高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“富碳”沉积岩发育机制及其碳循环意义

“富碳”沉积岩发育机制及其碳循环意义[J]. 沉积学报, 2024, 42(3): 1-4.
引用本文: “富碳”沉积岩发育机制及其碳循环意义[J]. 沉积学报, 2024, 42(3): 1-4.
Special Issue Proposal[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1-4.
Citation: Special Issue Proposal[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1-4.

“富碳”沉积岩发育机制及其碳循环意义

Special Issue Proposal

  • [1] Kelemen P B, Matter J, Streit E E, et al. Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 545-576.
    [2] 吴庆,郭永丽,肖琼,等. 碳酸盐岩默默地献身于“双碳”目标[J]. 中国矿业,2022,31(增刊1):215-216,243.

    Wu Qing, Guo Yongli, Xiao Qiong, et al. Carbonates devote themselves to the target of “Double Carbon” silently[J]. China Mining Magazine, 2022, 31(Suppl. 1): 215-216, 243.
    [3] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘,1997,4(1/2):17-25.

    Yuan Daoxian. Modern karstology and global change study[J]. Earth Science Frontiers, 1997, 4(1/2): 17-25.
    [4] Thomsen T B, Schmidt M W. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 17-31.
    [5] Tsuno K, Dasgupta R, Danielson L, et al. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc[J]. Geophysical Research Letters, 2012, 39(16): L16307.
    [6] Piccoli F, Vitale Brovarone A, Beyssac O, et al. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones[J]. Earth and Planetary Science Letters, 2016, 445: 146-159.
    [7] Okamoto A, Oyanagi R, Yoshida K, et al. Rupture of wet mantle wedge by self-promoting carbonation[J]. Communications Earth & Environment, 2021, 2(1): 151.
    [8] 李曙光,汪洋,刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应[J]. 地学前缘,2024,31(1):15-27.

    Li Shuguang, Wang Yang, Liu Sheng’ao. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth’s habitability[J]. Earth Science Frontiers, 2024, 31(1): 15-27.
    [9] Gorman P J, Kerrick D M, Connolly J A D. Modeling open system metamorphic decarbonation of subducting slabs[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04007.
    [10] Mason E, Edmonds M, Turchyn A V. Remobilization of crustal carbon may dominate volcanic arc emissions[J]. Science, 2017, 357(6348): 290-294.
    [11] Li S G, Yang W, Ke S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
    [12] Farsang S, Louvel M, Zhao C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12(1): 4311.
    [13] 张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报,2022,67(15):1607-1613.

    Zhang Xingliang. Marine refractory dissolved organic carbon and transgressive black shales[J]. Chinese Science Bulletin, 2022, 67(15): 1607-1613.
    [14] 谢树成,罗根明,朱宗敏. 地球表层系统对深部圈层时空演变的影响[J]. 科学通报,2024,69(2):149-159.

    Xie Shucheng, Luo Genming, Zhu Zongmin. Surface system impact on the spatiotemporal evolution of deep Earth[J]. Chinese Science Bulletin, 2024, 69(2): 149-159.
    [15] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
    [16] Langrock U, Stein R, Lipinski M, et al. Paleoenvironment and sea-level change in the Early Cretaceous Barents Sea: Implications from near-shore marine sapropels[J]. Geo-Marine Letters, 2003, 23(1): 34-42.
    [17] Harris N B, McMillan J M, Knapp L J, et al. Organic matter accumulation in the Upper Devonian Duvernay Formation, western Canada sedimentary basin, from sequence stratigraphic analysis and geochemical proxies[J]. Sedimentary Geology, 2018, 376: 185-203.
    [18] Schulte P, Schwark L, Stassen P, et al. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 371: 9-25.
    [19] Curiale J A, Gibling M R. Productivity control on oil shale formation: Mae Sot Basin, Thailand[J]. Organic Geochemistry, 1994, 21(1): 67-89.
    [20] Brasier M D. Fossil indicators of nutrient levels. 1: Eutrophication and climate change[M]//Bosence D W, Allison P A. Marine palaeoenvironmental analysis from fossils. Geological Society Special Publication, 1995: 113-132.
    [21] van Cappellen P, Ingall E D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity[J]. Science, 1996, 271(5248): 493-496.
    [22] Jørgensen B B. Mineralization of organic matter in the sea bed: The role of sulphate reduction[J]. Nature, 1982, 296(5858): 643-645.
    [23] Canfield D E. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(1): 121-138.
    [24] Hodgskiss M S W, Sansjofre P, Kunzmann M, et al. A high-TOC shale in a low productivity world: The Late Mesoproterozoic Arctic Bay Formation, Nunavut[J]. Earth and Planetary Science Letters, 2020, 544: 116384.
    [25] 张力钰,陈代钊,刘康. 弗拉—法门转折期气候—海洋环境变化及生物危机成因探讨[J]. 沉积学报,2024,42(3):723-737.

    Zhang Liyu, Chen Daizhao, Liu Kang. Paleoclimatic and paleo-oceanic environment evolution in the Frasnian-Famennian transition: Potential causes of the biotic crisis[J]. Acta Sedimentologica Sinica, 2024, 42(3):723-737.
    [26] 李娟,陈雷,胡月,等. 滇黔北昭通地区晚奥陶世—早志留世黑色页岩地球化学特征及其地质意义[J]. 沉积学报,2024,42(3):738-756.

    Li Juan, Chen Lei, Hu Yue, et al. Element geochemical characteristics and their geological significance of Late Ordovician-Early Silurian black shale in Zhaotong area of northern Yunnan and Guizhou[J]. Acta Sedimentologica Sinica, 2024, 42(3):738-756.
    [27] 葛小瞳,汪远征,陈代钊,等. 川东北地区二叠纪晚期古海洋环境与有机质富集[J]. 沉积学报,2024,42(3):757-773.

    Ge Xiaotong, Wang Yuanzheng, Chen Daizhao, et al. Marine redox environment and organic accumulation in northeastern Sichuan Basin during the Late Permian[J]. Acta Sedimentologica Sinica, 2024, 42(3):757-773.
    [28] 韦恒叶,胡谍,邱振,等. 川北—鄂西上二叠统富有机岩沉积与地球化学特征[J]. 沉积学报,2024,42(3):774-798.

    Wei Hengye, Hu Die, Qiu Zhen, et al. Sedimentological and geochemical characteristics of Late Permian organic-rich rocks in north Sichuan and West Hubei provinces[J]. Acta Sedimentologica Sinica, 2024, 42(3):774-798.
    [29] 邹怡,韦恒叶. 下扬子中二叠统孤峰组热液硅质岩地球化学约束及其意义[J]. 沉积学报,2024,42(3):799-811.

    Zou Yi, Wei Hengye. Geochemical constraints on the hydrothermal chert of the Kuhfeng Formation in the Middle Permian in the Lower Yangtze and its significance[J]. Acta Sedimentologica Sinica, 2024, 42(3):799-811.
    [30] 刘牧,季长军,黄元耕,等. 羌塘盆地索瓦组碳酸盐岩红层成因和环境意义[J]. 沉积学报,2024,42(3):812-822.

    Liu Mu, Ji Changjun, Huang Yuangeng, et al. Coloration and environmental significance of the marine red bed from the Sowa Formation carbonate in the Qiangtang Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3):812-822.
    [31] 魏小松,严德天,龚银,等. 鄂西—黔南地区下寒武统页岩旋回地层学研究[J]. 沉积学报,2024,42(3):823-838.

    Wei Xiaosong, Yan Detian, Gong Yin, et al. Cyclostratigraphic analysis of the Lower Cambrian shales in western Hubei and southern Guizhou[J]. Acta Sedimentologica Sinica, 2024, 42(3):823-838.
    [32] 朱柏宇,印森林,郭海平,等. 陆相混合细粒岩沉积微相及其对甜点的控制作用:以吉木萨尔凹陷芦草沟组为例[J]. 沉积学报,2024,42(3):839-856.

    Zhu Baiyu, Yin Senlin, Guo Haiping, et al. Continental sedimentary microfacies distribution of mixed fine-grained rocks and its controlling effect on sweet spots[J]. Acta Sedimentologica Sinica,2024, 42(3):839-856.
    [33] 王丹. 塔北、塔中地区寒武系—奥陶系白云岩多成因模式[J]. 沉积学报,2024,42(3):857-876.

    Wang Dan. Geochemical characteristics and origins of the Cambrian-Ordovician dolomites in northern and central Tarim Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3):857-876.
    [34] 唐攀,汪远征,李双建,等. 塔里木盆地西北部震旦系—寒武系不整合面成因:来自沉积学的证据[J]. 沉积学报,2024,42(3):877-891.

    Tang Pan, Wang Yuanzheng, Li Shuangjian, et al. Genesis of the Sinian-Cambrian unconformity in the northwestern Tarim Basin: Evidence from sedimentology[J]. Acta Sedimentologica Sinica,2024, 42(3):877-891.
    [35] 丁一,刘树根,文龙,等. 中上扬子地区震旦纪灯影组沉积期碳酸盐岩台地古地理格局及有利触及相带分布规律[J]. 沉积学报,2024,42(3):928-943.

    Ding Yi, Liu Shugen, Wen Long, et al. Paleogeographic pattern of the carbonate platform in the middle-upper Yangtze area during the deposition of the Ediacaran Dengying Formation and distribution pattern of the reservoir facies [J]. Acta Sedimentologica Sinica, 2024, 42(3):928-943.
    [36] 郭川,张维圆,付勇,等. 黔北地区下奥陶统沉积相与层序特征[J]. 沉积学报,2024,42(3):892-911.

    Guo Chuan, Zhang Weiyuan, Fu Yong, et al. Depositional facies and sequence stratigraphy of the Lower Ordovician successions in northern Guizhou province[J]. Acta Sedimentologica Sinica,2024, 42(3):892-911.
    [37] 孙鹏,杨海风,王飞龙,等. 生物降解作用对原油稀土元素的响应:以渤海湾盆地渤中坳陷庙西凹陷为例[J]. 沉积学报,2024,42(3):912-927.

    Sun Peng, Yang Haifeng, Wang Feilong, et al. Response of rare earth elements in crude oil to biodegradation: A case from the Miaoxi Sag, Bohai Bay Basin[J]. Acta Sedimentologica Sinica,2024, 42(3):912-927.
  • [1] 满玲, 祝圣贤, 邓宾, 李玉坤, 郎咸国.  斯图特雪球地球存在持续的海洋碳循环 . 沉积学报, 2024, 42(1): 29-38. doi: 10.14027/j.issn.1000-0550.2022.025
    [2] 吴科睿, 闫百泉, 孙雨, 于利民, 王鑫锐.  湖盆细粒沉积岩纹层形成机制及影响因素研究进展 . 沉积学报, 2024, 42(4): 1164-1184. doi: 10.14027/j.issn.1000-0550.2022.136
    [3] 王铭乾, 张元元, 朱如凯, 李志扬, 王俊峰.  湖泊细粒沉积岩纹层特征与形成机制研究进展及展望 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.080
    [4] 王亚平, 苗卫良, 张西营, 李雯霞, 李长忠, 赵辉斌.  滇黔地区铝土矿型富锂黏土的物源属性及其富锂机制 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.031
    [5] 翁晓爱, 姜守一, 韩中, 胡修棉, 晏雄.  藏南Kioto碳酸盐台地对早侏罗世普林斯巴晚期碳循环扰动的沉积和生物响应 . 沉积学报, 2024, 42(2): 415-433. doi: 10.14027/j.issn.1000-0550.2023.078
    [6] 陈杨, 金鑫, 郎咸国, 李滨兵.  鄂尔多斯盆地早侏罗世Toarcian大洋缺氧事件时期湖泊硫循环及其地质意义 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.112
    [7] 黄军平, 杨田, 张艳, 李相博, 董岐石, 杨占龙, 郑泽宇.  湖相细粒沉积岩沉积动力学机制与沉积模式 . 沉积学报, 2023, 41(4): 1227-1239. doi: 10.14027/j.issn.1000-0550.2022.041
    [8] 王小军, 宋永, 郭旭光, 常秋生, 孔玉华, 郑孟林, 秦志军, 阳孝法.  陆相咸化湖盆细粒沉积岩分类及其石油地质意义 . 沉积学报, 2023, 41(1): 303-317. doi: 10.14027/j.issn.1000-0550.2021.080
    [9] 沉积、成岩过程中的地球化学过程(或循环)与记录 . 沉积学报, 2016, 34(6): 0-0.
    [10] 郭凯, 程晓东, 范乐元, 严世帮, 倪国辉, 付海波.  滨里海盆地东缘北特鲁瓦地区白云岩特征及其储层发育机制 . 沉积学报, 2016, 34(4): 747-757. doi: 10.14027/j.cnki.cjxb.2016.04.015
    [11] 杨占龙, 郭精义, 陈启林, 宋广寿, 黄刚.  银根盆地查干凹陷火山沉积岩岩相特征及其识别标志 . 沉积学报, 2005, 23(1): 67-72.
    [12] 刘春莲, Franz T Fürsich, 白雁, 杨小强, 李国强.  三水盆地古近系湖相沉积岩的氧、碳同位素地球化学记录及其环境意义 . 沉积学报, 2004, 22(1): 36-40.
    [13] 宋天锐, 和政军, 万渝生, 张巧大, 丁孝忠.  前寒武纪沉积岩中自生独居石的发现及其意义 . 沉积学报, 2003, 21(1): 118-124.
    [14] 孙省利, 曾允孚.  西成矿化集中区热水沉积岩物质来源的同位素示踪及其意义 . 沉积学报, 2002, 20(1): 41-46.
    [15] 张晓宝, 王志勇, 徐永昌.  特殊碳同位素组成白云岩的发现及其意义 . 沉积学报, 2000, 18(3): 449-452.
    [16] 宋天锐.  大连地区前寒武纪沉积岩中发现自生独居石及其意义 . 沉积学报, 1999, 17(S1): 663-667.
    [17] 李亚林, 张国伟, 王根宝, 高凤泉.  北秦岭小寨变质沉积岩系的地质特征及其构造意义 . 沉积学报, 1999, 17(4): 596-600.
    [18] 郑建京, 彭作林.  柯坪块隆沉积岩系及其构造特征 . 沉积学报, 1993, 11(4): 17-23.
    [19] 王东安.  西藏日喀则地区蛇绿质沉积岩的成岩后生变化及其地质意义 . 沉积学报, 1986, 4(1): 77-85.
    [20] 徐濂, 史瑾.  沉积岩中金属卟啉的质谱鉴定及其石油地球化学意义 . 沉积学报, 1984, 2(1): 29-43.
  • 加载中
计量
  • 文章访问数:  475
  • HTML全文浏览量:  201
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-06-10

目录

    “富碳”沉积岩发育机制及其碳循环意义

    English Abstract

    “富碳”沉积岩发育机制及其碳循环意义[J]. 沉积学报, 2024, 42(3): 1-4.
    引用本文: “富碳”沉积岩发育机制及其碳循环意义[J]. 沉积学报, 2024, 42(3): 1-4.
    Special Issue Proposal[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1-4.
    Citation: Special Issue Proposal[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1-4.
    参考文献 (37)

    目录

      /

      返回文章
      返回