-
现代河流扇沉积的识别和数据采集主要利用美国谷歌公司的卫星图片。通过对世界范围内的河流扇进行识别和全方位测量,建立包含河流扇形成和发育信息的数据集。
对全球范围的河流扇识别,主要分三个步骤:首先,对全球河流进行检索,标定山区季节性河流和常年稳定性河流,筛选出河流扇最有可能发育的区域。其次,在筛选出的区域进行河流扇的初次判别。判别标准如下:(1)上游方向有稳定的水道供给,在某一点(顶点)向下游方向呈放射状展布,形成扇形沉积体;(2)海拔高度自顶点向河道下游方向下降;(3)从顶点往下游方向没有其他支流汇入;(4)终止于陆地(盐湖、湿地、末端干涸),终止于轴向河流,或终止于稳定水体(湖泊、海洋)。最后,需要对识别出的扇体进行复核确认,并根据河流扇的发育背景和沉积特点,把冲积扇、三角洲等相类似的沉积体排除[31]。
采集的数据主要包含平面发育要素数据和控制因素数据两大类。
平面发育要素数据主要包括河流扇长度、宽度、面积、内部河道形态及末端终止类型。长度是指扇体的顶端至扇端边缘的距离;宽度是二分之一长度处的扇体宽度中值;面积包含活动的扇体面积和废弃部分的面积;扇体类型是根据扇体是否发育受限划分;河道样式是指扇体内部的河道形态;终止类型主要是终止于陆地、轴向河流或稳定水体。
控制因素数据是指不依赖于扇体本身的各类环境参数。我们录入了7种控制因素数据。盆地类型数据是通过美国地质调查局发布的全球盆地分布图确定;气候类型数据和降雨量数据通过美国气象局公布的全球气候分布带和全球降雨量分布确定;经纬度、坡度、集水区面积和扇体至山前距离数据则是通过谷歌地图内的定位、测距、测高和测量面积这四个功能采集,数据类型及单位见表1。
表 1 河流扇数据类型采集表
控制因素数据 平面发育数据 垂向发育数据 盆地类型 前陆盆地、裂谷盆地等 外部扇体类型 限制型扇体等 构型单元类型 深切河道、废弃河道等 气候类型 干旱气候、半干旱气候等 内部河道样式 顺直河、辫状河等 岩相单元类型 块状砾岩、块状砂岩 经度/纬度 (W/E)°/(N/S)° 终止类型 末端终止等 叠置关系 界面级次、接触关系 坡度 度 扇体长度 千米 单元位置 扇根、扇中、扇端 集水区面积 平方千米 扇体宽度 千米 单元厚度 米 年平均降雨量 毫米 扇体面积 平方千米 单元长度 米 扇体至山前距离 千米 长宽比 — 单元宽度 米 -
通过采集到的数据,发现全球河流扇分布具有明显的纬度分带特征。大多数扇体发育在中纬度地区。在北半球,河流扇集中在30°~50° N纬度带(49.5%),在南半球集中在15°~35° S纬度带(21.9%),这两个纬度带发育了全球(71.4%)的河流扇(图1)。
此外,河流扇在不同的气候、盆地类型下的分布也存在明显差异。河流扇主要分布在半干旱和干旱气候条件下,分别占统计样本总量的68.4%和14.4%。热带季风气候下也较为常见,为8.4%,其他气候下发育的河流扇相对较少(图2a)。如图2b所示,河流扇主要发育在前陆盆地内,占统计样本总量的50.9%,克拉通盆地和大陆裂谷盆地占比分别为23.3%和12.3%。河流扇在被动陆缘盆地、弧前盆地、弧后盆地发育较少,在走滑盆地中河流扇发育最少,仅为1.3%。通过对河流扇形成和发育的控制因素分析,发现干旱和半干旱气候下的前陆、克拉通和大陆裂谷盆地都有利于河流扇发育。其中,气候条件具有明显的规律性,三种有利的盆地构造类型分别属于挤压性、拉张性和稳定性的克拉通等盆地。这说明相对于构造条件,气候是河流扇形成的关键条件。
河流扇形状大多为自顶点向下游发散的扇体,其中部分扇体受附近地形地貌的影响,向两侧发散受限,最终发育成狭长的带状扇体。据此,将河流扇分为限制型河流扇和非限制型河流扇。非限制型扇体是指不受周围地形明显限制,扇体形态完整,圆心角大于90°。限制型扇体是指受到高山或峡谷影响,呈条带状,圆心角通常小于90°。统计结果表明,限制型河流扇占比为46%,非限制型河流扇占比为54%(图3a)。限制型扇体长宽比的最大值为6.98,最小值为0.54,平均值为2.07;而非限制型扇体的长宽比的最大值为5.12,最小值为0.37,平均值为1.60(图3b)。总体上,发育狭长的限制型河流扇,长宽比相对较大。
Prediction of Surface Water Runoff on Mars Using a Fluvial Fan Prediction Model for Earth
-
摘要: 目的 火星表面的水活动地质历史一直是科学界关心的热点,直接影响着火星探测的研究方向。 方法 根据火星和地球的可对比性,建立了融合345个地球现代河流扇沉积的数据集并形成了高精度扇体面积预测模型,从而识别火星上的河流扇沉积,预测火星河流扇发育期的地表水径流量。 结果 结果表示,在火星南部高地霍尔顿陨石坑附近识别出一个面积约84.35 km2的典型河流扇沉积,并反向预测出该扇体形成需要的年平均地表水径流量为1.882 8×106 m3,推测出该区域径流量不是由单一降水构成,为雪山(冰川)融水和降水多种来源。 结论 该成果是河流扇研究在行星沉积学中的应用,为进一步深入研究火星和其他天体地表水活动提供了新的方法。Abstract: Objective With the successful landing of Tianwen-1 in Utopia Plain,China’s Mars exploration has entered a new historical stage. At present,many scholars have studied the history of water activities and sedimentary system of Mars through remote sensing,spectral imaging,satellite images and other technologies. However,scholars at home and abroad have not reached a unified consensus on the research of quantitative parameters such as the scale,discharge and precipitation of surface water on Mars. Compared with the alluvial fan on Mars,the fluvial fan has a larger area and a more stable channel supply,which makes it easier to observe than the alluvial fan. Moreover,the relative stability of the sedimentary process makes it possible to study the history of water activities and surface water runoff through fluvial fan. Methods According to the comparability between Mars and the earth,using the satellite images of Google,through the identification and all-round measurement of fluvial fans around the world,a data set integrating 345 modern fluvial fan deposits of the earth is established. Based on the above identification and analysis,the earth’s fluvial fans are unevenly distributed in the world,showing the characteristics of regional division and latitude zoning. Central Asia and western China are the main development areas of fluvial fans,and 30°~50°N is the main development zone of fluvial fans. At the same time,the external shape of the earth’s fluvial fan is mainly controlled by climate and local topography,and the direct control factors that affect the development area of fluvial fan include latitude,slope,catchment area,annual runoff,piedmont distance,etc. Based on the above factor analysis,through the neural network training of 345 fluvial fan samples,a nonlinear neural network prediction model of fan body is established. Combined with the fan characteristics of the data set,the Martian river fan is identified,and the surface water runoff during the development period of the Martian river fan is obtained by using the neural network prediction model,so as to infer the water source of Mars. Results The results show that a typical fluvial fan deposit with an area of about 84.35 km2 was identified near Holden crater in the southern highland of Mars. There are two watersheds in the upper reaches of the fluvial fan,which correspond to two catchment area,with the area of the second catchment area being 698.4 km2 and the area of the first catchment area being 5 262.3 km2. According to the classification of the earth’s fluvial fan,Holden fluvial fan has developed into three stages,which belongs to unrestricted fluvial fan. Compared with the Andkhoy fluvial fan in Afghanistan,the only significant difference is that the Holden fluvial fan has an inverted topography,that is,the ancient river channel undergoes diagenesis such as cementation and compaction under the action of water flow,thus forming an erosion-resistant surface. By projecting the correlation between the development area of Mars Holden fan and four parameters,such as latitude,slope,catchment area and piedmont distance,on the parameter relationship diagram of the earth’s unrestricted fan,most of the parameter points are located in the normal range,which indicates that the relationship between each parameter and area of Mars Holden fluvial fan is roughly the same as that of the earth’s fluvial fan. However,the relationship between the area of the first catchment area and the fan area is obviously beyond the scope of the earth fluvial fan,so it can be inferred that the Holden fluvial fan of Mars is mainly controlled by the secondary catchment area,and there is a sediment unloading area inside the first catchment area. It is worth noting that,compared with the Earth,although the latitude controls the area within the scope of the earth’s fluvial fan,the area of the Holden fluvial fan on Mars is smaller at the same latitude. Based on the neural network prediction model of the unrestricted fluvial fan area of the earth,by inputting the area of Holden fluvial fan on Mars and other factors,the annual average surface water runoff required for the formation of this fan can be predicted in a reverse way to be 1.882 8×106 m3. Conclusions According to the comparative analysis with the runoff of the earth fluvial fan,it is found that the runoff in this area of Mars is not composed of a single precipitation,and it is speculated that it is from a variety of sources of precipitation and meltwater from snow-capped mountains (glaciers). Therefore,it is speculated that the circulation of atmospheric water and surface water on Mars occurred during the late Noah period to the early Western period due to the brief warming of the climate. In many piedmont areas of the southern highlands,surface runoff produced by precipitation and melting water of snow-capped mountains (glaciers) carries eroded sediments from local highlands into adjacent depressions. Due to the sudden flat terrain,the river channel diverges from the apex to the downstream,and a large number of sediments begin to unload,which promotes the formation of Martian fluvial fan deposits.
-
Key words:
- Mars /
- water activity /
- fluvial fan /
- sedimentary system /
- annual runoff
-
图 5 地球上河流扇面积的神经网络预测
(a) schematic diagram of fluvial area neural network training; (b) comparison between training sample prediction results and measured results; (c) comparison between the predicted results of test samples and the measured results; (d) comparison between the predicted results of unrestricted training samples and the measured results; (e) comparison between the predicted results of unrestricted test samples and the measured results
图 8 火星南部中纬度地区河流扇沉积示意图[35]
表 1 河流扇数据类型采集表
控制因素数据 平面发育数据 垂向发育数据 盆地类型 前陆盆地、裂谷盆地等 外部扇体类型 限制型扇体等 构型单元类型 深切河道、废弃河道等 气候类型 干旱气候、半干旱气候等 内部河道样式 顺直河、辫状河等 岩相单元类型 块状砾岩、块状砂岩 经度/纬度 (W/E)°/(N/S)° 终止类型 末端终止等 叠置关系 界面级次、接触关系 坡度 度 扇体长度 千米 单元位置 扇根、扇中、扇端 集水区面积 平方千米 扇体宽度 千米 单元厚度 米 年平均降雨量 毫米 扇体面积 平方千米 单元长度 米 扇体至山前距离 千米 长宽比 — 单元宽度 米 -
[1] 刘洋,吴兴,刘正豪,等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评,2021,52(4):416-436. Liu Yang, Wu Xing, Liu Zhenghao, et al. Geological evolution and habitable environment of Mars: Progress and prospects[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(4): 416-436. [2] Edgar L A, Fedo C M, Gupta S, et al. A lacustrine paleoenvironment recorded at Vera Rubin ridge, Gale crater: Overview of the sedimentology and stratigraphy observed by the Mars science laboratory curiosity rover[J]. Journal of Geophysical Research: Planets, 2020, 125(3): e2019JE006307. [3] Salese F, Pondrelli M, Neeseman A, et al. Geological evidence of planet-wide groundwater system on Mars[J]. Journal of Geophysical Research: Planets, 2019, 124(2): 374-395. [4] Grotzinger J P, Sumner D Y, Kah L C, et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014, 343(6169): 1242777. [5] Kossacki K J, Markiewicz W J. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies[J]. Icarus, 2010, 210(1): 83-91. [6] Carter J, Loizeau D, Mangold N, et al. Widespread surface weathering on early Mars: A case for a warmer and wetter climate[J]. Icarus, 2015, 248: 373-382. [7] Nimmo F, Tanaka K. Early crustal evolution of Mars[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 133-161. [8] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010:4-31. Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010: 4-31. [9] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:5-34. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 5-34. [10] Balme M R, Gupta S, Davis J M, et al. Aram dorsum: An extensive mid-Noachian age fluvial depositional system in Arabia terra, Mars[J]. Journal of Geophysical Research: Planets, 2020, 125(5): e2019JE006244. [11] Loizeau D, Werner S C, Mangold N, et al. Chronology of deposition and alteration in the Mawrth Vallis region, Mars[J]. Planetary and Space Science, 2012, 72(1): 31-43. [12] Morgan A M, Howard A D, Hobley D E J, et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert[J]. Icarus, 2014, 229: 131-156. [13] Grotzinger J P, Arvidson R E, Bell III J F, et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns Formation, Meridiani Planum, Mars[J]. Earth and Planetary Science Letters, 2005, 240(1): 11-72. [14] Squyres S W, Knoll A H. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars[J]. Earth and Planetary Science Letters, 2005, 240(1): 1-10. [15] Woo J M Y, Genda H, Brasser R, et al. Mars in the aftermath of a colossal impact[J]. Icarus, 2019, 333: 87-95. [16] McCubbin F M, Smirnov A, Nekvasil H, et al. Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian[J]. Earth and Planetary Science Letters, 2010, 292(1/2): 132-138. [17] Hurowitz J A, McLennan S M. A ~ 3.5 Ga record of water-limited, acidic weathering conditions on Mars[J]. Earth and Planetary Science Letters, 2007, 260(3/4): 432-443. [18] Fukushi K, Sekine Y, Rampe E B. Reconstruction of pH, redox condition, and concentrations of major components in ancient liquid water from the Karasburg member, Murray Formation, Gale crater, Mars[J]. Geochimica et Cosmochimica Acta, 2022, 325: 129-151. [19] 吴胜和,冯文杰,印森林,等. 冲积扇沉积构型研究进展[J]. 古地理学报,2016,18(4):497-512. Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture[J].Journal of Palaeogeography, 2016,18(4): 497-512. [20] 靳军,刘大卫,纪友亮,等. 砾质辫状河型冲积扇岩相类型、成因及分布规律:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 沉积学报,2019,37(2):254-267. Jin Jun, Liu Dawei, Ji Youliang, et al. Research on lithofacies types, cause mechanisms and distribution of a gravel braided-river alluvial fan: A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 254-267. [21] Hobbs S W, Paull D J, Clarke J D A. A hydrological analysis of terrestrial and Martian gullies: Implications for liquid water on Mars[J]. Geomorphology, 2014, 226: 261-277. [22] Johnsson A, Reiss D, Hauber E, et al. Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars[J]. Icarus, 2014, 235: 37-54. [23] Heldmann J L, Conley C A, Brown A J, et al. Possible liquid water origin for Atacama Desert mudflow and recent gully deposits on Mars[J]. Icarus, 2010, 206(2): 685-690. [24] Galofre A G, Jellinek A M, Osinski G R. Valley formation on early Mars by subglacial and fluvial erosion[J]. Nature Geoscience, 2020, 13(10): 663-668. [25] Masson P, Carr M H, Costard F, et al. Geomorphologic evidence for liquid water[J]. Space Science Review, 2001, 96(1/2/3/4): 333-364. [26] Ramirez R M, Craddock R A. The geological and climatological case for a warmer and wetter early Mars[J]. Nature Geoscience, 2018, 11(4): 230-237. [27] Birch S P D, Hayes A G, Howard A D, et al. Alluvial fan morphology, distribution and formation on Titan[J]. Icarus, 2016, 270: 238-247. [28] Diniega S, Bramson A M, Buratti B, et al. Modern Mars’geomorphological activity, driven by wind, frost, and gravity[J]. Geomorphology, 2021, 380: 107627. [29] Amy L, Dorrell R. Equilibrium sediment transport, grade and discharge for suspended-load-dominated flows on Earth, Mars and Titan[J]. Icarus, 2021, 360: 114243. [30] Schumm S A. The fluvial system[M]. New York: John Wiley & Sons, 1977. [31] 张元福,戴鑫,王敏,等. 河流扇的概念、特征及意义[J]. 石油勘探与开发,2020,47(5):947-957. Zhang Yuanfu, Dai Xin, Wang Min, et al. The concept, characteristics and significance of fluvial fans[J]. Petroleum Exploration and Development, 2020, 47(5): 947-957. [32] Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183. [33] Fassett C I, Head III J W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology[J]. Icarus, 2008, 198(1): 37-56. [34] Malin M C, Edgett K S. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science, 2003, 302(5652): 1931-1934. [35] Seybold H J, Kite E, Kirchner J W. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate[J]. Science Advances, 2018, 4(6): eaar6692. [36] Dickson J L, Head J W, Goudge T A, et al. Recent climate cycles on Mars: Stratigraphic relationships between multiple generations of gullies and the latitude dependent mantle[J]. Icarus, 2015, 252: 83-94. [37] Fassett C I, Head III J W. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology[J]. Icarus, 2008, 198(1): 37-56. [38] Ehlmann B L, Mustard J F, Murchie S L, et al. Subsurface water and clay mineral formation during the early history of Mars[J]. Nature, 2011, 479(7371): 53-60. [39] Nemec W, Steel R J, Gjelberg J, et al. Exhumed rotational slides and scar infill features in a Cretaceous delta front, eastern Spitsbergen[J]. Polar Research, 1988, 6(1): 105-112. [40] Grant J A, Irwin III R P, Grotzinger J P, et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars[J]. Geology, 2008, 36(3): 195-198. [41] Malin M C, Edgett K S. Evidence for persistent flow and aqueous sedimentation on early Mars[J]. Science, 2003, 302(5652): 1931-1934. [42] Broz A P. Organic matter preservation in ancient soils of Earth and Mars[J]. Life, 2020, 10(7): 113. [43] Thomas P C, Malin M C, Edgett K S, et al. North-south geological differences between the residual polar caps on Mars[J]. Nature, 2000, 404(6774): 161-164. [44] 张昌民,胡威,朱锐,等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏,2017,29(3):1-9. Zhang Changmin, Hu Wei, Zhu Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9. [45] 高崇龙,纪友亮,靳军,等. 阵发性洪水控制的河流型冲积扇沉积特征及沉积演化模式:以和什托洛盖盆地北缘现代白杨冲积扇为例[J]. 石油学报,2020,41(3):310-328. Gao Chong- long, Ji Youliang, Jin Jun, et al. Sedimentary characteristics and evolution model of fluvial fan dominated by intermittent flood flows: A case study of Baiyang alluvial fan within the northern margin of Heshituoluogai Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 310-328. [46] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944. Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.