-
居仁剖面是一套弱固结的棕黄色砂砾石层(图2a),呈条带状、短垄状分布,走向与附近山脉分水岭平行或垂直,砾石岩性以陆源碎屑岩、花岗岩、石英质为主。整个剖面厚20~30 m,剖面下部(0~3 m)夹有多层黏土—粉砂层(图2e),成层性明显,泥岩主要颜色为浅灰色、浅灰白色和灰绿色,见铁锈色斑、微细层理(图2e)、植物痕迹化石(图2b)以及硅化木(图2c)。在泥岩处测得的地层产状分别为340°∠35°、2°∠13°和6°∠16°。中部见多个旋回递变层理(图2d),砾石的粒级和含量自下(粗砂和砾石)而上(细砂或黏土)逐渐减少,构成下粗上细的递变层理。上部是紫红色或棕红色泥岩,风化破碎严重,形成泥球或泥砾结构。
居仁剖面砾石的粒径集中在20~250 mm(图3a),分选较差;砂砾石层无明显的定向排列;砾石风化程度(图3b)以无风化(52%)和弱风化(37%)为主,其次为中等风化(11%);磨圆度(图3c)以次棱角(57%)和次圆(37%)为主,其次为圆(5%)和棱角(1%);砾石成分(图3d)以陆源碎屑岩(43%)、花岗岩(28%)、石英质(26%)为主,其次为凝灰岩(2%)和流纹岩(1%)。
-
居仁剖面共检测出23种重矿物,包括锆石、萤石、磷灰石、重晶石、白钛石、金红石、锐钛矿、黄铁矿、闪锌矿、石榴子石、电气石、绿帘石、钛铁矿、赤/褐铁矿等(表1),其中榍石、方铅矿、独居石、毒砂、辉石、角闪石、黄铜矿、磁铁矿、磁黄铁矿只在个别样品中偶尔出现。剖面样品的重矿物组成变化较大,以绿帘石(42%)和锐钛矿(9.9%)占优势,其次白钛石(8.7%),重晶石(15.2%)、黄铁矿(14.5%)、萤石(11.3%)和赤/褐铁矿(25.1%)在个别样品中大量出现,其他重矿物含量较少。
表 1 居仁剖面重矿物种类及含量(%)
样品 锆石 萤石 磷灰石 重晶石 白钛石 金红石 锐钛矿 黄铁矿 闪锌矿 石榴子石 电气石 绿帘石 钛铁矿 赤/褐铁矿 ATi指数 GZi指数 JR-1 6.66 0.49 — 1.30 6.55 0.25 20.04 8.47 — 0.15 — 41.27 0.29 3.23 — 2.20 JR-11 0.46 — 0.38 — 20.38 0.05 8.08 — — — 0.68 63.54 1.14 — 35.85 — JR-16 7.26 11.38 — 15.28 1.10 — 8.34 14.50 0.32 0.09 — 6.83 0.09 25.08 — 1.22 JR-27 1.68 8.82 5.18 1.76 8.91 0.09 6.24 5.29 0.71 0.82 0.21 45.00 0.82 6.56 96.10 32.80 JR-30 6.00 1.71 3.46 1.88 6.38 0.90 6.73 1.92 0.77 0.60 0.21 53.33 9.73 1.63 94.28 9.09 注: ATi指数=100×磷灰石%/(磷灰石%+电气石%),GZi指数=100×石榴子石%/(石榴子石%+锆石%)。为了更加准确地反映物源,表1中列出了ATi指数和GZi指数[14]。ATi指数与磷灰石的风化作用呈负相关,值越高,风化越弱。GZi指数用来反映石榴子石的母岩组成。沉积物的ATi在0~96.10%变化(平均为45.25%),GZi在0~32.80%变化(平均为9.06%)。
-
研究样品具有高硅富铝和富钾贫锰的特征(图4a),主要化学成分为SiO2、Al2O3和K2O,其次为Fe2O3和Na2O,而MgO、CaO、TiO2、P2O5、MnO含量较低。与UCC(上陆壳)[15]的平均化学元素组成相比,砂岩中TiO2和K2O明显富集,CaO、MgO和Na2O明显亏损;粉砂岩和泥岩中K2O明显富集,Fe2O3、MgO、CaO、Na2O、MnO和P2O5明显亏损;其他元素表现出不同程度的富集或亏损,SiO2和Al2O3含量与UCC相当。
-
与UCC相比(图4b),对于过渡微量元素(TTE),砂岩中Zn和Ga富集,Co、Ni、Cu表现出不同程度的富集或亏损;粉砂岩和泥岩中Ga富集,Co、Ni、Cu亏损,Zn表现出不同程度的富集或亏损;但Sc、V、Cr组分含量基本和UCC相当。对于高场强元素(HFSE),砂岩中U明显富集,Y、Zr、Hf、Th组分含量基本和UCC相当;粉砂岩中Zr、Hf、U富集,Y和Th含量与UCC相当;泥岩中Hf、U富集,Y、Zr、Th含量与UCC相当;但Nb和Ta却表现出明显的亏损。对于大离子亲石元素(LILE),砂岩、粉砂岩和泥岩中Sr亏损,Cs明显富集,Rb和Ba组分含量基本和UCC相当,Pb表现出不同程度的富集或亏损。
-
样品的REE分配模式呈左陡右缓的分布趋势(图4c),说明物源相同且稳定。La-Sm曲线较陡,Eu处呈明显的V字形,Dy-Lu曲线较平缓显示出轻稀土富集、重稀土亏损以及Eu明显负异常的分布特征。稀土元素∑REE介于129.84~298.79 μg/g,平均为195.72 μg/g,高于UCC和PAAS(后太古宙页岩标准值)[15]的稀土元素总量。∑LREE为113.13~270.85 μg/g,平均为176.31 μg/g,∑HREE为12.58~27.95 μg/g,平均为19.41 μg/g,LREE/HREE为5.98~12.24,平均为9.13,同样说明轻稀土富集,稀土元素球类陨石的归一化模式与UCC、PAAS相似。LaN/YbN比值为6.41~14.01,平均为9.43,说明轻重稀土分异明显,轻稀土富集;LaN/SmN比值为2.87~6.71,平均为3.83,说明轻稀土元素分馏程度明显;GdN/YbN比值为1.27~2.12,平均为1.64,说明重稀土元素分馏程度明显。
Sedimentary Characteristics and Environmental Significance of the Juren Sandy Gravel Profile in Harbin
-
摘要: 前人将黑龙江宾县居仁镇的砂砾石层(居仁剖面)视为罗家窝棚组,成因类型为早更新世早期的冰碛物堆积。然而,居仁剖面和罗家窝棚组的研究极为薄弱,极大限制了该地层所记录的区域构造—地貌—气候—水系演化信息。选择居仁剖面为研究对象,对其沉积学、矿物学和元素地球化学特征进行研究。结果表明,居仁剖面砾石风化程度较低、分选差、磨圆较好、无定向性,砾石成分以陆源碎屑岩(43%)、花岗岩(28%)和石英质(26%)为主,凝灰岩和流纹岩少量出现。重矿物组成以绿帘石(42%)和锐钛矿(9.9%)占绝对优势,其次为白钛石(8.7%),重晶石(15.2%)、黄铁矿(14.5%)和萤石(11.3%)在个别样品中大量出现,其他重矿物含量较少。元素地球化学揭示了居仁剖面沉积物弱—中等的化学风化程度,大部分沉积物经历了首次循环以及其长英质的母岩属性。与罗家窝棚组标准地层的沉积学特征对比,沉积物的颜色、固结程度、沉积物结构、地层结构、沉积物成因类型以及地貌特征等都存在显著差异。因此,居仁剖面不是罗家窝棚组,成因类型为湖滨或河流入湖三角洲沉积。上述研究对于哈尔滨地区第四纪地层的划分和早更新世区域环境的重建有重要意义。Abstract: The gravel layer (Juren profile) in Juren town, Bin county, Heilongjiang province has previously been regarded as part of the Luojiawopeng Formation, and its genesis was thought to be Early Pleistocene glacial moraine deposits. Very little research has been done on the Juren profile and the Luojiawopeng Formation, however, which has greatly restricted reconstruction of the regional tectonic-landform-climate-drainage evolution from the information recorded in the strata. To throw more light on this topic, the Juren profile was selected to study its sedimentology, mineralogy and elemental geochemistry. It was found that the gravel has a low degree of weathering, poor sorting, good rounding, and is non-directional. It is dominated by terrigenous clastic rocks (43%), granite (28%) and quartz (26%), and contains small amounts of tuff and rhyolite. The composition of heavy minerals is dominated by epidote (42%) and anatase (9.9%), followed by leucoxene (8.7%), barite (15.2%), pyrite (14.5%) and fluorite (11.3%). They occur in large amounts in individual samples, with a lower content of other heavy minerals. Elemental geochemical tests revealed a weak-to-medium degree of chemical weathering, most of which has undergone the first cycle and retains its felsic source-rock properties. Sediment color, degree of consolidation, sediment structure, stratigraphic structure, sediment genetic type and geomorphological characteristics are all significantly different from those in the Luojiawopeng Formation, from which it is inferred that the two are not related. The genetic type is lakeside or river inflow delta deposit. These findings are of great importance for the division of Quaternary strata in the Harbin area and for the reconstruction of the regional environment in the Early Pleistocene.
-
Key words:
- geochemistry /
- chemical weathering /
- gravel /
- Luojiawopeng Formation /
- Juren profile
-
表 1 居仁剖面重矿物种类及含量(%)
样品 锆石 萤石 磷灰石 重晶石 白钛石 金红石 锐钛矿 黄铁矿 闪锌矿 石榴子石 电气石 绿帘石 钛铁矿 赤/褐铁矿 ATi指数 GZi指数 JR-1 6.66 0.49 — 1.30 6.55 0.25 20.04 8.47 — 0.15 — 41.27 0.29 3.23 — 2.20 JR-11 0.46 — 0.38 — 20.38 0.05 8.08 — — — 0.68 63.54 1.14 — 35.85 — JR-16 7.26 11.38 — 15.28 1.10 — 8.34 14.50 0.32 0.09 — 6.83 0.09 25.08 — 1.22 JR-27 1.68 8.82 5.18 1.76 8.91 0.09 6.24 5.29 0.71 0.82 0.21 45.00 0.82 6.56 96.10 32.80 JR-30 6.00 1.71 3.46 1.88 6.38 0.90 6.73 1.92 0.77 0.60 0.21 53.33 9.73 1.63 94.28 9.09 注: ATi指数=100×磷灰石%/(磷灰石%+电气石%),GZi指数=100×石榴子石%/(石榴子石%+锆石%)。 -
[1] Nesbitt H W, Young G M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology, 1996, 43(2): 341-358. [2] Muhs D R. Mineralogical maturity in dunefields of North America, Africa and Australia[J]. Geomorphology, 2004, 59(1/2/3/4): 247-269. [3] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [4] Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4): 1-11. [5] Garzanti E, Vezzoli G, Andò S, et al. Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya)[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 500-515. [6] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113. [7] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Papers-Geological Society of America, 1993, 284: 21-40. [8] 蔡观强,郭锋,刘显太,等. 碎屑沉积物地球化学:物源属性、构造环境和影响因素[J]. 地球与环境,2006,34(4):75-83. Cai Guanqiang, Guo Feng, Liu Xiantai, et al. Clastic sediment geochemistry: Implications for provenance and tectonic setting and its influential factors[J]. Earth and Environment, 2006, 34(4): 75-83. [9] 叶启晓. 黑龙江省哈尔滨(荒山、顾乡屯)地区第四纪地质研究[R]. 1984:1-172. Ye Qixiao. Quaternary geology research in Harbin (Huangshan,Guxiangtun) area, Heilongjiang province[R]. 1984: 1-172. [10] 中国地质科学院地矿所. 砂矿物鉴定手册[M]. 北京:地质出版社,1977:58-63. Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences. Sand mineral appraisal manual[M]. Beijing: Geological Publishing House, 1977: 58-63. [11] 沈丽琪. 沉积岩重矿物研究中的几个重要概念及其应用[J]. 中国科学 B辑,1985(1):70-78. Shen Liqi. Several important concepts and applications in the study of heavy minerals in sedimentary rocks[J]. Science in China, Seri. B, 1985(1): 70-78. [12] 马婉仙. 重砂测量与分析[M]. 北京:地质出版社,1990:159-163. Ma Wanxian. Heavy sand measurement and analysis[M]. Beijing: Geological Publishing House, 1990: 159-163. [13] 熊聪慧,王雪莲. 电感耦合等离子体发射光谱法测定地质样品中K、Ca等常量元素的前处理方法对比[J]. 分析测试技术与仪器,2020,26(1):30-36. Xiong Conghui, Wang Xuelian. Comparison of pretreatment methods for major elements such as potassium, calcium, etc, in determination of geological samples by inductively coupled plasma optical emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2020, 26(1): 30-36. [14] 孙磊,谢远云,康春国,等. 呼伦贝尔沙地重矿物、Sr-Nd同位素组成及其对亚洲风尘吸通的指示[J]. 中国地质,2021,48(6):1965-1974. Sun Lei, Xie Yuanyun, Kang Chunguo, et al. Heavy minerals, Sr-Nd isotopic composition of sandy land in Hulun Buir, Inner Mongolia and their implications for Asian aeolian dust system [J]. Geology in China, 2021,48(6):1965-1974. [15] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Carlton: Blackwell Scientific Publication, 1985. [16] Xie Y Y, Yuan F, Zhan T, et al. Geochemical and isotopic characteristics of sediments for the Hulun Buir Sandy Land, northeast China: Implication for weathering, recycling and dust provenance[J]. Catena, 2018, 160: 170-184. [17] 付玲,关平,赵为永,等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报,2013,29(8):2867-2875. Fu Ling, Guan Ping, Zhao Weiyong, et al. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in Qaidam Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875. [18] 杨守业,印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质,2018,38(1):1-10. Yang Shouye, Yin Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 1-10. [19] 林刚,陈琳莹,罗敏,等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质,2019,39(3):12-27. Lin Gang, Chen Linying, Luo Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27. [20] 李徐生,韩志勇,杨守业,等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报,2007,62(11):1174-1184. Li Xusheng, Han Zhiyong, Yang Shouye, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Acta Geographica Sinica, 2007, 62(11): 1174-1184. [21] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [22] McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1153-1177. [23] 陈骏,安芷生,刘连文,等. 最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑):地球科学,2001,31(2):136-145. Chen Jun, An Zhisheng, Liu Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland[J]. Science China (Seri. D): Earth Sciences, 2001, 31(2): 136-145. [24] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. [25] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93. [26] Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift[J]. The Journal of Geology, 2013, 121(6): 547-580. [27] 袁方,谢远云,詹涛,等. 地球化学组成揭示的杜蒙沙地化学风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理科学,2017,37(12):1885-1893. Yuan Fang, Xie Yuanyun, Zhan Tao, et al. Source-area weathering and recycled sediment for Dumeng sandy land inferred from geochemistry compositions: Implication for contribution to aeolian dust[J]. Scientia Geographica Sinica, 2017, 37(12): 1885-1893. [28] 李碧乐,孙永刚,陈广俊,等. 小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义[J]. 地球科学,2016,41(1):1-16. Li Bile, Sun Yonggang, Chen Guangjun, et al. Zircon U-Pb geochronology, geochemistry and Hf isotopic composition and its geological implication of the fine-grained syenogranite in Dong’an goldfield from the Lesser Xing'an Mountains[J]. Earth Science, 2016, 41(1): 1-16. [29] 耿雯,秦江锋,李永飞,等. 黑龙江张广才岭一面坡晚三叠世花岗岩地球化学特征和LA-ICP-MS锆石U-Pb年龄[J]. 地质通报,2014,33(9):1333-1341. Geng Wen, Qin Jiangfeng, Li Yongfei, et al. Geochemistry and LA-ICP-MS zircon U-Pb age of the Late Triassic granite from Yimianpo area, Zhangguangcai Mountain, Heilongjiang province[J]. Geological Bulletin of China, 2014, 33(9): 1333-1341. [30] 卢仁,梁涛. 华北克拉通南缘早白垩世天目山A型花岗岩的锆石稀土元素和岩石地球化学特征[J]. 地质论评,2020,66(6):1676-1695. Lu Ren, Liang Tao. Zircon rare earth elements and geochemical features of the Early Cretaceous Tianmushan A-type granite in the south margin of the North China Craton[J]. Geological Review, 2020, 66(6): 1676-1695. [31] 何雨思,高福红,修铭,等. 张广才岭福兴屯组的形成时代、物源及构造背景[J]. 地球科学,2019,44(10):3223-3236. He Yusi, Gao Fuhong, Xiu Ming, et al. Age, Provenance and tectonic setting of Fuxingtun Formation in Zhangguangcai Range[J]. Earth Science, 2019, 44(10): 3223-3236. [32] Girty G H, Ridge D L, Knaack C. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research,1996, 66(1): 107-118. [33] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139. [34] Bauluz B, Mayayo M J, Fernandez-Nieto C, et al. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): Implications for source-area weathering, sorting, provenance, and tectonic setting[J]. Chemical Geology, 2000, 168(1/2): 135-150. [35] Gu X X. Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting[J]. Geochimica et Cosmochimica Acta, 1994, 58(21): 4615-4631. [36] 康春国,李长安,谢远云,等. 哈尔滨地区风尘黄土重矿物特征及物源分析[J]. 自然灾害学报,2011,20(4):43-51. Kang Chunguo, Li Chang’an, Xie Yuanyun, et al. Heavy mineral characteristics of eolian loess deposits in Harbin area and its provenance implications[J]. Journal of Natural Disasters, 2011, 20(4): 43-51. [37] 林秀斌,陈汉林, Wyrwoll K H,等. 青藏高原东北部隆升:来自宁夏同心小洪沟剖面的证据[J]. 地质学报,2009,83(4):455-467. Lin Xiubin, Chen Hanlin, Wyrwoll K H, et al. Uplift of the northeastern Tibetan Plateau: Evidences from the Xiaohonggou section in Tongxin, Ningxia[J]. Acta Geologica Sinica, 2009, 83(4): 455-467. [38] 成都地质学院,刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:104-113. Chengdu Institute of Geology, Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 104-113. [39] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:41-50. Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 41-50. [40] 朱筱敏. 沉积岩石学[M]. 第四版. 北京:石油工业出版社,2008:56-58. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 56-58. [41] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2):11-21. Wang Chengshan, Hu Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11-21. [42] 宋慧波,毕瑜珺,胡斌. 豫西下二叠统太原组遗迹化石与古氧相的响应特征[J]. 古地理学报,2017,19(4):653-662. Song Huibo, Bi Yujun, Hu Bin. Responding characteristics between ichnofossils and palaeo-oxygen facies in the Lower Permian Taiyuan Formation of western Henan province[J]. Journal of Palaeogeography, 2017, 19(4): 653-662. [43] 孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征[J]. 海洋地质与第四纪地质,1990,10(3):23-34. Sun Baiyun. Detrital mineral assemblages in the Huanghe, Changjiang and Zhujiang River delta sediments[J]. Marine Geology & Quaternary Geology, 1990, 10(3): 23-34. [44] 陈丽蓉. 中国海沉积矿物学[M]. 北京:海洋出版社,2008:1-476. Chen Lirong. Sedimentary mineralogy of the China sea[M]. Beijing: Ocean Press, 2008: 1-476. [45] 金秉福,林振宏,杨群慧,等. 沉积矿物学在陆缘海环境分析中的应用[J]. 海洋地质与第四纪地质,2002,22(3):113-118. Jin Bingfu, Lin Zhenhong, Yang Qunhui, et al. Application of sedimentary mineralogy to the environmental analysis in marginal seas[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 113-118. [46] 和钟铧,刘招君,张峰. 重矿物在盆地分析中的应用研究进展[J]. 地质科技情报,2001,20(4):29-32. He Zhonghua, Liu Zhaojun, Zhang Feng. Latest progress of heavy mineral research in the basin analysis[J]. Geological Science and Technology Information, 2001, 20(4): 29-32. [47] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学:中国地质大学学报,2009,34(3):419-427. Kang Chunguo, Li Changan, Wang Jietao, et al. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(3): 419-427. [48] 李双建,王清晨,李忠. 库车坳陷库车河剖面重矿物分布特征及其地质意义[J]. 岩石矿物学杂志,2005,24(1):53-61. Li Shuangjian, Wang Qingchen, Li Zhong. Characteristics of Mesozoic and Cenozoic heavy minerals from Kuche River section in Kuche Depression and their geological implications[J]. Acta Petrologica et Mineralogica, 2005, 24(1): 53-61. [49] 方世虎,宋岩,贾承造,等. 新疆博格达地区中新生代碎屑成分特征与盆山分异过程[J]. 地质学报,2007,81(9):1229-1237. Fang Shihu, Song Yan, Jia Chengzao, et al. The Mesozoic-Cenozoic clastic composition of Bogda area, Xinjiang: Implications on the evolution of basin-range pattern[J]. Acta Geologica Sinica, 2007, 81(9): 1229-1237. [50] 李忠,王道轩,林伟,等. 库车坳陷中—新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报,2004,20(3):655-666. Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-Cenozoic clastic composition in Kuqa Depression, northwest China: Implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666. [51] 朱志军. 川东南地区志留系小河坝组沉积体系及物质分布规律研究[M]. 北京:地质出版社,2011:36-42. Zhu Zhijun. A study on the sedimentary system and material distribution law of the Silurian Xiaoheba Formation in southeastern Sichuan[M]. Beijing: Geological Publishing House, 2011: 36-42. [52] 魏春艳,谢远云,康春国,等.哈尔滨地区罗家窝棚组地层的沉积学、矿物学及地球化学特征:对沉积环境的指示[J]. 地质科学, 2022. 57(1): 172-189. Wei Chunyan, Xie Yuanyun, Kang Chunguo, et al. Sedimentological, mineralogical, and geochemical characteristics of the Luojiawopeng Fm. in Harbin: Implications for the sedimentary environment[J]. Chinese Journal of Geology, 2022, 57(1): 172-189.