-
地层层序中各砂体之间的连通性是其规模、形状、比例及空间组合的综合响应结果[16]。为精细刻画决口扇砂体的上述沉积结构要素,本文基于5处密井区沉积微相精细解剖来实现决口扇沉积结构的定量表征。
-
取心井岩心相特征识别是研究决口扇沉积的重要手段。根据研究区4口取心井岩心资料,决口扇沉积底部常见弱冲刷面,一般发育小型交错层理、平行层理、水平层理和块状层理(图3a),岩性以细粉砂岩、粉砂岩和泥质粉砂岩为主,孔隙度7.3%~27.9%,渗透率(0.92~25.65)×10-3 μm,整体表现为低孔低渗储层。
以取心井岩心资料为基础,结合测井曲线响应特征建立测井相识别标志,可有助于决口扇微相砂体的测井识别。研究区分流河道与决口扇在测井微相上具有显著差别,分流河道砂体在测井曲线表现为钟形或箱形,整体高幅度差,电阻率25~35 Ω∙m,自然伽马一般小于50 API,单期河道厚度2.0~5.0 m,复合河道可达10.1 m;决口扇砂体在测井曲线上则一般表现为钟形或手指状,顶部渐变底部突变,中等幅度差,电阻率15~25 Ω∙m,自然伽马一般为50~100 API,单期扇体厚度一般小于2.0 m,复合扇体一般具1~2期叠置(图3b),厚度2.0~4.0 m,局部坡度较大方向可形成3期叠置,厚度可达5.0 m。
-
基于测井微相模式,针对5处密井区6个时间单元552口开展了逐井逐层的微相识别,刻画了时间单元沉积微相平面图。沉积微相平面图绘制过程中,针对注采井之间,根据水井注水量曲线与采油井产液量曲线形态之间的相似性来判断其井间连通性;而对于非注采井之间,由于分流河道和决口扇剖面形态分别表现为“顶平底凹”和片状的特点,且开发区内井距和古地形坡度均较小,利用砂体顶面等高程原理,并结合测井曲线形态相似性,进行井间连通性判别。图4展示了各密井区部分典型的沉积微相平面图的刻画结果,可以看出,决口扇主要分布于分流河道两侧或河道分叉处,整体呈朵叶形状或受河道带切叠而呈半月形。
图 4 卫星油田葡萄花油层开发区块典型沉积微相
Figure 4. Typical sedimentary microfacies of the Putaohua oil layer in the development block in the Weixing oilfield
基于5处密井区30个时间单元沉积微相平面图,分别统计了85处决口扇砂体的最大长度、最大宽度和厚度,其中决口扇长度和宽度基于1/2井距来约束,厚度可由测井解释数据直接统计得出。同时为分析决口扇砂体与其成因相联系的分流河道在砂体几何学参数之间的相关性,又分别统计了决口扇测井钻遇厚度和其成因相关的分流河道砂体钻遇厚度。分析表明:(1)决口扇砂体长度范围50~3 000 m,宽度范围50~2 500 m,长宽比值约为1.2(图5a);(2)决口扇砂体井点钻遇厚度0.2~5.0 m,宽厚比400~600,平均宽厚比约为500(图5b);(3)决口扇砂体厚度与其成因分流河道砂体厚度呈正相关,分流河道厚度与决口扇厚度比值为1.2~11.2,平均值为3.5(图5c);4)决口扇与分流河道砂体宽度比为1.6~12.5,平均值为5.4(图5d)。
-
决口扇沉积物与分流河道之间具有不同的砂体几何学形态和规模,两者之间的比例关系的不同必然会产生砂体连通性的差异[16⁃17]。由于密井区井网分布相对较为均匀,因此本文通过统计密井区钻遇决口扇砂体井数与钻遇分流河道砂体井数之间的比值来明确两者之间的砂体比例。5处密井区30个时间单元沉积微相平面图的统计结果表明,决口扇钻遇比例为2%~38%,且钻遇比例随着三角洲相地层中分流河道规模增大或数量增加而降低(图6a),两者之间为线性负相关,线性关系式为:
A 决口扇=-0.272 3A 分流河道+0.261 3(1) 式中:A决口扇为决口扇的钻遇比例,A分流河道为分流河道的钻遇比例,相关系数R2=0.43。
同样采用上述方法,统计了决口扇钻遇比例与地层平均砂地比之间的关系,从图6b中可以看出,随着三角洲相地层中砂地比增加,决口扇的比例逐渐减小,两者之间的线性关系式为:
A 决口扇=-0.315 2R +0.284 7(2) 式中:R为地层平均砂地比,A决口扇为决口扇钻遇比例,相关系数R2=0.39。
沉积分析表明,当河道砂体比例较低时,一般河流规模相对较小,分流河道带之间垂向叠置程度较弱,决口扇得以完整保存;而随着河流规模的逐渐增大,砂地比变高,河流侵蚀性增强,对早期形成的决口扇沉积物进行改造和破坏,导致决口扇比例相对较低。
-
除决口扇砂体几何学参数和沉积比例外,决口扇与分流河道砂体之间的连通方式也可能影响砂体连通性。一般而言,在构建地下河流层序模型时,决口扇沉积物与河道砂体之间连通的情况较为常见,然而两者之间也存在不连通的情况,如河流决口处泥质含量丰富且河流能量持续减弱,导致决口处被后续细粒沉积物充填等。
笔者基于5处密井开发区的连井相剖面追踪和平面微相识别,通过分析决口扇与分流河道砂体在测井微相上的垂向组合特征及平面接触关系,总结出决口扇与分流河道之间的3型5类连通关系(图7)。
图 7 决口扇与分流河道砂体连通模式
Figure 7. The connection pattern between crevasse splays and distributary channel sand bodies
1) 孤立型决口扇
决口扇砂体与分流河道砂体之间不连通,主要分布于地层平均砂地比小于30%的时间单元内,一般规模相对较小,仅占研究区决口扇整体数量的5%。
2) 决口扇与单河道之间连通
(1)成因连通:分流河道与其所形成的决口扇砂体之间相连通,主要分布于地层平均砂地比小于50%的时间单元内,占研究区决口扇整体数量的70%,为研究区连通河道方式的主要类型。
(2)非成因连通:分流河道侵蚀其他分流河道所形成的决口扇而导致两者之间的连通,主要分布于地层平均砂地比大于20%的时间单元内,尤其是地层平均砂地比大于50%时,决口扇与分流河道砂体之间以非成因连通为主。
3) 决口扇与两河道之间连通
(1)决口扇连通同期分流河道:决口扇规模大于两分流河道之间的距离,一般出现在河流规模大且与相邻分流河道距离较近的决口河段附近。
(2)决口扇连通不同时期分流河道:表现为后期的分流河道切叠决口扇边部或中部2种方式。
-
以测井解释资料为基础,利用FLUMY软件开展了三角洲平原亚相的地层建模,在模拟过程中假设分流河道和决口扇均为渗透性砂岩,这些渗透性砂岩置身于非渗透性细粒沉积背景的三角洲平原之中。建模区域为长方体笛卡尔网格构建的区块地层,设置区块面积8 km2,地层厚度10~20 m,网格精度平面达到0.5 m,垂向精度0.1 m。分流河道和决口扇则分别被赋予不同类型的网格族群,每一处独立砂体又分别赋予不同的代码,砂体则是由一系列基于面接触的网格构成。
建模过程中综合考虑到了砂体几何学参数和各沉积微相的比例。由于决口扇是由FLUMY软件模拟河流形态动力学的结果,无法直接利用决口扇砂体几何学参数和比例进行模拟,只能借助与决口扇有成因联系的分流河道各项参数进行间接模拟。因此,决口扇微相的比例可根据式(2)通过输入砂地比数值来调整,决口扇砂体几何学参数则可通过其输入成因河道带的宽度和测井厚度进行调整,其输入的变量参数主要包括:分流河道宽度和砂地比。其中河道宽度设置了3个参数值,分别为:100~300 m,300~500 m,300~1 000 m;砂地比则以10%为单元设置了6个参数值,共有18种不同的输入参数组合。
-
FLUMY软件建模过程中,决口扇沉积物的比例控制在2%和30%之间变化,平均值约为12%。一般而言,决口扇沉积物的比例随着分流河道砂体比例或砂地比的增加而减少,在相同砂地比的前提下,意味着分流河道规模越大则分流河道数量就越少,砂体叠置程度越低;反之,分流河道规模越小则其数量就越多,砂体叠置程度越高。
在三维网格模型中,当砂体总网格数一定时,若砂体数量由少变多,则意味着原本连通在一起的砂体变得零散分布;反之,若砂体数量由多变少,则意味着砂体集中分布在一处,砂体之间趋于连通。因此,在给定砂地比的前提下,连通砂体的数量和大小可描述为3种情况:(1)三角洲平原亚相中砂体规模小,数量多,砂体之间分散,连通性差或不连通;(2)三角洲平原亚相砂体规模大,叠置砂体发育为主,数量较少,砂体连通性强;(3)三角洲平原亚相砂体完全连通,砂体数量为1。
基于此,利用FLUMY软件进行了三维地质建模。具体建模步骤为:
(1) 地层模型建立:设定地层厚度为10~20 m,其厚度大体接近研究区PⅠ3~PⅠ6小层的总厚度。
(2) 测井曲线离散化:井点数据离散化的目的在于给井曲线穿过的网格单元赋值,将井点信息作为输入值,进而控制井间属性分布。
(3) 变差函数分析:通过调节主变差函数方向控制沉积物源方向,在此设定物源方向为北部;调节次变差函数方向控制垂直物源方向,调节垂向变差函数控制砂体厚度变化趋势。
(4) 沉积相建模:采用基于目标形成过程的随机模拟方法,分别输入不同砂地比数据及河道带宽度数据。
图8分别展示了不同河道宽度和砂地比条件下的部分典型三维随机建模结果,可以看出在相同砂地比条件下,随着河道规模增加,决口扇数量减少但规模增大,而在相同河道规模条件下,随着砂地比增加,决口扇规模和数量逐渐减少。
为厘清决口扇沉积在三角洲平原亚相砂体连通性中的影响程度,需分别对含决口扇沉积和不含决口扇沉积的三角洲平原亚相进行砂体连通概率统计,其中砂体连通概率采用了最大连通砂体体积与砂体总体积之间的比值来计算得出[18],即FLUMY软件中建模区域内的最大连通砂体网格数与砂体总网格数之间的比值。218次建模结果统计表明,随着砂地比增加,三角洲平原亚相砂体连通性整体逐渐增强,但含决口扇沉积的三角洲平原亚相在砂地比低于30%条件下,其砂体连通性远强于不含决口扇沉积的三角洲平原亚相,而当砂地比达到40%时,两者之间砂体连通性差距极小,几乎可以忽略不计(图9),决口扇沉积对三角洲平原亚相砂体连通性的改善作用随着砂地比增加而减少(表1)。分析认为,当地层平均砂地比高于30%时,河道带数量多或规模大,砂体叠置程度较强,不同分支河道之间无需决口扇的“桥梁”作用仍可实现砂体之间连通,甚至在一定程度上破坏决口扇沉积物的保存,从而导致决口扇沉积影响权重的下降;当地层平均砂地比低于30%时,河道带数量减少或规模变小,决口扇较为发育,能够概率性连通两条分流河道,从而起到改善三角洲平原亚相砂体连通性的重要作用。
图 9 三角洲平原亚相砂地比与砂体连通概率关系
Figure 9. Relationship between the net⁃to⁃gross and sand body connectivity probability of delta plain subfacies
表 1 决口扇对三角洲平原亚相砂体连通性影响
砂地比 河道宽度/m 三角洲平原亚相砂体连通概率(均值) 砂体连通性变化(含决口扇连通概率/不含决口扇连通概率) 不含决口扇 含决口扇 0.1 100~300 0.01 0.10 10 0.1 300~500 0.01 0.13 13 0.1 300~1 000 0.02 0.18 9 0.2 100~300 0.02 0.16 8 0.2 300~500 0.04 0.32 8 0.2 300~1 000 0.06 0.51 8.50 0.3 100~300 0.21 0.52 2.48 0.3 300~500 0.53 0.64 1.21 0.3 300~1 000 0.66 0.78 1.18 0.4 100~300 0.81 0.84 1.04 0.4 300~500 0.93 0.95 1.02 0.4 300~1 000 0.96 0.99 1.03 0.5 100~300 1.00 1.00 1.00 0.5 300~500 1.00 1.00 1.00 0.5 300~1 000 1.00 1.00 1.00 -
决口扇沉积是地下河流层序的常见组成部分[19⁃20],在各种油田开发实例中均需进行连通性评价,如地下油气勘探、油气生产、地热开发等,其扇体规模、厚度、沉积比例、储层物性、连通方式等都决定了其所在地层的砂体连通性。
决口扇是洪水期过量的河水在天然堤处决口或在天然堤低处溢出,从而在天然堤下坡及洪泛平原的外缘上形成的扇状堆积物。一般而言,决口扇规模受河流类型、河流流量、决口处地形坡度、决口频率等因素影响,尤其在三角洲地层中,低缓的地形条件和较稳定的物源供给条件,使得单个决口扇规模与分流河道规模表现出中—高度的正相关,但随着河道带宽度增加,沉积体系内的决口扇数量急剧减少,导致决口扇整体分布范围缩小,降低了井点钻遇的概率。因此,在利用FLUMY软件进行模拟数据和建模输出时,主要通过直接控制分流河道带宽度和砂地比来间接控制决口扇砂体规模及比例。因受限于研究区块井网密度,分流河道和决口扇砂体几何学规模在刻画过程中存在1/2井距误差,在一定程度上可能影响建模结果的准确性,因此建模过程中分流河道宽度采用了范围数值进行了约束,以此尽量减少井距误差的影响。此外,砂体连通性是研究流体连通性的前提和依据,明确决口扇与分流河道砂体之间的连通关系,有助于刻画剩余油气潜在富集部位,为剩余油气勘探提供理论依据,从而指导井网部署。然而,砂体之间连通未必就意味着流体连通,需要进一步考虑决口扇内部岩性和物性的非均质性才能分析出剩余油气的优势聚集部位,这是有待进一步研究的科学问题。
Effect of Crevasse Splay on the Connectivity of Sand Bodies in Delta Plain Subfacies: A case study of the Putaohua oil layer in the Wexing oilfield, Songliao Basin
-
摘要: 决口扇是河流三角洲沉积体系重要的组成部分,有利于剩余油气富集,但目前关于决口扇沉积在三角洲平原亚相中的砂体连通方式及连通程度研究薄弱。以松辽盆地卫星油田下白垩统姚家组葡萄花油层为研究对象,利用5处密井网开发区块岩心、测井及生产动态资料,首先开展了决口扇沉积结构定量表征,重点对沉积相标志识别、砂体几何学参数刻画、砂体钻遇比例分析和砂体连通方式进行了研究,并以此为数据基础,采用三维随机地质建模技术进行了三角洲平原亚相砂体连通性定量表征,定量分析了决口扇沉积在三角洲平原亚相中对砂体连通性的影响程度。结果表明:(1)决口扇砂体长50~3 000 m,宽50~2 500 m,厚0.2~5.0 m,且决口扇与分流河道钻遇比例呈负相关;(2)决口扇与分流河道之间连通关系可划分为5类:孤立型决口扇、成因连通单河道、非成因连通单河道、连通同期不同河道和连通非同期不同河道;(3)决口扇沉积对砂地比低于30%的中小型三角洲平原亚相砂体连通影响程度最为显著。该研究对油田井网设计和剩余油气高效开发有重要指导意义。Abstract: Crevasse splay deposits are an important component of river delta depositional systems, which is conducive to the enrichment of remaining oil and gas. However, the study on the way and extent of crevasse splay deposition connecting distributary channel sand bodies in the delta plain subfacies is relatively weak at present. Therefore, the purpose of this study was to determine the quantitative impact of crevasse splay deposits on the connectivity of sand body in delta plain subfacies. To determine the influence of crevasse splay sedimentation on the connectivity of sand body in delta plain subfacies, the Putaohua oil layer of the Lower Cretaceous Yaojia Formation in the Weixing oilfield of Songliao Basin is selected as the research object. The core, logging, and production data of 5 exploitation areas of the Putaohua oil layer in the Weixing oilfield were used in our study. At first, the quantitative characterization of the crevasse splay sedimentary structures is carried out, focusing on the identification of sedimentary facies markers, characterization of sand body geometric parameters, an analysis of the sand body drilling ratio, and analysuis of the connection mode of the sand bodies. Based on the results, the connectivity of the delta plain sand body subfacies is quantitatively characterized by 3D random geological modeling technology, and the influence of crevasse splay deposition on the connectivity of sand body in the delta plain subfacies is quantitatively analyzed. The results of the study show that: (1) The lengths of the crevasse splay sand bodies are 50⁃3 000 m, and the widths are 50⁃2 500 m, and the thicknesses are 0.2⁃5.0 m, the length to width of the sand body is about 1.2, and the width to thickness of the sand body is 400⁃600. The ratio of well drilling in crevasse splays is 2%⁃38%, negatively correlated with that in delta distributary channels. (2) The connection mode of sand bodies between crevasse splays and delta distributary channels can be divided into 5 types: the crevasse splay sand body is not connected with the distributary channel, i.e., an isolated crevasse splay; the crevasse splay sand body is connected with a single distributary channel, which is genetically related to the formation of crevasse splay sand body; the crevasse splay sand body is connected with a single distributary channel, which has no genetic relationship with the formation of the crevasse splay sand body; the crevasse splay sand body is connected with two different distributary channel sand bodies, and the two distributary channels belong to the same sedimentary period; and, the crevasse splay sand body is connected with two different distributary channel sand bodies, however, the two distributary channels belong to different sedimentary periods. (3) Crevasse splay sedimentation has an obvious influence on the connectivity of sand bodies in medium and small delta plain subfacies, especially when the net-to-gross ratio of the delta plain subfacies is less than 30%. This study is helpful to the deployment and design of well patterns in the middle and late stages of oil and gas field development, and can effectively guide the efficient extraction of any remaining oil and gas, thus reducing the cost of oil and gas exploration and development.
-
Key words:
- crevasse splay /
- sand body connectivity /
- delta plain subfacies /
- Weixing oilfield /
- Songliao Basin
-
图 1 卫星油田葡萄花油层构造位置及层序划分
(a)松辽盆地北部构造图及卫星油田位置;(b)卫星油田开发区位置及井网分布;(c)葡萄花油层柱状图
Figure 1. Structure, location, and sequence division of the Putaohua oil layer in the Weixing oilfield
(a) north Songliao Basin structure and Weixing oil field location; (b) location and well pattern distribution of Weixing oilfield exploitation areas; (c) histogram of Putaohua oil layer
图 4 卫星油田葡萄花油层开发区块典型沉积微相
(a)卫211井区PⅠ3;(b)太109井区PⅠ41;(c)卫214井区PⅠ42;(d)卫214井区PⅠ51;(e)太25井区PⅠ6;(f)卫12井区PⅠ6
Figure 4. Typical sedimentary microfacies of the Putaohua oil layer in the development block in the Weixing oilfield
(a) PⅠ3 of W211 block; (b) PⅠ41 of T109 block; (c) PⅠ42 of W214 block; (d) PⅠ51 of W214 block; (e) PⅠ6 of T25 block; (f) PⅠ6 of W12 block
表 1 决口扇对三角洲平原亚相砂体连通性影响
砂地比 河道宽度/m 三角洲平原亚相砂体连通概率(均值) 砂体连通性变化(含决口扇连通概率/不含决口扇连通概率) 不含决口扇 含决口扇 0.1 100~300 0.01 0.10 10 0.1 300~500 0.01 0.13 13 0.1 300~1 000 0.02 0.18 9 0.2 100~300 0.02 0.16 8 0.2 300~500 0.04 0.32 8 0.2 300~1 000 0.06 0.51 8.50 0.3 100~300 0.21 0.52 2.48 0.3 300~500 0.53 0.64 1.21 0.3 300~1 000 0.66 0.78 1.18 0.4 100~300 0.81 0.84 1.04 0.4 300~500 0.93 0.95 1.02 0.4 300~1 000 0.96 0.99 1.03 0.5 100~300 1.00 1.00 1.00 0.5 300~500 1.00 1.00 1.00 0.5 300~1 000 1.00 1.00 1.00 -
[1] Ramón J C, Cross T. Characterization and prediction of reservoir architecture and petrophysical properties in fluvial channel sandstones, Middle Magdalena Basin, Colombia[J]. CT&F-Ciencia, Tecnología & Futuro, 1997, 1(3): 19-46. [2] Burns C E, Mountney N P, Hodgson D M, et al. Stratigraphic architecture and hierarchy of fluvial overbank splay deposits[J]. Journal of the Geological Society, 2019, 176(4): 629-649. [3] 陈薪凯,陈程,汪虎. 渤海湾盆地秦皇岛32-X油田决口扇储层的沉积特征与区分标准[J]. 特种油气藏,2020,27(5):22-29,138. Chen Xinkai, Chen Cheng, Wang Hu. Sedimentary characteristics and distinguishing criteria of crevasse splay reservoir in QHD 32-X oilfield, Bohai Bay Basin[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 22-29, 138. [4] 马世忠,王再山,王渝明. 决口水道沉积模式及其砂体内剩余油形成与富集[J]. 大庆石油地质与开发,2000,19(6):9-11,14. Ma Shizhong, Wang Zaishan, Wang Yuming. Residual oil formation and enrichment within crevasse channel sedimentary pattern and its sandbody[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(6): 9-11, 14. [5] 郑文波,邓宏文. 河流相溢岸沉积特征及其层序地层意义:以大庆长垣扶余油层为例[J]. 吉林大学学报(地球科学版),2012,42(增刊2):79-87. Zheng Wenbo, Deng Hongwen. Sedmentary features and stratigraphy significance of overbank deposition in fluvial system: Taking the Fuyu unit in Daqing oilfield as an example[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Suppl.2): 79-87. [6] Millard C, Hajek E, Edmonds D A. Evaluating controls on crevasse-splay size: Implications for floodplain-basin filling[J]. Journal of Sedimentary Research, 2017, 87(7): 722-739. [7] Cahoon D R, White D A, Lynch J C. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta[J]. Geomorphology, 2011, 131(3/4): 57-68. [8] Burns C E, Mountney N P, Hodgson D M, et al. Anatomy and dimensions of fluvial crevasse-splay deposits: Examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A.[J]. Sedimentary Geology, 2017, 351: 21-35. [9] Bowles K W, Moslow T F. Internal geometry and reservoir potential of some modern crevasse splay sands: Abstract[J]. AAPG Bulletin, 1984, 68(9): 1210. [10] 张云峰,刘宗堡,赵容生,等. 三角洲平原亚相储层砂体静态连通性定量表征:以松辽盆地肇州油田扶余油层为例[J]. 中国矿业大学学报,2017,46(6):1314-1322. Zhang Yunfeng, Liu Zongbao, Zhao Rongsheng, et al. Quantitative characterization of delta plainsubfacies reservoir sandbody static connectivity: Taking Fuyu oil layer of Zhaozhou oil field in Songliao Basin as an example[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1314-1322. [11] 高白水,金振奎,李燕,等. 河流决口扇沉积模式及演化规律:以信江府前村决口扇为例[J]. 石油学报,2015,36(5):564-572. Gao Baishui, Jin Zhenkui, Li Yan, et al. Sedimentary model and evolutionary process of crevasse splays: A case of crevasse splays around Fuqiancun village along Xinjiang river[J]. Acta Petrolei Sinica, 2015, 36(5): 564-572. [12] 袁静,吴兵,王永诗,等. 胜利滩海地区馆上段—明化镇组底部河流类型及演变[J]. 沉积学报,2022,40(3):813-824. Yuan Jing, Wu Bing, Wang Yongshi, et al. Fluvial types and evolution of the Upper member of Guantao Formation and bottom of Minghuazhen Formation of Neogene in Shengli offshore area[J]. Acta Sedimentologica Sinica, 2022, 40(3): 813-824. [13] 葛道凯,杨起,付泽明,等. 陕西省榆林地区延安组湖滨下三角洲平原沉积中的决口扇三角洲沉积及其意义[J]. 现代地质,1990,4(3):51-59. Ge Daokai, Yang Qi, Fu Zeming, et al. The characteristics and significance of the splay delta deposits in lower lacustrine delta plain, Yanan Formation (Middle Jurassic), Yulin district, Shaanxi province[J]. Geoscience, 1990, 4(3): 51-59. [14] 蒙启安,赵波,陈树民,等. 致密油层沉积富集模式与勘探开发成效分析:以松辽盆地北部扶余油层为例[J]. 沉积学报,2021,39(1):112-125. Meng Qi'an, Zhao Bo, Chen Shumin, et al. Sedimentary enrichment mode and effect analysis of exploration and development: A case study of Fuyu reservoir tight oil in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 112-125. [15] 薛佳雯. 卫星油田东北部葡萄花油层沉积微相及砂体结构研究[D]. 北京:中国石油大学(北京),2019. Xue Jiawen. Study on the sedimentary microfacies and sand body structure of the Putaohua reservoir in the northeast of the Weixing oil[D]. Beijing: China University of Petroleum (Beijing), 2019. [16] Jones H L, Hajek E A. Characterizing avulsion stratigraphy in ancient alluvial deposits[J]. Sedimentary Geology, 2007, 202(1/2): 124-137. [17] Zimmermann J, Franz M, Wolfgramm M. The Late Aalenian Polyplocussandstein Formation in SE Lower Saxony, Germany: Meandering distributary and crevasse splay sedimentation on a lower deltaic plain[J]. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 2014, 271(1): 69-94. [18] Larue D K, Hovadik J. Connectivity of channelized reservoirs: A modelling approach[J]. Petroleum Geoscience, 2006, 12(4): 291-308. [19] 王科,赵俊峰,薛锐,等. 鄂尔多斯盆地延安组河流沉积类型及演变:来自典型露头精细解剖的证据[J]. 沉积学报,2022,40(5):1367-1377. Wang Ke, Zhao Junfeng, Xue Rui, et al. Fluvial sedimentary types and their evolution in the Yan'an Formation in the Ordos Basin: Evidence from the detailed anatomy of typical outcrops[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1367-1377. [20] 任梦怡,胡光义,范廷恩,等. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏,2022,34(6):141-151. Ren Mengyi, Hu Guangyi, Fan Ting'en, et al. Composite sand body architecture and controlling factors of the lower Minghuazhen Formation of Neogene in northern Qinhuangdao 32-6 oilfield[J]. Lithologic Reservoirs, 2022, 34(6): 141-151.