断层活动强烈,差异升降幅度大,断层下降盘处于欠补偿沉积状态,具备沉积半深湖—深湖相的地质条件,有利于有效烃源岩的形成。
始新世中—晚期,金西1号断层活动较强,断层活动速率最大为165 m/Ma,通常在此情况下,大断层下降盘大幅沉降,湖水变深,可容空间增大,应为欠补偿半深湖—深湖相沉积,可以发育较好烃源岩。但钻井揭示金西A洼的沙三段沉积了巨厚的辫状河三角洲,储层极为发育,有效烃源岩不发育。由于在孔店组—沙四段沉积期,西侧燕山褶皱带的粗碎屑物质经众多小河搬运,汇聚在金西A洼的西部形成了古六股河、古烟台河、古东沙河、古南大河共四条主要的河流,这四条河流搬迁了大量的碎屑物质注入金西A洼,使其处于补偿沉积状态,剥蚀区至洼陷的斜坡上次级小洼陆续被填平补齐,最终金西A洼成为一个统一的洼陷。因此沙三段砂岩较发育,以含砾细砂岩、细砂岩为主,主要为辫状河三角洲与滨浅湖沉积。这与渤海其他洼陷沙三段发育半深湖—深湖相沉积,是重要的烃源岩层[15⁃17]明显不同。
渐新世早期,金西1号断层活动较弱,洼陷整体抬升,湖水退出,发生了准平原化,沉积了以河流相砂岩为主的沙二段,之后金西1号断层活动再次加强,可容空间增大,在渐新世中期为欠补偿沉积,沙一段、东三段为浅—半深湖的泥页岩夹砂岩沉积。渐新世晚期,金西1号断层活动又变弱,湖水变浅,为河流—三角洲砂岩夹泥岩沉积。总的来说,古新世中晚期—始新世早期的沉积环境有利于有效烃源岩的形成,始新世中晚期—渐新世的沉积环境不利于有效烃源岩的形成。
Sedimentary Environment Control Effect on Source Rocks in Jinxi A Subsag, Bohai
-
摘要: 以沙三段为烃源岩,以沙三段、沙二段为主要目的层,在金西A洼实施钻探一直未取得商业突破,且多数井未见油气显示。在洼陷中央钻穿沙三段,泥岩中有机质丰度低,不具备生烃条件,该洼陷勘探潜力存在较大争议。在充分利用地震、钻井及区域地质资料的基础上,类比分析了渤海湾盆地不同类型凹(洼)陷油气地质条件,开展金西A洼具体特征研究。研究结果表明:凹(洼)陷的位置、陆源碎屑的供给量控制了其烃源岩的形成与分布,根据它们之间的关系,将凹(洼)陷分成持续近源型、断续近源型和持续远源型三类;金西A洼属于断续近源型,孔店组—沙四段时期发育有效烃源岩,沙三段时期不发育烃源岩;基于地化相—有机相—沉积相—地震相较好对应关系,预测金西A洼烃源岩仅分布在沙四段—孔店组洼陷的中心位置,其烃源岩具有一定厚度、有机质丰度高、类型好,邻近沙四段—孔店组烃源岩的近源构造是该区有利勘探方向。Abstract: With the Es3 (the Third member of Shahejie Formation)source rock and the Es3 and Es2 (the Second member of Shahejie Formation) serving as the primary target formations, early explorations in Jinxi A subsag have not resulted in commercial breakthroughs, and most wells have not shown oil and gas displays. The mudstone in Es3 has a low abundance of organic matter and does not have the conditions necessary for hydrocarbon generation in the center of the subsag. There is still considerable controversy over the exploration potential of this region. This study used seismic, drilling, and regional geological data to conduct an analogous examination on the oil and gas geological conditions of different types of sags (subsags) in Bohai Bay Basin, and analyzed the specific characteristics of Jinxi A subsag. The results suggest that the formation and distribution of source rocks are controlled by the position of the subsag/sag and the supply of terrigenous clastics. Each sag/subsag can be classified into one of three types based on their relationships: continuous near-source, intermittent near-source, and continuous distant-source. The intermittent near-source type characterizes Jinxi A subsag. Effective source rocks were developed during the deposition of Es4 and Ek, but no source rocks were developed during the deposition of Es3. Based on the correlation between geochemical, organic, sedimentary, and seismic facies, the source rocks are predicted to be solely distributed in the center of the subsag during the deposition of Es4 (the Fourth member of Shahejie Formation) and Ek (Kongdian Formation), and those source rocks have a certain thickness, high abundance, and good types. The near-source structure adjacent to the source rocks in Es4 and Ek is a favorable exploration direction in this area.
-
Key words:
- Bohai Bay Basin /
- sag type /
- sedimentary environment /
- provenance supply /
- source rock
-
表 1 三种类型凹陷参数对比表
类型 实例 凹陷面积/km2 凹陷中心距盆地边界距离/km 凹陷长度/km 凹陷最大宽度/km 基底最大埋深/m 持续远源型 辽中凹陷渤中凹陷黄河口凹陷歧口凹陷 3 6739 5493 0594 960 35354050 180808540 25854040 7 40011 7507 00011 000 断续近源型 金西B洼辽河西部凹陷金西A洼 1 2003 3151 132 222519 5513550 192421 5 0007 5005 300 持续近源型 北京凹陷保定凹陷石家庄凹陷 2 3002 8001 800 12911 12015050 203530 2 3007 0004 000 表 2 不同相类型的四相关系对应表
-
[1] 徐长贵,许效松,丘东洲,等. 辽东湾地区辽西凹陷中南部古近系构造格架与层序地层格架及古地理分析[J]. 古地理学报,2005,7(4):449-459. Xu Changgui, Xu Xiaosong, Qiu Dongzhou, et al. Structural and sequence stratigraphic frameworks and palaeogeography of the Paleogene in central-southern Liaoxi Sag, Liaodongwan Bay area[J]. Journal of Palaeogeography, 2005, 7(4): 449-459. [2] 贾楠,刘池阳,周立宏,等. 辽东湾拗陷新生代断裂特征及其对油气的控制作用[J]. 西北大学学报:自然科学版,2018,48(6):839-849. Jia Nan, Liu Chiyang, Zhou Lihong, et al. Characteristics of fault structure and its control on hydrocarbons in the Liaodong Bay Depression[J]. Journal of Northwest University: Natural Science Edition, 2018,48(6): 839-849. [3] 杨宝林,叶加仁,王子嵩,等. 辽东湾断陷油气成藏模式及主控因素[J]. 地球科学:中国地质大学学报,2014,39(10):1507-1520. Yang Baolin, Ye Jiaren, Wang Zihao, et al. Hydrocarbon accumulation models and main controlling factors in Liaodong Bay Depression[J]. Earth Science: Journal of China University of Geosciemces, 2014, 39(10): 1507-1520. [4] 田德瑞,牛成民,王德英,等. 渤海海域辽西凹陷中央反转带原油成因类型及成藏特征[J]. 高校地质学报,2021,27(4):444-458. Tian Derui, Niu Chengmin, Wang Deying, et al. Genetic types and accumulation of crude oil in the central inversion zone in the Liaoxi Depression, Bohai Sea[J]. Geological Journal of China Universities, 2021, 27(4): 444-458. [5] 梁建设,张功成,苗顺德,等. 辽东湾辽西凹陷沙河街组烃源岩评价及油源研究[J]. 沉积学报,2012,30(4):739-746. Liang Jianshe, Zhang Gongcheng, Miao Shunde, et al. Evaluation of Shahejie source rock and oil source research in the Liaoxi Depression, Liaodong Bay, China[J]. Acta Sedimentologica Sinica, 2012, 30(4): 739-746. [6] 赵文智,池英柳. 渤海湾盆地含油气层系区域分布规律与主控因素[J]. 石油学报,2000,21(1):10-15. Zhao Wenzhi, Chi Yingliu. Regional distribution regularity and its controlling factors of oil and gas bearing series in Bohai Bay Basin[J]. Acta Petrolei Sinica, 2000, 21(1): 10-15. [7] 庞玉茂. 冀中坳陷地质结构特征及对油气成藏的影响[D]. 青岛:中国石油大学(华东),2012. Pang Yumao. Geological structure characteristics and the influence on hydrocarbon accumulation in Jizhong Depression[D]. Qingdao: China University of Petroleum (East China), 2012. [8] 邓运华. 论河流与油气的共生关系[J]. 石油学报,2010,31(1):12-17. Deng Yunhua. Analysis on correlation of river and petroleum[J]. Acta Petrolei Sinica, 2010, 31(1): 12-17. [9] 华北油田石油地质志编写组. 中国石油地质志—卷五—华北油田[M]. 北京:石油工业出版社,1988. Compilation Group of Petroleum Geological Records of Huabei Oilfield. Petroleum geology of China-Volume 5[M]. Beijing: Petroleum Industry Press, 1988. [10] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学,2016,41(9):1548-1560. Xu Changgui. Strike-slip transfer zone and its control on formation of medium and large-sized oilfields in Bohai Sea area[J]. Earth Science, 2016, 41(9): 1548-1560. [11] 张江涛,郭涛,王冰洁,等. 渤海辽北地区新生代断裂特征及其演变过程[J]. 现代地质,2020,34(6):1110-1118. Zhang Jiangtao, Guo Tao, Wang Bingjie, et al. Structure and evolution analyses of the Liaobei area of Bohai Bay Basin[J]. Geoscience, 2020, 34(6): 1110-1118. [12] 李明刚,漆家福,童亨茂,等. 辽河西部凹陷新生代断裂构造特征与油气成藏[J]. 石油勘探与开发,2010,37(3):281-288. Li Minggang, Qi Jiafu, Tong Hengmao, et al. Cenozoic fault structure and hydrocarbon accumulation in Western Sag, Liaohe Depression[J]. Petroleum Exploration and Development, 2010, 37(3): 281-288. [13] 胡英杰,王延山,黄双泉,等. 辽河坳陷石油地质条件、资源潜力及勘探方向[J]. 海相油气地质,2019,24(2):43-54. Hu Yingjie, Wang Yanshan, Huang Shuangquan, et al. The geological conditions, resource potential, and exploration direction of oil in Liaohe Depression[J]. Marine Origin Petroleum Geology, 2019, 24(2): 43-54. [14] 耳闯,牛嘉玉,顾家裕,等. 辽河坳陷双台子构造带沙三段沉积相展布特征与沉积主控因素[J]. 沉积学报,2013,31(6):1105-1113. Chuang Er, Niu Jiayu, Gu Jiayu, et al. Characteristics of main sedimentary facies distribution and depositional controls of E2 s3 in Shuangtaizi structure belt, Liaohe subsag[J]. Acta Sedimentologica Sinica, 2013, 31(6): 1105-1113. [15] 邓运华,杨永才,杨婷. 试论世界油气形成的三个体系[M]. 北京:科学出版社,2021:35-49. Deng Yunhua, Yang Yongcai, Yang Ting. Three systems of oil and gas formation in the world[M]. Beijing: Science Press, 2021: 35-49. [16] 林俊峰,郝芳,胡海燕,等. 廊固凹陷沙河街组烃源岩沉积环境与控制因素[J]. 石油学报,2015,36(2):163-173. Lin Junfeng, Hao Fang, Hu Haiyan, et al. Depositional environment and controlling factors of source rock in the Shahejie Formation of Langgu Sag[J]. Acta Petrolei Sinica, 2015, 36(2): 163-173. [17] 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气,2015,27(3):1-9. Li Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3): 1-9. [18] 刘志峰,赵志刚,李建红. 北部湾盆地海中凹陷流三段沉积相研究及其意义[J]. 海洋石油,2009,29(3):14-18. Liu Zhifeng, Zhao Zhigang, Li Jianhong. The sedimentary facies analysis and its significance in Haizhong Sag, Beibuwan Basin, the South China Sea[J]. Offshore Oil, 2009, 29(3): 14-18. [19] 李成海,王家豪,柳保军,等. 珠江口盆地白云凹陷古近系沉积相类型[J]. 沉积学报,2014,32(6):1162-1170. Li Chenghai, Wang Jiahao, Liu Baojun, et al. Types and distribution of the Paleogene sedimentary facies in Baiyun Depression of Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1162-1170. [20] 尹兵祥,王尚旭,杨国权,等. 渤海湾盆地东营—惠民凹陷古近系孔店组孔二段地震相与沉积相[J]. 古地理学报,2004,6(1):49-56. Yin Bingxiang, Wang Shangxu, Yang Guoquan, et al. Seismic facies and sedimentary facies of the member 2 of Kongdian Formation of Paleogene in Dongying and Huimin Sags, Bohai Bay Basin[J]. Journal of Palaeogeography, 2004, 6(1): 49-56. [21] 吴玉坤,胡明毅,柯岭,等. 利用地震相识别优质烃源岩:以辽中凹陷沙三段为例[J]. 沉积学报,2013,31(2):366-373. Wu Yukun, Hu Mingyi, Ke Ling, et al. Identification of high-quality source rocks by seismic facies: Taking the Third member of Shahejie Formation in Liaozhong Depression as an example[J]. Acta Sedimentologica Sinica, 2013, 31(2): 366-373. [22] 米立军,刘震,张功成,等. 南海北部深水区白云凹陷古近系烃源岩的早期预测[J]. 沉积学报,2007,25(1):139-146. Mi Lijun, Liu Zhen, Zhang Gongcheng, et al. Early forecast and evaluation study on chief source rock in Baiyun Depression[J]. Acta Sedimentologica Sinica, 2007, 25(1): 139-146. [23] 朱光有,金强. 东营凹陷两套优质烃源岩层地质地球化学特征研究[J]. 沉积学报,2003,21(3):506-512. Zhu Guangyou, Jin Qiang. Geochemical characteristics of two sets of excellent source rocks in Dongying Depression[J]. Acta Sedimentologica Sinica, 2003, 21(3): 506-512. [24] 潘文静,刘士磊,田德瑞,等. 渤海海域莱州湾凹陷沙四段孢粉相分析:古湖盆演化及烃源岩响应[J]. 微体古生物学报,2019,36(2):151-162. Pan Wenjing, Liu Shilei, Tian Derui, et al. Palynofacies of the Fourth member of the Shahejie Formation in the Laizhou Bay Sag, Bohai Sea-response of source rock to the lake evolution[J]. Acta Micropalaeontologica Sinica, 2019, 36(2): 151-162. [25] 田梦,张梅生,任延广,等. 松辽盆地新站地区嫩江组三段孢粉—藻类组合及其环境[J]. 吉林大学学报(地球科学版),2005,35(4):449-455. Tian Meng, Zhang Meisheng, Ren Yanguang, et al. On the Sporopollen-alga assemblages and environments from the Third member of Nenjiang Formation in the Xinzhan area of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(4): 449-455.