-
选取的17个奥陶系原油样品,均采自塔里木盆地塔河油田,主要包括艾丁、于奇、托甫台及跃进等区域,深度范围主要介于5 500~7 000 m(表1)。根据塔河油田奥陶系原油物性的差异,可以将原油样品采集区划分为重质油区、中质油区和轻质油区(图1)。
表 1 塔河油田奥陶系原油相关地球化学参数
Table 1. Relevant geochemical parameters of Ordovician crude oil in Tahe oilfield
井号 深度/m 层位 a b c d e f g h i j k l m n o p q r s AD4 6 448~6 558 O 1.30 1.08 1.05 0.73 0.41 0.55 2.45 1.83 15.89 0.56 0.29 0.32 0.56 0.49 0.75 0.94 0.45 1.82 5.39 YQX1-1 5 920~5 985 O1-2y 7.02 1.19 1.02 1.05 0.36 0.42 2.80 2.38 10.18 0.58 0.25 0.55 0.54 0.48 0.66 0.74 0.48 2.08 3.31 YQ5 — O1-2y 2.09 1.04 0.93 0.78 0.40 0.54 2.51 1.85 5.25 0.62 0.27 0.46 0.56 0.49 0.65 0.79 0.49 2.17 4.50 TP31 6 477~6 638 O2yj 3.36 1.09 1.18 0.77 0.43 0.66 2.35 1.51 4.85 0.47 0.31 0.41 0.56 0.48 0.53 0.58 0.35 0.68 5.71 TP134 6 532~6 655 O2yj 2.89 1.19 1.01 0.80 0.55 0.76 1.83 1.31 8.66 0.39 0.27 0.31 0.56 0.48 0.53 0.56 0.35 0.73 5.19 TP138X — O2yj 4.69 1.00 1.13 0.70 0.49 0.90 2.04 1.11 6.88 0.44 0.26 0.25 0.56 0.48 0.59 0.66 0.37 0.57 4.69 AT20 6 100~6 130 O2yj 10.82 1.01 0.99 1.08 0.33 0.39 3.02 2.56 7.15 0.81 0.38 0.15 0.54 0.48 0.77 0.87 0.49 — 9.26 S86 — O2yj 4.91 1.28 0.93 0.73 0.35 0.52 2.90 1.92 9.82 0.41 0.28 0.22 0.56 0.49 0.63 0.69 0.38 0.29 3.97 TP23 6 588~6 705 O2yj 2.12 1.08 0.96 0.98 0.53 0.64 1.89 1.55 7.35 0.54 0.31 0.36 0.55 0.46 0.62 0.72 0.41 0.36 8.30 T738 6 045~6 090 O1 2.00 1.09 1.08 0.60 0.43 0.87 2.35 1.15 8.23 0.35 0.24 0.26 0.56 0.48 0.68 0.84 0.46 0.41 2.74 S1144 6 150 O2yj 3.46 1.04 0.98 0.81 0.35 0.48 2.84 2.07 15.03 0.72 0.28 0.23 0.54 0.47 0.65 0.74 0.40 — 4.39 TP37 6 804~6 940 O2yj 3.95 1.03 1.03 0.97 0.35 0.44 2.87 2.28 22.43 0.83 0.31 0.28 0.54 0.48 0.68 0.78 0.40 — 13.53 AT17 6 375~6 440 O2yj 1.29 1.01 1.01 1.08 0.19 0.20 5.20 4.94 6.63 — 0.27 0.29 0.53 0.49 0.67 0.77 0.43 — 9.78 AT28 6 582~6 736 O2yj 1.23 1.00 1.00 0.94 0.17 0.18 6.00 5.58 15.97 1.31 0.62 0.42 0.55 0.46 0.83 0.93 0.50 — — S107CH 6 170 O2yj 1.59 1.00 1.01 1.10 0.19 0.20 5.17 4.97 10.22 0.90 0.48 0.38 0.58 0.48 0.83 0.94 0.50 — — AT27X 6 867~6 996 O2yj 5.90 1.01 1.02 1.06 0.26 0.31 3.83 3.25 15.47 0.65 0.42 0.35 0.57 0.48 0.95 1.06 0.52 — — S101 5 756~5 817 O2yj 0.62 1.00 1.01 0.89 0.20 0.23 4.94 4.39 14.27 0.30 0.47 0.60 0.57 0.49 0.78 0.86 0.44 — — 注: (1)a.ΣnC21-/ΣnC22+;b.CPI;c.OEP;d.Pr/Ph;e.Pr/nC17;f.Ph/nC18;g.nC17/Pr;h.nC18/Ph;i.MDBTs/MDBTFs;j.C21⁃22甾烷/(C21⁃22+C27⁃29)甾烷;k.C27dia/(dia+reg)甾烷;l.GI;m.C29甾烷ββ/(αα+ββ);n.C29甾烷S/(S+R);o.MPI1;p.MPI2;q.MPDF1;r.C28⁃25降藿烷/C29⁃17α(H)藿烷;s.Σ三环萜烷/C29-17α(H)藿烷;(2)CPI.碳优势指数,CPI=[Σ(C25~C33)/Σ(C24~C32)+Σ(C25~C33)/Σ(C26~C34)] ;OEP.奇偶优势指数,OEP=[(Ci+6Ci+2+Ci+4)/4Ci+1+4Ci+3](-1)i+1,Ci为碳数等于i的正构烷烃的相对含量;Pr/Ph=姥鲛烷/植烷;MDBTs.甲基二苯并噻吩系列;MDBTFs.甲基二苯并呋喃系列;dia甾烷.重排甾烷;reg甾烷.规则甾烷;GI.伽马蜡烷指数,GI=伽马蜡烷/C3017α(H)-藿烷;MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);MPI2=3×2-MP/(P+9-MP+1-MP);MPDF1.甲基菲分馏指数,MPDF1=(3-MP+2-MP)/(3-MP+2-MP+9-MP+1-MP);P.菲;MP.甲基菲。 -
利用正己烷将原油样品中的沥青质沉淀析出,其可溶组分经浓缩后,通过硅胶—氧化铝(硅胶:氧化铝=3∶1)层析柱,分别采用正己烷和二氯甲烷依次将饱和烃及芳烃淋洗出来。之后对饱和烃和芳烃组分进行气相色谱—质谱(GC-MS)分析。利用尿素络合法将剩余饱和烃馏分进行分离提纯,去除其中所含的支链和环烷烃,以降低其他化合物对正构烷烃单体碳同位素组成分析结果的影响。
-
分析仪器为安捷伦6890N-5973N气相色谱质谱仪,仪器编号CO38;色谱柱是DB-5MS色谱柱,30 m×0.25 mm×0.25 μm;采用手动无分流进样的方法,进样量1.0 μL,氦气流量0.8 mL/min;初始温度80 ℃,恒温3 min后,以3 ℃/min的速率升至230 ℃,再以2 ℃/min升至310 ℃后恒温15 min;进样口温度290 ℃,离子源温度230 ℃,传输线温度300 ℃;扫描周期0.66 cyc/sec;电离电压70 eV,离子源类型EI+;使用NIST 05谱库对化合物进行定性分析,采用峰面积计算相关的生物标志化合物参数。
-
仪器型号MAT253,仪器编号C033;色谱柱是Pona毛细色谱柱;采用无分馏进样的方法,进样量0.5 μL;氦气流量0.8 mL/min;柱箱初始温度80 ℃,恒温3 min后,以3 ℃/min的速率升至190 ℃,再以2 ℃/min升至290 ℃后恒温25 min;进样器温度280 ℃。
-
塔河油田奥陶系原油的饱和烃组分以正构烷烃系列化合物为主,碳数分布范围较广,为nC11~nC36,主峰碳为nC16或nC17。姥植比(Pr/Ph)介于0.60~1.10,平均值为0.89。从重质原油到中质原油再到轻质原油,Pr/nC17值和Ph/nC18值逐渐变小。伽马蜡烷指数(GI)介于0.15~0.60,平均值为0.44。此外,三类原油饱和烃中检出三环萜烷、藿烷及甾烷,其中,甾烷主要包括C27~C29常规甾烷、重排甾烷、孕甾烷、升孕甾烷等(图2)。三类原油C29甾烷ββ/(αα+ββ)值介于0.53~0.57,平均值为0.56,C29甾烷20S/(20S+20R)值介于0.46~0.49,平均值为0.48(表1)。
图 2 三类原油代表性TIC、m/z 191、m/z 217质量色谱图
Figure 2. Representative TIC, m/z 191 and m/z 217 mass chromatograms for heavy, medium and light crude oil
芳烃组分中检出菲、甲基菲系列、甲基二苯并噻吩系列及甲基二苯并呋喃系列等化合物。其中,重质原油甲基菲指数(MPI1)值介于0.53~0.75,平均值为0.62,中质原油MPI1值介于0.62~0.77,平均值为0.67,轻质原油MPI1值介于0.78~0.95,平均值为0.85,从重质原油到中质原油再到轻质原油,MPI1值逐渐变大。三类原油甲基二苯并噻吩系列/甲基二苯并呋喃系列(MDBTs/MDBTFs)值介于4.85~22.43,平均值为10.84(表1)。
-
塔河油田奥陶系原油正构烷烃单体碳同位素组成(δ13Calkane)如表2所示。其中,重质原油δ13Calkane值介于-37.0‰~-33.4‰,平均值为-34.4‰;中质原油δ13Calkane值介于-36.1‰~-33.5‰,平均值为-34.6‰;轻质原油δ13Calkane值介于-34.4‰~-31.6‰,平均值为-32.6‰。
表 2 塔河油田奥陶系原油正构烷烃单体碳同位素值(δ13Calkane/‰,VPDB)
Table 2. Carbon isotope values of individual n⁃alkane in Ordovician crude oil in Tahe oilfield (δ13Calkane/‰, VPDB)
井号 nC14 nC15 nC16 nC17 nC18 nC19 nC20 nC21 nC22 AD4 -32.3 -33.0 -33.6 -33.7 -35.2 -34.8 -33.7 -35.0 -33.9 YQX1-1 -33.1 -33.5 -34.0 -33.7 -33.6 -34.3 -34.2 -35.0 -34.6 YQ5 -33.4 -34.4 -34.3 -34.2 -34.9 -35.3 -35.2 -35.2 -34.8 TP31 -33.6 -33.8 -35.0 -35.4 -36.0 -36.7 -35.3 -37.0 -36.2 TP134 -33.8 -34.3 -33.7 -34.2 -34.0 -34.2 -36.3 -33.9 -34.0 TP138X -34.1 -33.9 -34.0 -34.9 -35.9 -36.2 -35.5 -36.2 -35.0 AT20 -34.0 -34.1 -33.9 -34.0 -34.3 -34.4 -34.3 -34.7 -34.4 S86 -34.7 -34.1 -33.5 -33.9 -34.2 -34.9 -33.8 -34.9 -33.7 TP23 -34.0 -34.5 -35.2 -34.3 -35.2 -35.0 -34.3 -35.5 -34.8 T738 -34.6 -34.1 -35.0 -35.0 -35.0 -33.4 -34.1 -33.3 -33.6 S1144 -34.4 -34.8 -34.4 -34.8 -35.3 -34.8 -34.2 -35.3 -36.1 TP37 -35.1 -34.8 -34.1 -35.2 -35.1 -35.8 -35.1 -35.9 -35.2 AT17 -35.2 -35.6 -35.3 -35.2 -34.9 -34.8 -34.9 -35.1 -34.4 AT28 -31.9 -32.1 -32.5 -31.6 -32.7 -32.7 -32.5 -33.5 -32.3 S107CH -32.4 -32.3 -32.4 -32.2 -32.4 -32.0 -31.9 -32.6 -32.4 AT27X -32.4 -33.1 -32.3 -32.7 -33.5 -33.0 -32.1 -33.5 -34.4 S101 -32.2 -34.5 -33.1 -33.6 -33.3 -33.8 -33.6 -34.0 -33.1 不同类型原油δ13Calkane值分布曲线如图3所示,δ13Calkane值的变化主要有以下特征:(1)三类原油的δ13Calkane值介于-37‰~-31‰;(2)从重质原油到中质原油再到轻质原油,δ13Calkane值逐渐变大;(3)中质原油、轻质原油中δ13Calkane值曲线变化较为平缓,而重质原油中低碳数正构烷烃(C14~C19)碳数越小,δ13Calkane值越大,高碳数部分变化较为平缓。
正构烷烃单体碳同位素组成差异分析以塔河油田奥陶系原油为例
doi: 10.14027/j.issn.1000-0550.2022.098
cstr: 32268.14.cjxb.62-1038.2022.098Analysis of Carbon Isotopic Compositional Differences of Individual n-Alkane: Case study of Ordovician crude oil in Tahe oilfield
-
摘要:
目的 为明确原油正构烷烃单体碳同位素(δ13Calkane)组成差异的成因。 方法 研究分析了塔北地区奥陶系共计17个原油样品δ13Calkane组成特征,结合相关有机地球化学参数,从沉积环境、成熟度和生物降解作用三个方面解释了三类原油δ13Calkane值的变化趋势。 结果与结论 根据物性的差异,可将塔北地区原油分为重质、中质和轻质三类。塔北地区奥陶系原油δ13Calkane值介于-37‰~-31‰,呈现出海相原油的特征,表明原油δ13Calkane组成及分布范围受其形成的沉积环境和母质类型控制;从重质原油到中质原油再到轻质原油,成熟度逐渐增大,导致原油δ13Calkane值正偏;相较于中质原油和轻质原油,重质原油低碳数部分δ13Calkane明显变大,表明生物降解程度是重质原油中、低分子量正构烷烃δ13C14~δ13C19值正偏的主要影响因素。
-
关键词:
- 正构烷烃单体碳同位素组成 /
- 生物标志化合物 /
- 成熟度 /
- 生物降解 /
- 塔河原油
Abstract:Objective To clarify the cause of the different compositions of the individual crude n-alkane carbon isotope (δ13Calkane) in the three categories, Methods in this study the composition of δ13Calkane in 17 Ordovician crude oil samples from the northern Tahe oilfield, combined with relevant organic geochemical parameters, were examined for depositional environment, maturity and biodegradation. [Results and conclusions] The differences in physical properties allows the crude oils in Tahe to be categorized as heavy, medium and light crude oils. The δ13Calkane value is between 37‰ and -31‰. It has the properties of marine crude oil, indicating that the composition and distribution of δ13Calkane are by the depositional environment and the type of parent material. Maturity gradually increases from heavy to medium to light crude oil, in turn leading to heavier δ13Calkane values, which is significantly higher in the lowcarbon-number part of the heavy crude oil. The heavy crude oil has been more strongly biodegraded than the medium and light crude oil, indicating that the degree of biodegradation is the main factor affecting the positive bias of δ13C14 to δ13C19 values of the medium- and low molecular weight n-alkanes in heavy crude oil.
-
表 1 塔河油田奥陶系原油相关地球化学参数
Table 1. Relevant geochemical parameters of Ordovician crude oil in Tahe oilfield
井号 深度/m 层位 a b c d e f g h i j k l m n o p q r s AD4 6 448~6 558 O 1.30 1.08 1.05 0.73 0.41 0.55 2.45 1.83 15.89 0.56 0.29 0.32 0.56 0.49 0.75 0.94 0.45 1.82 5.39 YQX1-1 5 920~5 985 O1-2y 7.02 1.19 1.02 1.05 0.36 0.42 2.80 2.38 10.18 0.58 0.25 0.55 0.54 0.48 0.66 0.74 0.48 2.08 3.31 YQ5 — O1-2y 2.09 1.04 0.93 0.78 0.40 0.54 2.51 1.85 5.25 0.62 0.27 0.46 0.56 0.49 0.65 0.79 0.49 2.17 4.50 TP31 6 477~6 638 O2yj 3.36 1.09 1.18 0.77 0.43 0.66 2.35 1.51 4.85 0.47 0.31 0.41 0.56 0.48 0.53 0.58 0.35 0.68 5.71 TP134 6 532~6 655 O2yj 2.89 1.19 1.01 0.80 0.55 0.76 1.83 1.31 8.66 0.39 0.27 0.31 0.56 0.48 0.53 0.56 0.35 0.73 5.19 TP138X — O2yj 4.69 1.00 1.13 0.70 0.49 0.90 2.04 1.11 6.88 0.44 0.26 0.25 0.56 0.48 0.59 0.66 0.37 0.57 4.69 AT20 6 100~6 130 O2yj 10.82 1.01 0.99 1.08 0.33 0.39 3.02 2.56 7.15 0.81 0.38 0.15 0.54 0.48 0.77 0.87 0.49 — 9.26 S86 — O2yj 4.91 1.28 0.93 0.73 0.35 0.52 2.90 1.92 9.82 0.41 0.28 0.22 0.56 0.49 0.63 0.69 0.38 0.29 3.97 TP23 6 588~6 705 O2yj 2.12 1.08 0.96 0.98 0.53 0.64 1.89 1.55 7.35 0.54 0.31 0.36 0.55 0.46 0.62 0.72 0.41 0.36 8.30 T738 6 045~6 090 O1 2.00 1.09 1.08 0.60 0.43 0.87 2.35 1.15 8.23 0.35 0.24 0.26 0.56 0.48 0.68 0.84 0.46 0.41 2.74 S1144 6 150 O2yj 3.46 1.04 0.98 0.81 0.35 0.48 2.84 2.07 15.03 0.72 0.28 0.23 0.54 0.47 0.65 0.74 0.40 — 4.39 TP37 6 804~6 940 O2yj 3.95 1.03 1.03 0.97 0.35 0.44 2.87 2.28 22.43 0.83 0.31 0.28 0.54 0.48 0.68 0.78 0.40 — 13.53 AT17 6 375~6 440 O2yj 1.29 1.01 1.01 1.08 0.19 0.20 5.20 4.94 6.63 — 0.27 0.29 0.53 0.49 0.67 0.77 0.43 — 9.78 AT28 6 582~6 736 O2yj 1.23 1.00 1.00 0.94 0.17 0.18 6.00 5.58 15.97 1.31 0.62 0.42 0.55 0.46 0.83 0.93 0.50 — — S107CH 6 170 O2yj 1.59 1.00 1.01 1.10 0.19 0.20 5.17 4.97 10.22 0.90 0.48 0.38 0.58 0.48 0.83 0.94 0.50 — — AT27X 6 867~6 996 O2yj 5.90 1.01 1.02 1.06 0.26 0.31 3.83 3.25 15.47 0.65 0.42 0.35 0.57 0.48 0.95 1.06 0.52 — — S101 5 756~5 817 O2yj 0.62 1.00 1.01 0.89 0.20 0.23 4.94 4.39 14.27 0.30 0.47 0.60 0.57 0.49 0.78 0.86 0.44 — — 注: (1)a.ΣnC21-/ΣnC22+;b.CPI;c.OEP;d.Pr/Ph;e.Pr/nC17;f.Ph/nC18;g.nC17/Pr;h.nC18/Ph;i.MDBTs/MDBTFs;j.C21⁃22甾烷/(C21⁃22+C27⁃29)甾烷;k.C27dia/(dia+reg)甾烷;l.GI;m.C29甾烷ββ/(αα+ββ);n.C29甾烷S/(S+R);o.MPI1;p.MPI2;q.MPDF1;r.C28⁃25降藿烷/C29⁃17α(H)藿烷;s.Σ三环萜烷/C29-17α(H)藿烷;(2)CPI.碳优势指数,CPI=[Σ(C25~C33)/Σ(C24~C32)+Σ(C25~C33)/Σ(C26~C34)] ;OEP.奇偶优势指数,OEP=[(Ci+6Ci+2+Ci+4)/4Ci+1+4Ci+3](-1)i+1,Ci为碳数等于i的正构烷烃的相对含量;Pr/Ph=姥鲛烷/植烷;MDBTs.甲基二苯并噻吩系列;MDBTFs.甲基二苯并呋喃系列;dia甾烷.重排甾烷;reg甾烷.规则甾烷;GI.伽马蜡烷指数,GI=伽马蜡烷/C3017α(H)-藿烷;MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);MPI2=3×2-MP/(P+9-MP+1-MP);MPDF1.甲基菲分馏指数,MPDF1=(3-MP+2-MP)/(3-MP+2-MP+9-MP+1-MP);P.菲;MP.甲基菲。表 2 塔河油田奥陶系原油正构烷烃单体碳同位素值(δ13Calkane/‰,VPDB)
Table 2. Carbon isotope values of individual n⁃alkane in Ordovician crude oil in Tahe oilfield (δ13Calkane/‰, VPDB)
井号 nC14 nC15 nC16 nC17 nC18 nC19 nC20 nC21 nC22 AD4 -32.3 -33.0 -33.6 -33.7 -35.2 -34.8 -33.7 -35.0 -33.9 YQX1-1 -33.1 -33.5 -34.0 -33.7 -33.6 -34.3 -34.2 -35.0 -34.6 YQ5 -33.4 -34.4 -34.3 -34.2 -34.9 -35.3 -35.2 -35.2 -34.8 TP31 -33.6 -33.8 -35.0 -35.4 -36.0 -36.7 -35.3 -37.0 -36.2 TP134 -33.8 -34.3 -33.7 -34.2 -34.0 -34.2 -36.3 -33.9 -34.0 TP138X -34.1 -33.9 -34.0 -34.9 -35.9 -36.2 -35.5 -36.2 -35.0 AT20 -34.0 -34.1 -33.9 -34.0 -34.3 -34.4 -34.3 -34.7 -34.4 S86 -34.7 -34.1 -33.5 -33.9 -34.2 -34.9 -33.8 -34.9 -33.7 TP23 -34.0 -34.5 -35.2 -34.3 -35.2 -35.0 -34.3 -35.5 -34.8 T738 -34.6 -34.1 -35.0 -35.0 -35.0 -33.4 -34.1 -33.3 -33.6 S1144 -34.4 -34.8 -34.4 -34.8 -35.3 -34.8 -34.2 -35.3 -36.1 TP37 -35.1 -34.8 -34.1 -35.2 -35.1 -35.8 -35.1 -35.9 -35.2 AT17 -35.2 -35.6 -35.3 -35.2 -34.9 -34.8 -34.9 -35.1 -34.4 AT28 -31.9 -32.1 -32.5 -31.6 -32.7 -32.7 -32.5 -33.5 -32.3 S107CH -32.4 -32.3 -32.4 -32.2 -32.4 -32.0 -31.9 -32.6 -32.4 AT27X -32.4 -33.1 -32.3 -32.7 -33.5 -33.0 -32.1 -33.5 -34.4 S101 -32.2 -34.5 -33.1 -33.6 -33.3 -33.8 -33.6 -34.0 -33.1 -
[1] 张三,金强,乔贞,等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报,2020,49(3):576-586. Zhang San, Jin Qiang, Qiao Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe oilfield [J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586. [2] 饶丹,秦建中,许锦,等. 塔河油田奥陶系油藏成藏期次研究[J]. 石油实验地质,2014,36(1):83-88,101. Rao Dan, Qin Jianzhong, Xu Jin, et al. Accumulation periods of Ordovician reservoirs in Tahe oil field[J]. Petroleum Geology & Experiment, 2014, 36(1): 83-88, 101. [3] 郑朝阳,段毅,张学军,等. 塔河油田奥陶系原油有机地球化学特征及其油藏成因[J]. 沉积学报,2011,29(3):605-612. Zheng Chaoyang, Duan Yi, Zhang Xuejun, et al. Characteristics of molecular geochemistry and genesis of crude oils from Tahe oilfield of Tarim Basin [J]. Acta Sedimentologica Sinica, 2011, 29(3): 605-612. [4] 赵永强,云露,王斌,等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质,2021,43(5):758-766. Zhao Yongqiang, Yun Lu, Wang Bin, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation central and western Tahe oil field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766. [5] 张水昌. 运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670. Zhang Shuichang. The migration fractionation: An important mechanism in the formation of condensate and waxy oil[J]. Chinese Science Bulletin, 2000, 45(6): 667-670. [6] 南青云,刘文汇,腾格尔,等. 塔河油田原油甾藿烷系列化合物地球化学再认识[J]. 沉积学报,2006,24(2):294-299. Qingyun Nan, Liu Wenhui, Tenger, et al. Geochemical characters recognition for steranes and hopanes from oils of Tahe oilfield [J]. Acta Sedimentologica Sinica, 2006, 24(2): 294-299. [7] Yu S, Pan C C, Wang J J, et al. Correlation of crude oils and oil components from reservoirs and source rocks using carbon isotopic compositions of individual n-alkanes in the Tazhong and Tabei uplift of the Tarim Basin, China[J]. Organic Geochemistry, 2012, 52: 67-80. [8] Xiao Q L, Sun Y G, Zhang Y D, et al. Stable carbon isotope fractionation of individual light hydrocarbons in the C6-C8 range in crude oil as induced by natural evaporation: Experimental results and geological implications[J]. Organic Geochemistry, 2012, 50: 44-56. [9] Xiong Y Q, Geng A S. Carbon isotopic composition of individual n-alkanes in asphaltene pyrolysates of biodegraded crude oils from the Liaohe Basin, China[J]. Organic Geochemistry, 2000, 31(12): 1441-1449. [10] 段毅,张辉,吴保祥,等. 柴达木盆地原油单体正构烷烃碳同位素研究[J]. 矿物岩石,2003,23(4):91-94. Duan Yi, Zhang Hui, Wu Baoxiang, et al. Carbon isotopic studies of individual n-alkanes in crude oils from Qaidam Basin[J]. Journal of Mineralogy and Petrology, 2003, 23(4): 91-94. [11] 李素梅,郭栋. 东营凹陷原油单体烃碳同位素特征及其在油源识别中的应用[J]. 现代地质,2010,24(2):252-258. Li Sumei, Guo Dong. Characteristics and application of compound specific isotope in oil-source identification for oils in Dongying Depression, Bohai Bay Basin[J]. Geoscience, 2010, 24(2): 252-258. [12] 李洪波,张敏,毛治超. 塔里木盆地原油轻烃单体烃碳同位素组成特征[J]. 矿物岩石地球化学通报,2017,36(4):667-672. Li Hongbo, Zhang Min, Mao Zhichao. Compound-specific carbon isotope compositions of light hydrocarbons in crude oils from the Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 667-672. [13] Zhang Z R, Volkman J K. Isotopically enriched n-alkan-2-ones with even chain predominance in a torbanite from the Sydney Basin, Australia[J]. Organic Geochemistry, 2020, 144: 104018. [14] 林俊峰,张敏,张利红,等. 塔里木盆地寒武—奥陶系烃源岩萘、菲系列化合物单体碳同位素特征[J]. 地球化学,2021,50(3):273-281. Lin Junfeng, Zhang Min, Zhang Lihong, et al. Stable carbon isotopic characteristics of naphthalene and phenanthrene series in Cambrian-Ordovician source rocks from the Tarim Basin[J]. Geochimica, 2021, 50(3): 273-281. [15] Chen Y X, Tian C T, Li K N, et al. Influence of thermal maturity on carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis[J]. Fuel, 2016, 186: 466-475. [16] Liao Y H, Geng A S, Huang H P. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin[J]. Organic Geochemistry, 2009, 40(3): 312-320. [17] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Heidelberg: Springer-Verlag, 1984. [18] Xu H Y, George S C, Hou D J, et al. Petroleum sources in the Xihu Depression, East China Sea: Evidence from stable carbon isotopic compositions of individual n-alkanes and isoprenoids[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107073. [19] Cortes J E, Rincon J M, Jaramillo J M, et al. Biomarkers and compound-specific stable carbon isotope of n-alkanes in crude oils from eastern Llanos Basin, Colombia[J]. Journal of South American Earth Sciences, 2010, 29(2): 198-213. [20] 刘金萍,耿安松,熊永强,等. 正构烷烃单体碳、氢同位素在油源对比中的应用[J]. 新疆石油地质,2007,28(1):104-107. Liu Jinping, Geng Ansong, Xiong Yongqiang, et al. Application of free C and H isotopes in normal alkane to correlation of oil sources in Huanghua Depression[J]. Xinjiang Petroleum Geology, 2007, 28(1): 104-107. [21] 丁勇,彭守涛,李会军. 塔河油田及塔北碳酸盐岩油藏特征与成藏主控因素[J].石油实验地质,2011,33(5):488-494. Ding Yong, Peng Shoutao, Li Huijun. Features and main controlling factors of carbonate reservoirs in Tahe oilfield and northern Tarim Basin[J]. Petroleum Geology & Experimental, 2011, 33(5): 488-494. [22] Giger W, Schaffner C, Wakeham S G. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 119-129. [23] Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7/8): 745-749. [24] Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. [25] Wang G L, Chang X C, Wang T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120. [26] 黄第藩,张大江,李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发,1989,16(3):8-15. Huang Difan, Zhang Dajiang, Li Jinchao. On origin of 4-methyl steranes and pregnanes[J]. Petroleum Exploration and Development, 1989, 16(3): 8-15. [27] Rubinstein I, Sieskind O, Albrecht P. Rearranged sterenes in a shale: Occurrence and simulated formation[J]. Journal of the Chemical Society, Perkin Transactions 1, 1975(19): 1833-1836. [28] Clark J P, Philp R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416. [29] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222. [30] ten Haven H L, Rullkötter J, de Leeuw J W, et al. Pristane/phytane ratio as environmental indicator[J]. Nature, 1988, 333(6174): 604. [31] Peters K E, Clark M E, das Gupta U, et al. Recognition of an infracambrian source rock based on biomarkers in the Baghewala-1 oil, India[J]. AAPG Bulletin, 1995, 79(10): 1481-1493. [32] Peters K E, Walters C C, Moldowan J M. The biomarker guide[M]. 2nd ed. Cambridge: Cambridge University Press, 2005. [33] Philp R P. Biological markers in fossil fuel production[J]. Mass Spectrometry Reviews, 1985, 4(1): 1-54. [34] Li M W, Larter S R, Taylor P, et al. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols[J]. Organic Geochemistry, 1995, 23(2): 159-167. [35] Qiao J Q, Baniasad A, Zieger L, et al. Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China[J]. International Journal of Coal Geology, 2021, 237: 103636. [36] 陈建渝,刘从印,张树林,等. 原油中生物标志物的组成是成藏史的反映[J]. 地球科学:中国地质大学学报,1997,22(6):97-102. Chen Jianyu, Liu Congyin, Zhang Shulin, et al. Composition of the biomarkers in crude oil is the reflection of pool-forming history[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(6): 97-102. [37] 陈致林,李素娟, 王忠. 低—中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报,1997,15(2):192-197. Chen Zhilin, Li Sujuan, Wang Zhong. A study on maturity indicatorssome of some aromatics in low-midmature thermal evolution zones [J]. Acta Sedimentologica Sinica, 1997, 15(2): 192-197. [38] 陈琰,包建平,刘昭茜,等. 甲基菲指数及甲基菲比值与有机质热演化关系:以柴达木盆地北缘地区为例[J]. 石油勘探与开发,2010,37(4):508-512. Chen Yan, Bao Jianping, Liu Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example [J]. Petroleum Exploration and Development, 2010, 37(4): 508-512. [39] 许婷,侯读杰,曹冰,等. 东海盆地西湖凹陷轻质原油芳烃地球化学特征[J]. 沉积学报,2017,35(1):182-192. Xu Ting, Hou Dujie, Cao Bing, et al. Characteristics of aromatic geochemistry in light oils from Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2017, 35(1): 182-192. [40] Wenger L M, Davis C L, Isaksen G H. Multiple controls on petroleum biodegradation and impact on oil quality[C]//SPE annual technical conference and exhibition. New Orleans: SPE, 2002. [41] Killops S D, Nytoft H P, di Primio R. Biodegradative production and destruction of norhopanes: An example from residual oil in a Paleogene paleomigration conduit on the Utsira High, Norwegian North Sea[J]. Organic Geochemistry, 2019, 138: 103906. [42] 赵孟军,黄第藩. 不同沉积环境生成的原油单体烃碳同位素分布特征[J]. 石油实验地质,1995,17(2):171-179. Zhao Mengjun, Huang Difan. Carbon isotopic distributive characteriscs of crude oll monomers produced in different sedimentary environments [J]. Experimental Petroleum Geology, 1995, 17(2): 171-179. [43] Bjorøy M, Hall K, Gillyon P, et al. Carbon isotope variations in n-alkanes and isoprenoids of whole oils[J]. Chemical Geology, 1991, 93(1/2): 13-20. [44] 贾存善,王延斌,顾忆,等. 塔河油田奥陶系原油芳烃地球化学特征[J]. 石油实验地质,2009,31(4):384-388,393. Jia Cunshan, Wang Yanbin, Gu Yi, et al. Geochemical characteristics of aromatic hydrocarbons of crude oils from Ordovician reservoir in the Tahe oilfield [J]. Petroleum Geology & Experimental, 2009, 31(4): 384-388, 393. [45] 卢鸿,柴平霞,孙永革,等. 轮南14井原油正构烷烃和类异戊二烯单体碳同位素研究[J]. 沉积学报,2002,20(3):477-481,504. Lu Hong, Chai Pingxia, Sun Yongge, et al. Study on stable carbon isotopic compositions of n-alkanes and isoprenoids for crude oils from well Lunnan 14, Tarim Basin[J]. Acta Sedimentologica Sinica, 2002, 20(3): 477-481, 504. [46] 赵孟军,黄第藩. 初论原油单体烃系列碳同位素分布特征与生油环境之间的关系[J]. 地球化学,1995,24(3):254-260. Zhao Mengjun, Huang Difan. Preliminary discussion on carbon isotopic distribution pattern of individual hydrocarbons from crude oil and its relationship to oil-forming environment [J]. Geochimica, 1995, 24(3): 254-260. [47] Bjorøy M, Hall P B, Hustad E, et al. Variation in stable carbon isotope ratios of individual hydrocarbons as a function of artificial maturity[J]. Organic Geochemistry, 1992, 19(1/2/3): 89-105. [48] Clayton C J, Bjorøy M. Effect of maturity on 13C/12C ratios of individual compounds in North Sea oils[J]. Organic Geochemistry, 1994, 21(6/7): 737-750. [49] 马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学,2017,28(2): 313-323. Ma Anlai, Jin Zhijun, Zhu Cuishan. Maturity and oil-cracking of the Ordovician oils from Tahe oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2): 313-323. [50] Sun Y G, Chen Z Y, Xu S P, et al. Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: Evidence from a group of progressively biodegraded oils[J]. Organic Geochemistry, 2005, 36(2): 225-238.