-
如表1所示,表土层主量元素难溶组分(SiO2、Al2O3、Fe2O3)三者质量分数之和为92.11%,易溶组分(K2O、CaO、Na2O、MgO)质量分数之和为3.17%;化学蚀变指数(CIA)、硅铝铁率(SiO2/R2O3)和淋溶指数(ba)分别为83.50%、0.19和0.34。网纹红土全样的难溶组分质量分数之和均值达到91.44%,易溶组分质量分数之和均值3.06%;CIA、SiO2/R2O3和ba的均值分别为85.27%、5.07和0.29。红、白网纹难溶组分质量分数之和均值分别为89.62%、94.96%;易溶组分质量分数之和均值分别为2.85%、3.37%;CIA分别为85.50%和84.26%,ba分别为0.27和0.31。不论是表土还是网纹红土,MnO和P2O5含量均值均低于0.1%。由表土层和网纹层的主量元素特征对比及相关的风化指数可知,网纹层风化淋溶更加强烈,且网纹层内红网纹的风化强于白网纹。在各主量元素组成中,Fe2O3差异最为明显:网纹层全样(7.43%)高于表土层(6.11%),红网纹(9.53%)含量是白网纹(3.21%)近乎3倍。R2O3则是白网纹(6.16%)较红网纹(4.59%)偏高。
表 1 金华剖面网纹红土层段主量元素组成(%)及风化参数
样品(数量) SiO2 Fe2O3 Al2O3 K2O Na2O CaO MgO TiO2 MnO P2O5 CIA SiO2/R2O3 ba 表层土(n=1) 70.07 6.11 15.93 1.15 1.08 0.07 0.87 1.18 0.06 0.07 83.50 0.19 0.34 全样(n=22) 平均值 66.27 7.43 17.74 1.17 1.04 0.08 0.77 1.15 0.03 0.06 85.27 5.07 0.29 最小值 61.17 5.75 15.05 1.01 0.97 0.06 0.37 0.56 0.02 0.05 83.53 3.80 0.21 最大值 71.39 10.21 22.79 1.54 1.07 0.17 0.76 1.33 0.05 0.09 87.87 6.40 0.34 红网纹(n=22) 平均值 62.62 9.53 17.47 1.12 0.96 0.08 0.69 1.11 0.03 0.07 85.50 4.59 0.27 最小值 53.17 6.92 15.07 0.93 0.83 0.06 0.42 0.46 0.03 0.06 82.80 3.22 0.18 最大值 69.73 15.18 21.03 1.25 1.04 0.18 0.80 1.29 0.04 0.09 88.76 6.07 0.33 白网纹(n=22) 平均值 73.31 3.21 18.44 1.24 1.14 0.09 0.90 1.25 0.02 0.04 84.26 6.16 0.31 最小值 64.43 2.74 14.79 1.09 1.16 0.07 0.81 0.81 0.02 0.04 82.19 4.10 0.23 最大值 76.90 4.10 24.98 1.45 0.15 0.17 1.02 1.36 0.04 0.06 87.78 7.49 0.36 注: CIA、ba、SiO2/R2O3均按分子比计算,CIA=Al2O3/(Al2O3+CaO+Na2O+K2O)×100,其中CaO指硅酸盐矿物中的摩尔含量,本文采用Mclennan的方法[41]矫正其含量;ba=(K2O+CaO+Na2O+MgO)/Al2O3;R2O3=(Al2O3+Fe2O3)。 -
磁化率(χ)可以代表土壤中反铁磁性、顺磁性和各种铁磁性矿物的感应磁化强度的贡献[42]。在正向加1 000 mT直流得到饱和等温剩磁(SIRM),可指示总磁性矿物含量的多少。当晶粒尺寸大于超顺磁(SP)/单畴(SD)阈值时可用作总磁性矿物浓度的近似值,和χ相比其不受超顺磁颗粒矿物和反铁磁性矿物的影响[43]。金华剖面的表土层磁化率85.20×10-8 m3·kg-1,明显大于红、白网纹均值(15.18×10-8 m3·kg-1、6.12×10-8 m3·kg-1)。就网纹层而言,剖面由上至下红网纹χ先降低后增大,SIRM逐渐增大;白网纹的χ和SIRM低于红网纹,垂向变化不明显(图2a,b)。从上述红、白网纹磁学特征可推断,红网纹铁磁性矿物含量多于白网纹,且这种差异随着深度增加而增大。
硬剩磁(HIRM)多用于指代弱磁性、高矫顽力的如赤铁矿和针铁矿等反铁磁性矿物含量,可以定量说明混合矿物中反铁磁性矿物的绝对浓度[44]。金华剖面表土层HIRM值较小5.75×10-5 Am2/kg,黄棕色土层为44.10×10-5 Am2/kg(图2c)。白网纹HIRM均值(6.99×10-5 Am2/kg)很小,自上而下几乎无波动;红网纹HIRM均值(88.38×10-5 Am2/kg)则很大,且随着深度增加而增大(图2c)。到网纹层下部,红网纹与白网纹的HIRM差值进一步拉大。上述各层的HIRM值差异表明:表土层、黄棕色土层及白网纹反铁磁性矿物含量较少,而红网纹的反铁磁性矿物绝对含量有随深度下降而增多的趋势。
S-ratio(S-100、S-300)提供了高矫顽力剩磁和低矫顽力剩磁相对含量的度量,其值随着不完整反铁磁性矿物含量的增加而下降,值越接近0,表明不完整反铁磁性矿物浓度越大;越接近1,则亚铁磁性矿物含量越高[45]。因此,S-ratio可反映混合矿物中反铁磁性矿物的相对浓度。金华剖面中S-ratio值表现出与HIRM值相反的趋势,表土层和黄棕色土层为剖面最大值,白网纹值大于红网纹(图2g)。垂向上,红网纹S-ratio值自上而下呈降低趋势,在260 cm以下有所回升,而白网纹未有明显变化(图2g)。这表明表土层、黄棕色土层和白网纹的亚铁磁性矿物相对含量较高,而红网纹的反铁磁性矿物(赤铁矿、针铁矿等)相对含量较高,且随着深度增加而增高,与HIRM值反映的结果一致。另一方面,从红网纹S-ratio值自260~370 cm增大推测,该段红网纹中亚铁磁性矿物相对含量也有所增加。
SIRM100 mT/SIRM常被应用于指示赤铁矿含量的相对含量变化,值越大相对含量越多[46]。在金华剖面中,表层土、黄棕色土和白网纹的SIRM100 mT/SIRM值均较低,而红网纹的参数曲线自上而下呈明显增加趋势(图2h),指示前面三者赤铁矿的相对含量较少,红网纹中赤铁矿相对含量则随着深度增加而增多,与前面几个参数所反映的结果一致。
等温剩磁(IRM)和反方向磁场退磁可以提供有关矫顽力(Bc)和剩磁矫顽力(Bcr)分布的信息,有助于区分具有不同矫顽力和剩磁矫顽力磁性矿物[46⁃47]。
IRM在常温下可以用于区分样品中“软”、“硬”磁组分。随着外加磁场强度的增加,磁铁矿和磁赤铁矿等“软”磁组分矿物容易饱和,甚至在较低场(300 mT)范围内就能达到饱和;反之,赤铁矿、针铁矿等“硬”磁组分矿物在1 T或者更高磁场下都难达到饱和[35]。本文选取深度为35 cm的表层土和85 cm的网纹红土,测得最大强度为1 T的连续可变强磁场下表层土和白、红网纹样品等温剩磁获得曲线。如图3所示,表层土的IRM在100 mT之前磁化强度上升迅速,且其SIRM获得曲线在外场0.3 T之前达到90%以上,处于基本饱和状态,说明磁赤铁矿和磁铁矿等低矫顽力的软磁性矿物为表层土的主要剩磁携带者。红网纹和白网纹的IRM曲线则有所不同,在0.3 T之前两者曲线上升速度都低于表层土,但红网纹这种差异更为明显。相较而言,白网纹上升速度更快,红网纹较慢。这一现象证明,白网纹含有一定的软磁性矿物,而红网纹则多为高矫顽力的硬磁性矿物。该结论也得到了剩磁矫顽力数据的支持。
图 3 金华剖面表层土和网纹红土(85 cm)的等温剩磁曲线
Figure 3. Graphs of IRMs of topsoil and reticulate red paleosol (85 cm) in Jinhua section
剩磁矫顽力(Bcr)是使获得SIRM的样品剩磁降低到0所需的反向磁场,可用于了解样品“软”“硬”剩磁组分含量和粒度等信息[35]。如图3所示,表层土和白网纹的剩磁矫顽力较低(0~100 mT),红网纹的剩磁矫顽力明显大于白网纹和表层土,超过400 mT。说明红网纹磁性组分主要为赤铁矿、针铁矿等高矫顽力的硬磁性矿物,而表层土则为低矫顽力的软磁性矿物(如磁赤铁矿、磁铁矿等),且相较于红网纹,白网纹含有一定的低矫顽力磁性矿物。IRM获得曲线表明表土层和白网纹剩磁特征受亚铁磁性矿物主导,而红网纹则主要为反铁磁性矿物所主导。
热磁分析(χ-T)可以提供铁磁性矿物居里温度,从而判断磁性矿物种类和粒度分布[48],如580 ℃为磁铁矿居里温度,680 ℃为赤铁矿居里温度[12]。本文选取表土层、黄棕色土层和网纹层的白、红网纹样品各一个。表层土的χ-T曲线(图4)从常温到300 ℃缓慢上升,并在300 ℃附近出现峰,从300 ℃~450 ℃,曲线明显下滑,之后曲线继续上升,500 ℃左右再次出现隆起,随后在520 ℃~580 ℃迅速降低。前人研究揭示,300 ℃~450 ℃磁化率显著下降可能是磁赤铁矿受热向赤铁矿转化的结果[49]。而300 ℃附近的凸起可能由于土样中SD磁性颗粒解阻[50]或低磁化率矿物受热转化为磁赤铁矿等强磁性矿物[51]。500 ℃附近出现的峰值可能为样品受热含铁硅酸盐矿物或黏土矿物分解形成磁铁矿[21]。冷却曲线在400 ℃附近的隆起可能是加热时新的强磁化率矿物的生成[35]。金华剖面表土层样品热磁曲线580 ℃为磁铁矿的居里温度,指示磁铁矿可能为该层的主要磁性矿物,冷却曲线的χ在585 ℃快速上升也可证明磁铁矿的主导作用。黄棕色土的加热曲线在300 ℃左右也出现峰,并在300 ℃~400 ℃明显下滑,之后继续上升,510 ℃左右再次出现隆起,随后在580 ℃附近迅速降低,且冷却曲线χ值显著大于加热曲线,可能土样在受热中有磁铁矿的生成。通过比较不难发现,黄棕色土和表层土的χ-T曲线特征极为相似,表明两者的磁性矿物均主要为磁铁矿和成土成因的细颗粒磁赤铁矿。
图 4 金华剖面红土样品的磁化率随温度变化(χ⁃T)曲线
Figure 4. Magnetic susceptibility vs. temperature (χ⁃T) of laterite samples in Jinhua section
在网纹红土中,白网纹的加热曲线(图4)在250 ℃~300 ℃有所上升,可能是新生成了少量亚铁磁性矿物;而300 ℃后出现的下降则是细粒磁赤铁矿转变成了赤铁矿。此外分别在300 ℃和510 ℃左右出现的峰值与表层土的成因类似。从室温到520 ℃加热曲线较为平坦,只有微弱起伏和部分峰,在520 ℃~580 ℃忽然下降,说明其居里温度为580 ℃,指示其含有一些较粗的磁铁矿。白网纹在冷却到室温时,磁化率显著增大,但红网纹的磁化率在加热前后差别不明显,表明白网纹在加热过程中有新的磁性矿物形成,后者则很少。
金华剖面红网纹的χ-T曲线在300 ℃前的缓慢降低可能由细粒磁赤铁矿造成,而280 cm处样品χ于600 ℃附近快速下降,也显示了磁赤铁矿的存在;680 ℃后磁化率才接近0,为赤铁矿的居里点,指示存在赤铁矿。结合IRM获得曲线,红网纹样品的χ-T曲线显示了钛磁铁矿及细粒赤铁矿在不同温度区间的解阻,证明红网纹可能含有更多的细粒赤铁矿。75 cm处冷却曲线与加热曲线相比,峰值更高且温度更低,表明有细粒磁铁矿的生成。此外,部分加热曲线磁化率存在很多峰值,可能由少量的纤铁矿、针铁矿受热脱水转化成其他磁性矿物(如赤铁矿或磁赤铁矿等)或含铁硅酸盐矿物转化生成磁铁矿所致。
综上,该剖面不同土壤的磁性矿物类型存在差异,表土层和黄棕色土层主要为磁铁矿和磁赤铁矿,亚铁磁性矿物多于网纹层;网纹层的红网纹有亚铁磁性矿物和反铁磁性矿物,以反铁磁性矿物赤铁矿为主,含量随着深度下降而增加;白网纹的磁性矿物中存在一定的磁赤铁矿和磁铁矿,但含量较低,且剖面中磁性矿物含量变化不大。
-
磁性矿物的粒度对环境很敏感,在风化成土过程中产生较多的细磁性矿物颗粒,被广泛应用于环境研究[34,52]。百分比频率磁化率(χfd%)是SP颗粒对样品质量归一化磁化率(χ)贡献的度量,可以反映成土样品中SP颗粒的含量[53]。当土壤的χfd%小于2%时,则样品几乎不含SP颗粒,含量在10%以下;χfd%为2%~10%时,则MD、SD、SP颗粒同时存在;χfd%为10%~14%时,则主要为SP颗粒,含量超过75%[54]。金华剖面表土层和胶膜层χfd%分别为15.73%和13.41%,黄棕色土层3.89%(图2f)。从上述数据不难推断,表土层和胶膜层存在大量SP颗粒,黄棕色土层MD、SD、SP颗粒同时存在。在网纹层,红网纹的χfd%(1.53%~15.89%)自上而下有降低的趋势,指示随着深度下降SP颗粒含量减少,上层存在SP颗粒,而下层部分样品含有较少甚至不含SP颗粒。
SIRM/χ可用于检测磁晶粒尺寸的变化,较低值可归因于SP等小颗粒浓度较高[45]。ARM主要由单畴(SD)和假单畴(PSD)亚铁磁性颗粒所贡献,因此χARM可以用于估计SD和PSD颗粒含量[55]。χARM/SIRM随着铁磁性颗粒的增大而减小,该参数可避免由于SP颗粒带来的不确定性,较低的比值反映存在较粗的PSD+MD(假单畴与多畴)组分[56]。金华剖面网纹红土下层红网纹的SIRM/χ值(图2d)明显升高,指示土体中SP浓度显著降低,磁性颗粒变粗。从ARM分析,金华剖面红网纹的χARM/SIRM值(图2e)在网纹层中随着深度降低而减小,反映了网纹红土上层的红网纹铁磁性颗粒较细,下层则为较粗的PSD+MD(假单畴与多畴)颗粒,与χfd%、SIRM/χ指示结果一致。
结合χfd%和χARM/SIRM散点图(图5)推断,表土层以SP颗粒为主,黄棕色土层则是MD、SD、SP颗粒同时存在。网纹红土上、下层的红网纹中磁性矿物粒度存在差异:上层,存在部分SP颗粒;下层,红网纹中的磁性颗粒则以MD、PSD和SSD为主。而白网纹在图中散布凌乱,不具指示意义。
综上,表层土以SP等细磁性颗粒为主,黄棕色土则SP、PSD+MD等粗、细磁性颗粒并存。而红网纹上层主要为SP细磁性颗粒,下层则MD、PSD等粗颗粒为主。白网纹由于磁性过弱,磁畴指标参数值多为误差,无法较好地反映其磁性颗粒大小,故不展开叙述。
Magnetic Characteristics Evident in the Formation of the Reticulate Structure of Red Paleosol in Jinhua, Zhejiang
-
摘要: 我国南方分布广泛的第四纪红土对于研究古气候和古环境演变具有重要意义。第四纪红土从上到下发育黄棕色土、均质红土和网纹红土。其中网状结构在以往红土研究中是众所周知的,然而关于其成因仍有待深究。大部分关于成因的分析都是使用地球化学的方法,很少涉及磁学手段。为了洞悉红、白网纹的成因,对浙江金华汤溪镇的网纹红土进行了调查,将红网纹与白网纹进行分离,并运用环境磁学方法分别进行了磁学特性的比较研究。结果表明:红网纹以软磁性矿物(磁铁矿和磁赤铁矿)和硬磁性矿物(赤铁矿)为主,白网纹则主要是软磁性矿物(磁铁矿和磁赤铁矿)。磁化率表明红网纹亚铁磁性矿物多于白网纹,且红网纹亚铁磁性矿物磁性颗粒在上层为超顺磁性颗粒(SP),在下层则是假单畴和多畴(PSD+MD)。相反,亚铁磁性矿物含量太低则无法确定磁性颗粒的粒径大小。地下水淋溶和强风化作用是形成红、白网纹并导致两者磁性特征差异的主要原因,因网纹化作用,白网纹磁性特征剖面上无显著变化,红网纹则变化较明显,能更好地体现网纹红土的成土过程。Abstract: The Quaternary red paleosol widely distributed in southern China is highly significant in studying the evolution of paleoclimate and paleoenvironment. Downwards from the top, the layers are yellow-brown soil, homogeneous red paleosol, and reticulate red paleosol. The reticulate structure is well-documented in previous investigations of red paleosol, but its formation process is still problematic. Most studies of the formation process have used geochemical methods, but few have adopted a magnetic approach. This study investigated a typical red paleosol section from Tangxi town, Jinhua, Zhejiang province. To gain an understanding of the formation of the red veins and white veins, they were separated and their magnetic properties were investigated. It was found that the red veins are magnetically dominated by “soft” magnetic minerals (magnetite and maghemite) and the “hard” magnetic mineral hematite. White veins are magnetically dominated by magnetite and maghemite. The magnetic susceptibility in the ferrimagnetic minerals in the red veins is much greater than in the white veins. In addition, the ferrimagnetic minerals in red veins contain superparamagnetic grains in upper soil layers, but have both pseudo-single-domain grains and multi-domain grains in lower layers. The ferrimagnetic minerals were too small for their grain size to be measured. We propose that groundwater leaching and strong weathering were the main reasons for the formation of the red and white veins and their different magnetic properties. Due to the effect of reticulation, the magnetic parameters in the white veins exhibit no significant change, but they do differ in the red veins. Therefore the magnetic characteristics of the red veins are a better reflection of the formation process of reticulate red soil than those of the white veins.
-
Key words:
- Quaternary red paleosol /
- reticulate red paleosol /
- white veins /
- red veins /
- mineral magnetism
-
表 1 金华剖面网纹红土层段主量元素组成(%)及风化参数
样品(数量) SiO2 Fe2O3 Al2O3 K2O Na2O CaO MgO TiO2 MnO P2O5 CIA SiO2/R2O3 ba 表层土(n=1) 70.07 6.11 15.93 1.15 1.08 0.07 0.87 1.18 0.06 0.07 83.50 0.19 0.34 全样(n=22) 平均值 66.27 7.43 17.74 1.17 1.04 0.08 0.77 1.15 0.03 0.06 85.27 5.07 0.29 最小值 61.17 5.75 15.05 1.01 0.97 0.06 0.37 0.56 0.02 0.05 83.53 3.80 0.21 最大值 71.39 10.21 22.79 1.54 1.07 0.17 0.76 1.33 0.05 0.09 87.87 6.40 0.34 红网纹(n=22) 平均值 62.62 9.53 17.47 1.12 0.96 0.08 0.69 1.11 0.03 0.07 85.50 4.59 0.27 最小值 53.17 6.92 15.07 0.93 0.83 0.06 0.42 0.46 0.03 0.06 82.80 3.22 0.18 最大值 69.73 15.18 21.03 1.25 1.04 0.18 0.80 1.29 0.04 0.09 88.76 6.07 0.33 白网纹(n=22) 平均值 73.31 3.21 18.44 1.24 1.14 0.09 0.90 1.25 0.02 0.04 84.26 6.16 0.31 最小值 64.43 2.74 14.79 1.09 1.16 0.07 0.81 0.81 0.02 0.04 82.19 4.10 0.23 最大值 76.90 4.10 24.98 1.45 0.15 0.17 1.02 1.36 0.04 0.06 87.78 7.49 0.36 注: CIA、ba、SiO2/R2O3均按分子比计算,CIA=Al2O3/(Al2O3+CaO+Na2O+K2O)×100,其中CaO指硅酸盐矿物中的摩尔含量,本文采用Mclennan的方法[41]矫正其含量;ba=(K2O+CaO+Na2O+MgO)/Al2O3;R2O3=(Al2O3+Fe2O3)。 -
[1] 刘东生. 中国的黄土堆积[M]. 北京:科学出版社,1965. Liu Tungsheng. The loess deposits in China[M]. Beijing: Science Press, 1965. [2] 郭正堂,魏兰英,吕厚远,等. 晚第四纪风尘物质成分的变化及其环境意义[J]. 第四纪研究,1999,19(1):41-48. Guo Zhengtang, Wei Lanying, Houyuan Lü, et al. Changes in the composition of Late Pleistocene aeolian dust and the environmental significance[J]. Quaternary Sciences, 1999, 19(1): 41-48. [3] 熊尚发,丁仲礼,刘东生. 南方红土网纹:古森林植物根系的土壤学证据[J]. 科学通报,2000,45(12):1317-1321. Xiong Shangfa, Ding Zhongli, Liu Tungsheng. The worm-shaped veins in the red earth of South China-Pedological evidence for root traces of past forest[J]. Chinese Science Bulletin, 2000, 45(12): 1317-1321. [4] 赵其国,杨浩. 中国南方红土与第四纪环境变迁的初步研究[J]. 第四纪研究,1995,15(2):107-116. Zhao Qiguo, Yang Hao. A preliminary study on red earth and changes of Quaternary environment in South China[J]. Quaternary Sciences, 1995, 15(2): 107-116. [5] 胡雪峰,程天凡,巫和昕. 南方网纹红土内是否可能存在多个“沉积—成土”过程的旋回?[J]. 科学通报,2003,48(9):969-975. Hu Xuefeng, Cheng Tianfan, Wu Hexin. Do multiple cycles of aeolian deposit- pedogenesis exist in the reticulate red clay sections in southern China?[J]. Chinese Science Bulletin, 2003, 48(9): 969-975. [6] 谢树成,易轶,刘育燕,等. 中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J]. 中国科学(D辑):地球科学,2003,33(5):411-417. Xie Shucheng, Yi Yi, Liu Yuyan, et al. The Pleistocene vermicular red earth in South China signaling the global climatic change: The molecular fossil record[J]. Science China (Seri. D): Earth Sciences, 2003, 33(5): 411-417. [7] 朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究,1988,7(4):12-20. Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4): 12-20. [8] 杨达源,韩辉友,周旅复,等. 安徽宣城地区中晚更新世风成堆积与环境变迁[J]. 海洋地质与第四纪地质,1991,11(2):97-104. Yang Dayuan, Han Huiyou, Zhou Lüfu, et al. Eolian deposit and environmental change of Middle-Late Pleistocene in Xuancheng, Anhui province south of the lower reaches of the Changjiang River[J]. Marine Geology & Quaternary Geology, 1991, 11(2): 97-104. [9] 李徐生,杨达源,鹿化煜. 皖南风尘堆积序列氧化物地球化学特征与古气候记录[J]. 海洋地质与第四纪地质,1999,19(4):75-82. Li Xusheng, Yang Dayuan, Lu Huayu. Oxide-geochemistry features and paleocli matic record of the aeolian-dust deposi tional sequence in southern Anhui[J]. Marine Geology & Quaternary Geology, 1999, 19(4): 75-82. [10] 刘良梧,龚子同. 宣城第四纪红色黏土剖面的发育特征[J]. 第四纪研究,2000,20(5):464-468. Liu Liangwu, Gong Zitong. Characteristics of development of Quaternary red clay in Xuancheng, Anhui province[J]. Quaternary Sciences, 2000, 20(5): 464-468. [11] 朱诚. 对庐山东麓第四纪沉积物物源及新构造运动的新认识[J]. 地理学报,1995,50(1):41-50. Zhu Cheng. The new recognitions to genesis Quaternary sediments and Neotectonics in the east piedmont of the Lushan mountain[J]. Acta Geographica Sinica, 1995, 50(1): 41-50. [12] Hu X F, Wei J, Xu L F, et al. Magnetic susceptibility of the Quaternary red clay in subtropical China and its paleoenvironmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 279(3/4): 216-232. [13] 洪祎君. 中国南方网纹红土的形成机制及网纹成熟度研究[D]. 南昌:江西师范大学,2015. Hong Yijun. Research on the formation mechanism of reticulated red clay and growth of reticulated mottles[D]. Nanchang: Jiangxi Normal University, 2015. [14] 胡雪峰,沈铭能,方圣琼. 皖南网纹红土的粒度分布特征及古环境意义[J]. 第四纪研究,2004,24(2):160-166. Hu Xuefeng, Shen Mingneng, Fang Shengqiong. Grain-size distribution of the reticulate red clay in southern Anhui province and its paleo-environmental significance[J]. Quaternary Sciences, 2004, 24(2): 160-166. [15] 黄镇国,张伟强. 中国红土期气候期构造期的耦合[J]. 地理学报,2000,55(2):200-208. Huang Zhenguo, Zhang Weiqiang. Coupling relationship between the red earth evolution, climate change and tectonic movement in China[J]. Acta Geographica Sinica, 2000, 55(2): 200-208. [16] 尹秋珍,郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报,2006,51(2):186-193. Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 186-193. [17] 朱照宇,吴翼,邱世藩,等. 华南沿海第四纪类网纹红土的赋存层位及其年代问题[J]. 地球科学进展,2010,25(4):391-399. Zhu Zhaoyu, Wu Yi, Qiu Shifan, et al. The problems of stratigraphy and chronology of like-vermicular red earth formed in the Quaternary along the coast of South China[J]. Advances in Earth Science, 2010, 25(4): 391-399. [18] 刘彩彩,邓成龙. 南方红土磁性地层年代学研究进展[J]. 地学前缘,2011,18(4):158-170. Liu Caicai, Deng Chenglong. Magnetostratigraphy of the red soil sequences in southern China: Recent developments[J]. Earth Science Frontiers, 2011, 18(4): 158-170. [19] 朱丽东,刘名瑜,谷喜吉,等. 金衢盆地网纹红土色度及其环境意义[J]. 海洋地质与第四纪地质,2014,34(3):133-141. Zhu Lidong, Liu Mingyu, Gu Xiji, et al. Envionmental implication of the color index of the plinthitic red earth in Jinhua-Quzhou Basin[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 133-141. [20] 熊平生. 江西赣南地区网纹红土粒度组合特征及其指示意义[J]. 地球与环境,2011,39(4):485-491. Xiong Pingsheng, Grain-size features of the red earth in southern Jiangxi province and its environmental significance[J]. Earth and Environment, 2011, 39(4): 485-491. [21] 刘彩彩,邓成龙. 南方红土的磁性矿物组成及其区域性差异[J]. 第四纪研究,2012,32(4):626-634. Liu Caicai, Deng Chenglong. Magnetic mineralogy of the red soil sequences in southern China and its variety[J]. Quaternary Sciences, 2012, 32(4): 626-634. [22] 殷科,洪汉烈,韩文,等. 网纹红土中铁矿物与黏土矿物赋存关系的X射线衍射证据[J]. 光谱学与光谱分析,2013,33(4):1126-1129. Yin Ke, Hong Hanlie, Han Wen, et al. Occurrence relationship between iron minerals and clay minerals in net-like red soils: Evidence from X-Ray diffraction[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1126-1129. [23] 叶玮,杨立辉,朱丽东,等. 中亚热带网纹红土的稀土元素特征与成因分析[J]. 地理科学,2008,28(1):40-44. Ye Wei, Yang Lihui, Zhu Lidong, et al. Characteristics and origin of rare earth elements of vermicular red earth in middle sub-tropic zone[J]. Scientia Geographica Sinica, 2008, 28(1): 40-44. [24] 尹秋珍,郭正堂,方小敏. 海南砖红壤的微形态特征以及南方网纹红土与砖红壤环境意义的差异[J]. 土壤学报,2006,43(3):353-361. Yin Qiuzhen, Guo Zhengtang, Fang Xiaomin. Micromorphology of latosols in Hainan and differences between vemiculated red soils and latosols in environmental significance in South China[J]. Acta Pedologica Sinica, 2006, 43(3): 353-361. [25] 李凤全,叶玮,王天阳,等. 网纹红土红色基质与白色条纹铁迁移模型[J]. 第四纪研究,2018,38(2):306-313. Li Fengquan, Ye Wei, Wang Tianyang, et al. The model for iron migration between white reticulated mottles and red matrix[J]. Quaternary Sciences, 2018, 38(2): 306-313. [26] Torrent J, Schwertmann U, Fechter H, et al. Quantitative relationships between soil color and hematite content[J]. Soil Science, 1983, 136(6): 354-358. [27] Liu T, Ding Z, Yu Z. Susceptibility time series of the baoji section and the bearings on paleoclimatic periodicities in the last 2.5 Ma[J]. Quaternary International, 1993, 17(17):33⁃38. [28] 宋扬,郝青振,葛俊逸,等. 黄土高原表土磁化率与气候要素的定量关系研究[J]. 第四纪研究,2012,32(4):679-689. Song Yang, Hao Qingzhen, Ge Junyi, et al. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau[J]. Quaternary Sciences, 2012, 32(4): 679-689. [29] 安芷生, Porter S, Kukla G,等. 最近13万年黄土高原季风变迁的磁化率证据[J]. 科学通报,1990,35(7):529-532. An Zhisheng, Porter S, Kukla G, et al. Magnetic susceptibility evidence of season winds changes on Loess Plateau during the late 139kyr[J]. Science Bulletin, 1990, 35(7): 529-532. [30] 刘秀铭,刘东生, Heller F,等. 黄土频率磁化率与古气候冷暖变换[J]. 第四纪研究,1990(1):42-50. Liu Xiuming, Liu Tungsheng, Heller F, et al. Frequency-dependent susceptibility of loess and Quaternary paleoclimate[J]. Quaternary Sciences, 1990(1): 42-50. [31] 袁宝印,夏正楷,李保生,等. 中国南方红土年代地层学与地层划分问题[J]. 第四纪研究,2008,28(1):1-13. Yuan Baoyin, Xia Zhengkai, Li Baosheng, et al. Chronostratigraphy and stratigraphic division of red soil in southern China[J]. Quaternary Sciences, 2008, 28(1): 1-13. [32] 卢升高,董瑞斌,俞劲炎,等. 中国东部红土的磁性及其环境意义[J]. 地球物理学报,1999,42(6):764-771. Lu Shenggao, Dong Ruibin, Yu Jinyan, et al. Magnetic measurement characterisation of red earth profile in eastern China and its environmental implications[J]. Chinese Journal of Geophysics, 1999, 42(6): 764-771. [33] 胡雪峰,龚子同. 土壤磁化率:作为一种气候指标的局限性[J]. 土壤,1999(1):39-42. Hu Xuefeng, Gong Zitong. Limitation of soil magnetic susceptibility as a climatic index[J]. Soils, 1999(1): 39-42. [34] 邓黄月,郑祥民,杨立辉,等. 长江中下游地区第四纪红土磁学特征及其环境意义[J]. 沉积学报,2015,33(2):285-298. Deng Huangyue, Zheng Xiangmin, Yang Lihui, et al. Magnetic properties of Quaternary red earth profile in Yangtze River valley and its paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2015, 33(2): 285-298. [35] 邓黄月,高悦,郑祥民,等. 我国南方红土岩石磁学特征及其磁化率增强机制[J]. 海洋地质与第四纪地质,2015,35(4):163-175. Deng Huangyue, Gao Yue, Zheng Xiangmin, et al. Rock-magnetic characteristics of the red soils in southern China and the magnetism for enhancing magnetic susceptibility[J]. Marine Geology & Quaternary Geology, 2015, 35(4): 163-175. [36] 刘育燕,林文姣,朱宗敏,等. 南方红土中的磁极倒转以及磁化率变动记录[J]. 地质科技情报,2003,22(3):33-36. Liu Yuyan, Lin Wenjiao, Zhu Zongmin, et al. Geomagnetic polarity reversal records and susceptibility variations of the laterite in South China[J]. Geological Science and Technology Information, 2003, 22(3): 33-36. [37] 卢升高,俞劲炎,章明奎,等. 长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制[J]. 沉积学报,2000,18(3):336-340. Lu Shenggao, Yu Jinyan, Zhang Mingkui, et al. Environmental magnetism of magnetic enhancement for soils formed on Quaternary sediments in Yangtze River valley[J]. Acta Sedimentologica Sinica, 2000, 18(3): 336-340. [38] 刘磊,殷科,朱宗敏,等. 九江红土的磁学特征及其环境意义[J]. 岩石矿物学杂志,2019,38(6):823-833. Liu Lei, Yin Ke, Zhu Zongmin, et al. Magnetic characteristics and environmental significance of Jiujiang red earth[J]. Acta Petrologica et Mineralogica, 2019, 38(6): 823-833. [39] 王思源. 中国南方红土磁学特征、起源及其与成土过程关系研究[D]. 杭州:浙江大学,2014. Wang Siyuan. The red earth in southern China: Its magnetic characters, origins and pedogenic implication[D]. Hangzhou: Zhejiang University, 2014. [40] 张智,凌超豪,贾玉连,等. 多重理化指标揭示的中国南方更新世网纹红土网纹化机制[J]. 地层学杂志,2020,44(1):95-103. Zhang Zhi, Ling Chaohao, Jia Yulian, et al. Multi-physico chemical evidences for formation of Pleistocene reticulated soil and its environmental implication in South China[J]. Journal of Stratigraphy, 2020, 44(1): 95-103. [41] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303. [42] Harrison R J, Feinberg J M. Mineral magnetism: Providing new insights into geoscience processes[J]. Elements, 2009, 5(4): 209-215. [43] 符超峰,宋友桂,强小科,等. 环境磁学在古气候环境研究中的回顾与展望[J]. 地球科学与环境学报,2009,31(3):312-322. Fu Chaofeng, Song Yougui, Qiang Xiaoke, et al. Environmental magnetism and its application progress in paleoclimatic and paleoenvironmental changes[J]. Journal of Earth Sciences and Environment, 2009, 31(3): 312-322. [44] Robinson S G. The Late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements[J]. Physics of the Earth and Planetary Interiors, 1986, 42(1/2): 22-47. [45] Evans M E, Heller F. Environmental magnetism: Principles and applications of enviromagnetics[M]. San Diego: Academic Press, 2003: 299. [46] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 248-259. [47] Liu C C, Deng C L, Liu Q S, et al. Mineral magnetism to probe into the nature of palaeomagnetic signals of subtropical red soil sequences in southern China[J]. Geophysical Journal International, 2010, 181(3): 1395-1410. [48] 敖红,邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展,2007,22(2):432-442. Ao Hong, Deng Chenglong. Review in the identification of magnetic minerals[J]. Progress in Geophysics, 2007, 22(2): 432-442. [49] Liu Q S, Deng C L, Yu Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese Loess/Palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112. [50] Deng C L, Zhu R X, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese Loess Plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718. [51] Liu Q S, Torrent J, Morrás H, et al. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina and its paleoclimatic indications[J]. Geophysical Journal International, 2010, 183(2): 695-705. [52] 卢升高. 中国土壤磁性与环境[M]. 北京:高等教育出版社,2003. Lu Shenggao. Chinese soil magnetism and environment[M]. Beijing: Higher Education Press, 2003. [53] Dearing J A, Dann R J L, Hay K, et al. Frequency-dependent susceptibility measurements of environmental materials[J]. Geophysical Journal International, 1996, 124(1): 228-240. [54] Dearing J A. Environmental magnetic susceptibility: Using the Bartington MS2 system[M]. 2nd ed. England: Chi Publishing, 1999. [55] King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments[J]. Earth and Planetary Science Letters, 1982, 59(2): 404-419. [56] Maher B A, Taylor R M. Formation of ultrafine-grained magnetite in soils[J]. Nature, 1988, 336(6197): 368-370. [57] 袁双. 网纹红土铁形态特征与网纹红土形成环境[D]. 金华:浙江师范大学,2010. Yuan Shuang. Iron features and formation environment of vermicular red earth[D]. Jinhua: Zhejiang Normal University, 2010. [58] 刘玉晶,陆晓辉,罗丹,等. 贵州喀斯特山区典型土壤氧化铁特征及其与土壤类型分异关系[J]. 土壤通报,2021,52(3):505-514. Liu Yujing, Lu Xiaohui, Luo Dan, et al. Characteristics of iron oxides and their relationship with soil types in the karst mountainous areas of Guizhou[J]. Chinese Journal of Soil Science, 2021, 52(3): 505-514. [59] 朱丽东,周尚哲,李凤全,等. 南方更新世红土氧化物地球化学特征[J]. 地球化学,2007,36(3):295-302. Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. Geochemical behavior of major elements of Pleistocene red earth in South China[J]. Geochimica, 2007, 36(3): 295-302. [60] 张晓,朱丽东,黄颖,等. 加积型网纹红土网纹化机制及形成环境[J]. 第四纪研究,2020,40(1):214-228. Zhang Xiao, Zhu Lidong, Huang Ying, et al. The reticulated mechanism and its climatic implication of aggradation red earth[J]. Quaternary Sciences, 2020, 40(1): 214-228. [61] 贾相岳. 黄土高原不同水热条件下黄土母质土壤矿物演化特征[D].武汉:华中农业大学,2013. Jia Xiangyue.Mineralogy characteristics of soil evolution on the loess parent materials under different hydrothermal conditions on the Loess Plateau[D]. Wuhan: Huazhong Agricultural University, 2013. [62] Balsam W L, Ellwood B B, Ji J F, et al. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate[J]. Quaternary Science Reviews, 2011, 30(19/20): 2732-2744. [63] 胡忠行,朱丽东,张卫国,等. 江西九庐公路红土剖面的磁学特征及其反映的风化成土作用[J]. 地球物理学报,2011,54(5):1319-1326. Hu Zhongxing, Zhu Lidong, Zhang Weiguo, et al. Magnetic properties of red clay section along the Jiu-Lu highway at Jiujiang, Jiangxi and implications for pedogenesis[J]. Chinese Journal of Geophysics, 2011, 54(5): 1319-1326. [64] 叶晓雯,韩志勇,李徐生,等. 网纹化对皖南红土特征剩磁的影响[J]. 南京大学学报(自然科学),2014,50(2):192-201. Ye Xiaowen, Han Zhiyong, Li Xusheng, et al. The influence of reticulating process on characteristic remanence of red soil in southern Anhui province[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(2): 192-201. [65] 胡鹏翔,刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义[J]. 第四纪研究,2014,34(3):458-473. Hu Pengxiang, Liu Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance[J]. Quaternary Sciences, 2014, 34(3): 458-473. [66] 黄雨振,陈秀玲,吕镔,等. 福建北部闽江流域第四纪红土的磁学特征及其环境意义[J]. 山地学报,2018,36(4):527-535. Huang Yuzhen, Chen Xiuling, Bin Lü, et al. Magnetic characteristics of Quaternary red earth sequence from the Minjiang drainage basin in northern Fujian and its environmental significance[J]. Mountain Research, 2018, 36(4): 527-535. [67] 刘孝义,周桂琴,梁宝昌. 我国东北地区几种主要土壤磁化率[J]. 沈阳农学院学报,1982(1):7-13. Liu Xiaoyi, Zhou Guiqin, Liang Baochang. Magnetic susceptibility of several soil in the Northeast China[J]. Journal of Shenyang Agricultural College, 1982(1): 7-13. [68] 胡雪峰. “黄土—古土壤”序列中氧化铁和有机质对磁化率的影响[J]. 土壤学报,2004,41(1):7-12. Hu Xuefeng. Influence of iron oxides and organic matter on magnetic susceptibility in the loess-paleosol sequence[J]. Acta Pedologica Sinica, 2004, 41(1): 7-12. [69] Hu X F, Zhao J L, Zhang P F, et al. Fe isotopic composition of the Quaternary red clay in subtropical Southeast China: Redoxic Fe mobility and its Paleoenvironmental implications[J]. Chemical Geology, 2019, 524: 356-367. [70] 李荣彪. 长江中下游网纹红土中氧化铁矿物相及其气候环境意义:以安徽宣城红土剖面为例[D]. 武汉:中国地质大学(武汉),2014. Li Rongbiao. Iron oxide minerals and their palaeoclimatic significance in laterite profile in the middle to lower reaches of the Yangtze River: A case study in Xuancheng laterite profile[D]. Wuhan: China University of Geosciences (Wuhan), 2014. [71] 朱丽东,姜永见,张明强,等. 庐山JL剖面红土磁化率特征及古环境记录[J]. 山地学报,2011,29(4):385-394. Zhu Lidong, Jiang Yongjian, Zhang Mingqiang, et al. Characteristics of magnetic susceptibility and its paleoenvironmental records from JL red earth section, Lushan area[J]. Journal of Mountain Science, 2011, 29(4): 385-394. [72] 魏东岚,沈俊杰,李永化. 红色风化壳地球化学特征及对古气候演变的响应:以辽南石槽剖面为例[J]. 地理科学,2018,38(2):307-313. Wei Donglan, Shen Junjie, Li Yonghua. Geochemical characteristics of red weathering crust from shicao profile in southern Liaoning province and the response of paleoclimate evolution[J]. Scientia Geographica Sinica, 2018, 38(2): 307-313. [73] 黄丽,洪军,谭文峰,等. 几种亚热带土壤铁锰胶膜和基质的表面化学特征[J]. 地球化学,2006,35(3):295-303. Huang Li, Hong Jun, Tan Wenfeng, et al. Surface chemical characteristics of iron-manganese cutan and matrix in several subtropic soils in central China[J]. Geochimica, 2006, 35(3): 295-303. [74] 韩志勇,李徐生,陈英勇,等. 矫顽力组分定量分析揭示下蜀黄土磁化率异常降低的原因[J]. 地球物理学报,2008,51(6):1835-1843. Han Zhiyong, Li Xusheng, Chen Yingyong, et al. Quantification of magnetic coercivity components reveals the cause of anomalous decrease of magnetic susceptibility of the Xiashu loess[J]. Chinese Journal of Geophysics, 2008, 51(6): 1835-1843. [75] 陈曦,张卫国,俞立中. 赤铁矿与磁铁矿混合比例对磁性参数的影响[J]. 地球物理学进展,2009,24(1):82-88. Chen Xi, Zhang Weiguo, Yu Lizhong. The dependence of magnetic parameters on the mixing proportion of hematite and magnetite[J]. Progress in Geophysics, 2009, 24(1): 82-88. [76] Schwertmann U. The effect of pedogenic environments on iron oxide minerals[M]//Stewart B A. Advances in soil science. New York: Springer, 1958. [77] 刁桂仪,文启忠. 黄土风化成土过程中主要元素迁移序列[J]. 地质地球化学,1999,27(1):21-26. Diao Guiyi, Wen Qizhong. The migration series of major elements during loess pedogenesis[J]. Geology-Geochemistry, 1999, 27(1): 21-26. [78] 陈家坊. 土壤胶体中的氧化物[J]. 土壤通报,1981,18(2):44-49. Chen Jiafang. Oxides in soil colloid [J]. Chinese Journal of Soil Science, 1981, 18(2): 44-49. [79] 张家铭,王明光. 台湾红壤及森林土壤中之氧化铁[J]. 土壤学报,1995,32(1):14-22. Zhang Jiaming, Wang Mingguang. Iron oxides distributed in red and forest soils of Taiwan[J]. Acta Pedologica Sinica, 1995, 32(1): 14-22. [80] Liu C C, Dupont-Nivet G, Wang W, et al. Magnetic response to pedogenesis in aerobic soils of different weathering degree[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110240. [81] Wang S Y, Lin S, Lu S G. Rock magnetism, iron oxide mineralogy and geochemistry of Quaternary red earth in central China and their paleopedogenic implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 379-380: 95-103.