-
裂陷盆地不同构造演化阶段,断裂位移、形态及其相互作用关系的转换,主导盆地形态和展布规模发生变化,必然会导致入盆水系网络、沉积物类型及砂体分散方式的转换或迁移。研究表明,在一个完整的裂陷旋回周期演化过程中,响应于断层初始活动、断层交互和联结过程,初始裂陷阶段以短轴水系为主,而在裂陷萎缩期长轴供给体系逐渐占据主导。
受前裂陷层基底构造性质影响,初始裂陷第一阶段新生湖盆刚刚打开,其结构形态可表现为宽缓碟状或典型半地堑结构,其充填样式与先存水系密切相关[23]。例如在北海盆地晚侏罗世初始裂陷期,先存水系携带充沛的碎屑使得盆地过充填。相反地,在塔木察格盆地塔南凹陷早白垩世初始裂陷期缺失先存水系网络,孤立的窄湖盆(宽度小于10~15 km)缺乏规模化的新生水系网络(图12a)。由此可见,初始裂陷盆地充填样式受控于先存水系,与盆地初始地貌建设亦有紧密联系,这种联控机制加剧了这套地层沉积体系的复杂性和多样性[19]。综合调研以及研究区分析结果,初始裂陷的第一阶段源—汇系统大致可分为以下3类(表1)。
表 1 陆相盆地早期裂陷阶段构造—沉积演化及源—汇系统
初始裂陷期 源—汇体系 盆地结构 断裂活动 水系特征 可能的沉积响应 第一阶段 类型1 分散、小型半地堑或地堑群 数量多,规模小,走向相似,断裂位移量小 先存成熟水系+年轻短程水系 河流—三角洲细粒沉积物+近源扇体粗粒沉积物;湖相沉积物局限 类型2 分散、小型半地堑或地堑群 数量多,规模小,断裂位移量小 年轻短程水系 近源扇体;湖相沉积物局限或者中等 类型3 宽缓碟状湖盆群 数量众多密集,走向多变化,规模小,断裂位移量特别低 先存成熟水系 河流—三角洲体系或者风成/干旱盐湖沉积 第二阶段 类型4 连通的大型复合半地堑 断裂早期联结:断裂位移量相对不变或者略增大,长度迅速增大 大型转换带水系及缓坡带水系主导+先存水系(若存在) 大面积粗粒三角洲,局限湖相沉积物;或河流—三角洲体系(与先存水系有关) 类型5 半连通或者分割型复合半地堑 断裂晚期联结:断裂位移量相对大,长度不变或者略有增大 短程侧向(陡崖及缓坡带)水系主导+先存水系(若存在) 近源扇体及湖相沉积或河流—三角洲体系(与先存水系有关) 类型1:先存成熟水系主导的孤立分割型湖盆群,即在裂陷盆地形成前期盆地地貌已经夷平,大型长源性河流水系已然建成,例如晚侏罗世北海盆地北部Lofoten地区[23]以及希腊Corinth裂谷盆地[13]。该时期,近源新生水系与长源先存成熟水系同时发育。盆内同时记录河流—三角洲砂体以及近源扇体沉积物因而满盆富砂[36]。
类型2:先存成熟水系主导的宽缓盆地,该盆地往往缺乏年轻的近源水系,例如晚侏罗世北海盆地北部Strathspey-Brent-Statfjord地区[26],该盆地以长源先存水系供给河流或三角洲砂体为主,该盆地可容纳空间低,物源供给(A)远远大于新增可容纳空间(S),湖盆亦具有满盆富砂过充填特征。
类型3:发育年轻的短程近源水系主导的小湖盆群,属于陆内裂陷且具有明显的内流性质;该盆地往往缺乏先存水系网络,新生短程水系提供近源沉积碎屑,往往发育小规模的冲积扇、扇三角洲碎屑物和火山岩碎屑物,其沉积物分选磨圆差,成分异常复杂,例如蒙古塔南凹陷下铜钵庙组(图12a)。
初始裂陷的第二阶段,盆地内应力开始集中作用使得同生断裂发生相互作用并发生联结(图11b),其联结方式对盆地结构及沉积物分散体制影响重大[22,24],可形成两类迥然不同的源—汇系统(表1)。
类型4:若断裂体系为早期联结型,使得长度快速增加而位移量缓慢增加(或几乎保持不变),即断层联结早于位移变化[22],那么该盆地往往具有连通的、宽浅的地堑或者半地堑结构;断裂的交互作用不仅形成大型转换带富砂体系,还形成快速建设的缓坡带供给沉积体系(图13b)。该类源—汇系统下发育规模优质油气储集体的概率大,可作为勘探地质学家重要关注对象。
类型5:若断裂体系为晚期联结型,即孤立断层侧向呈放射性拓展并发生交互联结,边界断层位移量和长度同时协调增大[22],最后形成的盆地结构分割型较强[37],难以形成大型汇水体系或水系难以通畅输送至盆地中心区域,则常常以短程断崖或小型转换带水系为特征,盆地整体具有“近源”快速充填特征。
在地表环境,相比陡坡或者陡崖带,低角度或者平缓的地貌背景水系的侵蚀供源能力增强,更容易捕获大型的水系及丰富的碎屑风化产物[38]。断层早期联结并迅速伸展改变盆地边缘及内部构造地貌,这些地貌特征有利于捕获大型的水系或作为砂体有效传送通道。本实例研究表明,断裂早期联结型盆地以大型汇水体系及多套大面积展布的粗粒三角洲砂体,盆地整体具有“富砂”特征(图12b)。这些富砂的沉积特征可能是边界断层快速伸展但位移量缓慢增大的特性,类似的沉积特征还在其他裂陷盆地可见[39⁃40]。
根据实例分析及调研成果,笔者分阶段建立了可供参考的初始裂陷构造—沉积构架,以及基于是否与先存水系沟通总结了五种源—汇系统类型。诚然,源—汇系统发育控制因素众多,例如气候变化、物源母岩类型及组合差异[41],使得相同湖盆结构的沉积充填样式出现明显差异。温暖潮湿气候背景下裂陷盆地初始阶段主要发育河流—滨浅湖沉积体系建造(图2a),而在干早和半干早气候下则易记录盐湖或风成沉积物。盆地边缘新生水系流域面积受构造斜坡长度所控制,亦与汇水区基岩的岩性和抗风化能力有关[23]。例如,碳酸盐岩母岩主要供给形成溶解质颗粒,而花岗质母岩风化进入水体形成固态颗粒质碎屑[42]。初始裂陷阶段,多断裂体系活动形成各具特色的裂陷盆地结构导致水系类型及沉积响应的多样性。
Tectono⁃sedimentary Interaction of Early Syn-rift Successions: A case study from the Tobomiao Formation, Tanan Depression, Tamtsag Basin, Mongolia
-
摘要: 裂陷盆地蕴含丰富的油气资源,盆地不同演化阶段发育独特的地层结构样式及其砂体成因类型,形成各具特色的油气藏系统。近年来湖盆初始裂陷层系不断获得油气勘探突破,使之成为石油工业界重要关注对象,其多级次断裂演化、组合关系、地貌特征及其与水系和沉积响应关系已成为当前地质学领域关注的热点科学问题。蒙古塔南凹陷下白垩统铜钵庙组良好记录了一套初始裂陷沉积序列,丰富的钻井及地震资料使之可作为理想的研究对象。综合利用地震、岩心及测录井资料,在构造—沉积学理论指导下重建了塔南凹陷初始裂陷构造—沉积演化及源—汇响应模式。研究表明,塔南凹陷初始裂陷第一阶段以新生的分割型小洼陷群为特征,与前裂陷阶段“高山深谷”地貌背景联控下形成短距离输送且数量众多的小型扇群;初始裂陷第二阶段伴随控洼断层长度的迅速增加发生软联结,形成连通且宽浅的盆地结构,发育多套低坡降构造转换带(面积大于50 km2)和西北侧缓坡带(延伸约28 km)供给型大套扇三角洲体系,长轴及陡坡方向水系运输距离较短。实例解析结合调研结果表明,先存水系和盆地地貌结构联合控制初始裂陷盆地源—汇系统,进而形成初始裂陷第一阶段盆地满盆富砂(沟通先存水系)或欠补偿(不沟通先存水系),年轻短程水系主导的孤立小湖盆群则主要发育小规模近源碎屑沉积物;初始裂陷第二阶段源—汇系统则与该时期断裂体系联结方式有关:断裂晚期联结型湖盆主要发育以短程断崖或小型转换带水系为特征,而断裂早期联结型湖盆形成大型构造转换带水系及三角洲体系,其缓坡带长度亦快速增大,盆地整体具有“富砂”特征。本研究为其他裂陷盆地寻找大型优质砂体提供了科学理论依据。Abstract: Rift-related basins are rich in petroleum reservoirs. The evolutionary stages of rift systems are diagnosed by their stratigraphic patterns and depositional assemblages, forming distinctive hydrocarbon accumulation systems. Recent discoveries of rich petroleum resources in initial rift-related stratigraphic successions have aroused much interest in the petroleum industry. Furthermore, multi-stage fault activation and stacking patterns associated with geomorphic drainages networks and depositional responses during the initial rifting phase have become an important scientific focus internationally. The Lower Cretaceous Tongbomiao Formation in the Tanan Depression in Mongolia records such initial rift-related stratigraphic successions; its dense well penetration and large-scale seismic data make an ideal study area. Seismic, core and logging data were used to reconstruct the tectono-sedimentary evolution and source-to-sink system during the initial rifting phase, indicating that the first stage of initial rifting formed isolated small-scale sags, which were filled for a short distance by small-scale alluvial fans / deltaic fans in response to the pre-rift ‘high mountain / deep valley’ geomorphology. The second stage was accompanied by fault interactions with rapidly increasing fault length; it then transitioned into a wide connected but shallow basin structure, with three low-gradient but large-scale (> 50 km2) relay ramp zones. The 28 km-long dip-slope allowed long-distance transport to form a fan-deltaic sand-rich system, without an axially-sourced or footwall-supplied depositional system. This case study and previous studies show that the pre-existing drainage catchment and the rift-related physiography jointly control the depositional pattern and source-to-sink system in the initial rifted basins. The basins in the first stage of initial rifting were either overfilled with sand-rich sediments (connected with pre-existing drainage) or sediment-starved (not connected with pre-existing drainage). Small-scale, short-distance transport of sediments was facilitated in the isolated basins dominated by young short-range drainage. However, the second stage of initial rifting is characterized by two distinctive infill patterns in response to the fault linking process. Early fault linkage contributed to rapid fault propagation to their full length (L), whereas the displacement (D) remained almost constant before significant basin formation. This type of basin benefitted from expanded drainage basins and long dispersal depositional systems of sand-rich sediments. By contrast, other basins are commonly observed with a constant D-L relationship that resulted from later fault linking; these basins are isolated and are characterized by local drainage catchments and relatively small-scale deltaic systems. This study provides a detailed example of reporting tectonic-sedimentary interaction and source-to-sink systems for early rift-related successions in rift basins, and has significant implications for good sandstone prediction and petroleum exploration in other rift basins.
-
表 1 陆相盆地早期裂陷阶段构造—沉积演化及源—汇系统
初始裂陷期 源—汇体系 盆地结构 断裂活动 水系特征 可能的沉积响应 第一阶段 类型1 分散、小型半地堑或地堑群 数量多,规模小,走向相似,断裂位移量小 先存成熟水系+年轻短程水系 河流—三角洲细粒沉积物+近源扇体粗粒沉积物;湖相沉积物局限 类型2 分散、小型半地堑或地堑群 数量多,规模小,断裂位移量小 年轻短程水系 近源扇体;湖相沉积物局限或者中等 类型3 宽缓碟状湖盆群 数量众多密集,走向多变化,规模小,断裂位移量特别低 先存成熟水系 河流—三角洲体系或者风成/干旱盐湖沉积 第二阶段 类型4 连通的大型复合半地堑 断裂早期联结:断裂位移量相对不变或者略增大,长度迅速增大 大型转换带水系及缓坡带水系主导+先存水系(若存在) 大面积粗粒三角洲,局限湖相沉积物;或河流—三角洲体系(与先存水系有关) 类型5 半连通或者分割型复合半地堑 断裂晚期联结:断裂位移量相对大,长度不变或者略有增大 短程侧向(陡崖及缓坡带)水系主导+先存水系(若存在) 近源扇体及湖相沉积或河流—三角洲体系(与先存水系有关) -
[1] 李丕龙. 陆相断陷盆地油气地质与勘探(卷二):陆相断陷盆地沉积体系与油气分布[M]. 北京:石油工业出版社,2003. Li Pilong. Petroleum geology and exploration of continental fault basin (II): Sedimentary system and oil-gas distribution in continental faulted basins[M]. Beijing: Petroleum Industry Press, 2003. [2] 于兴河,姜辉,李胜利,等. 中国东部中、新生代陆相断陷盆地沉积充填模式及其控制因素:以济阳坳陷东营凹陷为例[J]. 岩性油气藏,2007,19(1):39-45. Yu Xinghe, Jiang Hui, Li Shengli, et al. Depositional filling models and controlling factors on Mesozoic and Cenozoic fault basins of terrestrial facies in eastern China: A case study of Dongying Sag of Jiyang Depression[J]. Lithologic Reservoirs, 2007, 19(1): 39-45. [3] Lin C S, Eriksson K, Li S T, et al. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China[J]. AAPG Bulletin, 2001, 85(11): 2017-2043. [4] 周海民,董月霞,刘蕴华,等. 断陷盆地油气勘探理论与实践:以渤海湾盆地南堡凹陷为例[M]. 东营:石油大学出版社,2005:1-20. Zhou Haimin, Dong Yuexia, Liu Yunhua, et al. Theory and practice of oil and gas exploration in faulted basins: A case study of Nanpu Sag, Bohai Bay Basin[M]. Dongying: China University of Petroleum Press, 2005: 1-20. [5] 林畅松,郑和荣,任建业,等. 渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J]. 中国科学(D辑):地球科学,2003,33(11):1025-1036. Lin Changsong, Zheng Herong, Ren Jianye, et al. The control of syndepositional faulting on the Eogene sedimentary basin fills of the Dongying and Zhanhua sags, Bohai Bay Basin[J]. Science China (Seri. D): Earth Sciences, 2003, 33(11): 1025-1036. [6] Zhou Y, Ji Y L, Pigott J D, et al. Tectono-stratigraphy of Lower Cretaceous Tanan sub-basin, Tamtsag Basin, Mongolia: Sequence architecture, depositional systems and controls on sediment infill[J]. Marine and Petroleum Geology, 2014, 49: 176-202. [7] Ge J W, Zhu X M, Yu F S, et al. Controls of faulting on synrift infill patterns in the Eocene PY4 Sag, Pearl River Mouth Basin, South China Sea[J]. Australian Journal of Earth Science, 2019, 66(1): 111-132. [8] 林畅松,刘景彦,张英志,等. 构造活动盆地的层序地层与构造地层分析:以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘,2005,12(4):365-374. Lin Changsong, Liu Jingyan, Zhang Yingzhi, et al. Sequence stratigraphy and tectono-stratigraphic analysis of tectonically active basins: A case study on the Cenozoic-Mesozoic lacustrine basins in China[J]. Earth Science Frontiers, 2005, 12(4): 365-374. [9] Jackson J, Leeder M. Drainage systems and the development of normal faults: An example from Pleasant Valley, Nevada[J]. Journal of Structural Geology, 1994, 16(8): 1041-1059. [10] 邓宏文,郭建宇,王瑞菊,等. 陆相断陷盆地的构造层序地层分析[J]. 地学前缘,2008,15(2):1-7. Deng Hongwen, Guo Jianyu, Wang Ruiju, et al. Tectono-sequence stratigraphic analysis in continental faulted basins[J]. Earth Science Frontiers, 2008, 15(2): 1-7. [11] 解习农,任建业. 沉积盆地分析基础[M]. 武汉:中国地质大学出版社有限责任公司,2013:11-40. Xie Xinong, Ren Jianye. Principles of sedimentary basin analysis[M]. Wuhan: China University of Geosciences Press Co., Ltd, 2013: 11-40. [12] 张建林,林畅松,郑和荣. 断陷湖盆断裂、古地貌及物源对沉积体系的控制作用:以孤北洼陷沙三段为例[J]. 油气地质与采收率,2002,9(4):24-27. Zhang Jianlin, Lin Changsong, Zheng Herong. Controlling action of fractures, palaeogeomorphology and material sources of rift lake-basin on sedimentary system-taking Es3 Gubei subsag as example[J]. Petroleum Geology and Recovery Efficiency, 2002, 9(4): 24-27. [13] Hemelsdaël R, Ford M, Malartre F, et al. Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn-rift stratigraphy, western Corinth Rift (Greece)[J]. Sedimentology, 2017, 64(7): 1957-1997. [14] Ge J W, Zhu X M, Wang R, et al. Tectono-sedimentary evolution and hydrocarbon reservoirs in the Early Cretaceous Tanan Depression, Tamtsag Basin, Mongolia[J]. Marine and Petroleum Geology, 2018, 94: 43-64. [15] 葛家旺,朱筱敏,雷永昌,等. 多幕裂陷盆地构造—沉积响应及陆丰凹陷实例分析[J]. 地学前缘,2021,28(1):77-89. Ge Jiawang, Zhu Xiaomin, Lei Yongchang, et al. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1): 77-89. [16] 王宏语,李瑞磊,朱建峰,等. 陆相裂谷盆地构造沉积学特征:以松辽盆地伏龙泉断陷为例[J]. 现代地质,2019,33(6):1151-1162. Wang Hongyu, Li Ruilei, Zhu Jianfeng, et al. Tectonic sedimentology characteristics of continental rift basin: Case study from Fulongquan fault depression of Songliao Basin[J]. Geoscience, 2019, 33(6): 1151-1162. [17] 杨文杰,胡明毅,苏亚拉图,等. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏,2020,32(4):59-68. Yang Wenjie, Hu Mingyi, Latu Suya, et al. Sedimentary characteristics of fan delta during initial rifting stage in Sujiatun sub-depression, Songliao Basin[J]. Lithologic Reservoirs, 2020, 32(4): 59-68. [18] 姚树青,刘招君,陈永成,等. 蒙古国塔南凹陷下白垩统铜钵庙组地震反射特征[J]. 世界地质,2011,30(4):641-647. Yao Shuqing, Liu Zhaojun, Chen Yongcheng, et al. Seismic reflection characteristics of Lower Cretaceous Tongbomiao Formation in Tanan Sag, Mongolia[J]. Global Geology, 2011, 30(4): 641-647. [19] Lewis M M, Jackson C A L, Gawthorpe R L. Tectono-sedimentary development of early syn-rift deposits: The Abura Graben, Suez Rift, Egypt[J]. Basin Research, 2017, 29(Suppl.1): 327-351. [20] Prosser S. Rift-related linked depositional systems and their seismic expression[M]//Williams G D, Dobb A. Tectonics and seismic sequence stratigraphy. Geological Society, London, Special Publications, 1993, 71(1): 35-66. [21] Gupta S, Cowie P A, Dawers N H, et al. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution[J]. Geology, 1998, 26(7): 595-598. [22] Cowie P A, Gupta S, Dawers N H. Implications of fault array evolution for synrift depocentre development: Insights from a numerical fault growth model[J]. Basin Research, 2000, 12(3/4): 241-261. [23] Gawthorpe R L, Leeder M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12(3/4): 195-218. [24] Cartwright J A, Trudgill B D, Mansfield C S. Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah[J]. Journal of Structural Geology, 1995, 17(9): 1319-1326. [25] Eliet P P, Gawthorpe R L. Drainage development and sediment supply within rifts, examples from the Sperchios Basin, central Greece[J]. Journal of the Geological Society, 1995, 152(5): 883-893. [26] McLeod A E, Underhill J R, Davies S J, et al. The influence of fault array evolution on synrift sedimentation patterns: Controls on deposition in the Strathspey-Brent-Statfjord half graben, northern North Sea[J]. AAPG Bulletin, 2002, 86(6): 1061-1093. [27] Davies S J, Dawers N H, McLeod A E, et al. The structural and sedimentological evolution of early synrift successions: The Middle Jurassic Tarbert Formation, North Sea[J]. Basin Research, 2002, 12(3/4): 343-365. [28] Morley C K. Evolution of large normal faults: Evidence from seismic reflection data[J]. AAPG Bulletin, 2002, 86(6): 961-978. [29] Wu G Y, Wang Y, Liu M. Palinspastic reconstruction and geological evolution of Jurassic Basins in Mongolia and neighboring China[J]. Journal of Palaeogeography, 2013, 2(3): 306-317. [30] 陈玮常,漆家福,姜洪福,等. 蒙古国东方省海塔盆地塔南凹陷断裂特征及其油气意义[J]. 古地理学报,2013,15(4):539-550. Chen Weichang, Qi Jiafu, Jiang Hongfu, et al. Characteristics of fault structure in Tanan Sag, Haita Basin in Dornod Aymag, Mongolia and its hydrocarbon significance[J]. Journal of Palaeogeography, 2013, 15(4): 539-550. [31] 杨永华,纪友亮,曹瑞成,等. 蒙古塔木察格盆地塔南凹陷下白垩统层序结构类型、控制因素与层序发育模式[J]. 现代地质,2009,23(4):655-666. Yang Yonghua, Ji Youliang, Cao Ruicheng, et al. Types of sequences, controlling factors and sequence models for Lower Cretaceous of Tanan Depression in Tamtsag Basin, Mongolia[J]. Geoscience, 2009, 23(4): 655-666. [32] 纪友亮,蒙启安,曹瑞成,等. 蒙古国东部塔木察格盆地南部白垩系地层结构及沉积充填特征[J]. 古地理学报,2010,12(6):729-736. Ji Youliang, Meng Qi’an, Cao Ruicheng, et al. Stratigraphic architecture and sedimentary infilling characteristics of the Cretaceous in southern Tamuchage Basin, East Mongolia[J]. Journal of Palaeogeography, 2010, 12(6): 729-736. [33] 李强,张革,孙效东,等. 蒙古国塔木察格盆地塔南凹陷下白垩统铜钵庙组沉积特征和构造—古地理意义[J]. 古地理学报,2014,16(6):897-906. Li Qiang, Zhang Ge, Sun Xiaodong, et al. Sedimentary features and its tectono-palaeogeographic significance of the Lower Cretaceous Tongbomiao Formation in Tanan Sag, Tamtsag Basin, Mongolia[J]. Journal of Palaeogeography, 2014, 16(6): 897-906. [34] Xue X Y, Zhang Y F, Jiang Z X, et al. Wave and storm signals in a lacustrine succession and their relationship to paleowind direction (Tanan Depression, Mongolia, Early Cretaceous)[J]. Sedimentary Geology, 2021, 419: 105911. [35] Leeder M R, Seger M J, Stark C P. Sedimentation and tectonic geomorphology adjacent to major active and inactive normal faults, southern Greece[J]. Journal of the Geological Society, 1991, 148(2): 331-343. [36] Ravnås R, Steel R J. Contrasting styles of Late Jurassic syn-rift turbidite sedimentation: A comparative study of the Magnus and Oseberg areas, northern North Sea[J]. Marine and Petroleum Geology, 1997, 14(4): 417-449. [37] Schlische R W, Anders M H. Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins[M]//Beratan K K. Reconstructing the history of basin and range extension using sedimentology and stratigraphy. Boulder: Geological Society of America, 1996, 303: 183-203. [38] Blair T C, Bilodeau W L. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: Sedimentary response to episodic tectonism[J]. Geology, 1988, 16(6): 517-520. [39] Noll C A, Hall M. Normal fault growth and its function on the control of sedimentation during basin formation: A case study from field exposures of the Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australia[J]. AAPG Bulletin, 2006, 90(10): 1609-1630. [40] 葛家旺,朱筱敏,张向涛,等. 珠江口盆地陆丰凹陷文昌组构造—沉积演化模式[J]. 中国矿业大学学报,2018,47(2):308-322. Ge Jiawang, Zhu Xiaomin, Zhang Xiangtao, et al. Tectono-sedimentation model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin[J]. Journal of China University of Mining & Technology, 2018, 47(2): 308-322. [41] 朱红涛,徐长贵,朱筱敏,等. 陆相盆地源—汇系统要素耦合研究进展[J]. 地球科学,2017,42(11):1851-1870. Zhu Hongtao, Xu Changgui, Zhu Xiaomin, et al. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 2017, 42(11): 1851-1870. [42] 谈明轩,朱筱敏,张自力,等. 古“源—汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质,2020,41(5):1107-1118. Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Summary of sedimentological issues and fundamental approaches in terms of ancient “source-to-sink” systems[J]. Oil & Gas Geology, 2020, 41(5): 1107-1118. [43] 马立民,林承焰,范梦玮. 塔南凹陷铜钵庙组油气分布特征及主控因素[J]. 油气地质与采收率,2013,20(5):28-32. Ma Limin, Lin Chengyan, Fan Mengwei. Distribution features and major controlling factors of hydrocarbons in Tongbomiao Formation, Tanan Sag[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(5): 28-32.