-
通过海底底形顶部平面形态(直线、弯曲、新月)和地震剖面内部反射结构(向上迁移、向下迁移、纵向加积)定性识别出5种深水底形。在不考虑规模的情况下,总体划分为两大类,分别是以侵蚀为主和以沉积为主的底形,其中侵蚀性底形包括下切谷、侵蚀水道和海底侵蚀,沉积为主的底形包括沉积物波和周期阶坎。沉积波根据规模和发育环境又进一步划分为小型沉积物波和大型沉积物波。同时,依据波长、波高、海底斜坡角度、限定性等参数定量描述底形发育特征。
-
海底峡谷—水道体系是大陆架沉积物和溶解物通过重力流和其他块体流输送到深水盆地的主要通道[20⁃21],是大型侵蚀性海底地貌。通常侵蚀陆架和上斜坡海底峡谷地貌呈现V型特征[22],在下斜坡则转换成具有溢流沉积和更高宽深比的U型水道地貌特征[23]。
现今科特迪瓦盆地陆架区缺少大型供给水系,陆架区缺少大型物源供给,其不同于下刚果盆地深切陆架区与河口相连的刚果扇扎伊尔下切谷[24],科特迪瓦盆地发育的下切谷或侵蚀性水道头部大部分始于大陆斜坡区。具有明显深水水道形态的主体地貌特征在平面上呈直线形态,不同于弯曲形态的深水水道特征[25⁃26],典型下切水道从起始到衰亡延伸距离约30 km。并在主水道形成前经过多次分支水道合并过程(图2),从多支分支水道发育区到主体水道形成区,剖面上对应梯度从上斜坡的5°过渡为下斜坡的1.9°。初始分支水道合并前水道泓线表现为平滑特征,合并后主体水道泓线呈现出起伏地貌特征,指示流体从侵蚀为主到侵蚀—沉积交互的动力学变化特征。
-
海底侵蚀冲坑主要是指侵蚀为主的小尺度底形,局部可能存在沉积。冲坑主要发育在深水峡谷/水道的末端和边缘,大量学者针分别对Eel扇、Agadir峡谷口、Horseshoe峡谷和Whittard水道边缘进行了相应研究[27⁃29]。Symons et al.[15]将侵蚀冲坑总结为三种主要类型,分别为线性连续冲坑[30⁃31]、单独的孤立冲坑[27⁃28]和冲刷侵蚀区[28]。本文识别出的冲坑类型与以上识别的侵蚀冲坑有所差异,将其归类于孤立冲坑大类,但根据平面形态和剖面特征可进一步划分为“孤立冲坑”、“猫爪状冲坑”和“串珠状冲坑”(图3a)。
“猫爪状”冲坑侵蚀作用相对较强,剖面上表现为背流面缓、迎流面陡的非对称结构,侵蚀最强位置为靠近流体来源方向的第一个侵蚀坑(图3b),其中揭示最大深度为90 m,面积较大。连续发育的侵蚀坑深度逐渐减弱,末端侵蚀深度降低为25 m,平面上面积小而浅并呈线状排列,整体上构成类似“猫爪状”组合形态(①②)。
“串珠状”侵蚀冲坑侵蚀作用相对弱,剖面上表现为连续的微型起伏地貌,越向前端侵蚀能力越强,整体上低于区域侵蚀基准面,最大侵蚀深度25 m。平面上不同于“猫爪状”侵蚀,而是由一系列面积大小相似、孤立的、线性串联冲坑,整体上构成“串珠”平面形态(③)。图3a中还存在非常小的“孤立”冲坑,其可完全孤立(④),也可与线性侵蚀组合(⑤)。以上冲坑的流体动力学特征有待进一步研究,推测冲坑形成受浊流流体动力过程与底部地层性质的交互作用控制。
-
周期阶坎是深水盆地中很常见的底形特征[32⁃34],其发育在重力驱动构造变形的被动大陆边缘[35]、构造活动的汇聚型边缘[36]和转换型被动大陆边缘多种盆地类型中。新月型底形是描述顶面平面形态具有新月形态的粗粒沉积底形术语[16],后被广泛用于具有同样特点的周期阶坎底形描述中[10]。前人指出“新月型”不能作为沉积底形分类标准,其和“周期阶坎”是同一底形的不同描述术语。周期阶坎属于沉积和侵蚀联合作用下底形,本文“周期阶坎”实例归类为沉积为主的底形,因为地层整体高于区域基准面。Kostic[37]认为在高角度梯度斜坡中,浊流的重力作用超过惯性作用,因此压制水力跳跃的发生,不易形成周期阶坎。在梯度适中的斜坡位置,惯性作用占主导,加上崎岖海底地貌(起伏地形)影响,更容易形成周期阶坎底形[10]。
本文侵蚀性水道内部发育的“周期阶坎”底形与其他峡谷内识别的沉积物波类似[38⁃39],发育斜坡坡度为3.1°。剖面上具有向上游方向迁移的内部结构和新月型平面形态特征。如图4所示,斜坡限制性水道内部识别出8个不同波长和波高的“周期阶坎”底形,详细参数见表1。总体上波长范围1 045.91~2 051.29 m,波高范围93.64~246.13 m。波长和波高交会图显示(图5),No.1~No.3周期阶坎波长相近,但波高变化范围较大,No.4~No.8周期阶坎波高相近,但波长变化范围较大。其中No.4~No.6周期阶坎的迎流面未见明显向上游迁移的内部反射结构,推测可能是受地震分辨率限制。其中No.1、No.2、No.3和No.7周期阶坎的迎流面具有明显向上游方向迁移内部结构,背流面则具有显著的侵蚀性特征。地震剖面揭示不同周期阶坎的对称性上没有统一规律,如No.4、No.5和No.6为对称剖面形态,No.1、No.2和No.7号为向下非对称的剖面形态,No.3和No.8为向上非对称剖面形态。随着地形坡度降低为1.9°,在下游周期阶坎逐渐消失,取而代之的是发育纵向加积型沉积物波,波长为3 109 m,波高为120 m。
表 1 研究区周期阶坎计算参数表(m)
序号 水平距离L 垂向距离L 波长L 水平距离h 垂向距离h 波高h No.1 2 049 97 2 051.29 163 83 182.92 No.2 1 928 52 1 928.70 79 58 98.01 No.3 2 166 143 2 170.72 209 130 246.13 No.4 1 267 94 1 270.48 120 42 127.14 No.5 1 406 69 1 407.69 97 74 122.00 No.6 1 043 78 1 045.91 88 32 93.64 No.7 1 607 60 1 608.12 112 72 133.15 No.8 1 411 66 1 412.54 107 49 117.69 结合波长—波高交会图和剖面图综合解释,“周期阶坎”上段长波长可能指示发生水力跳跃的间隔时间较长,下段较短波长可能指示水力跳跃发生的间隔时间较短。剖面上可见,No.1~No.3号周期阶坎对应浅层滑脱面的伸展段,No.4~No.8号周期阶坎对应浅层滑脱面上的缩短段,据此推测控制周期阶坎发育的流体动力学特征可能受早期海底地貌影响。
-
根据Symons et al.[15]的定义,波长小于300 m沉积物波,定义为小型沉积物波,根据其统计大部分“周期阶坎”属于小型沉积物波范围,少量大于1 000 m的“长波长周期阶坎”定义为大型沉积物波,指出小型沉积物波和大型沉积物波主体是限定环境和非限定环境下的两个端元。研究区统计数据分析发现限制性水道内部“周期阶坎”最大波长可达2 170 m。由此可见,限定环境内周期阶坎也可划分为大型沉积物波。
研究区小型沉积物波存在两种类型,一种为水道泓线处的沉积物波,另一种为水道外部深水沉积物波。水道内部小型沉积物波不同于周期阶坎(图6),具有向下游迁移的内部结构特征。剖面上波长与周期阶坎相似但波高极低,平面上底形顶面形态为直线形,延伸距离受水道边界控制。水道内小型沉积物波发育段位于限定性侵蚀水道和周期阶坎之间,可能指示特殊的水动力条件。图7揭示非限定环境下发育小型沉积物波,波长小于300 m,与Symons et al.[15]的认识一致。剖面上具有轻微加积或向下迁移的内部结构,波高低,顶面具有弯曲或直线形态,延伸距离500~1 000 m,发育地形坡度为1°左右(图7a)。平面上揭示的线性特征为小型沉积物波波谷反射,由于海底底形波谷和波峰具有对应特征,因此可以用于指示沉积物波顶面形态变化。从图中可见,平面上波谷有两端向上游弯曲的形态,也有弯曲、叠置、雁列状连接的平面形态(图7b)。
-
研究区现今海底未能直接识别出大型沉积物波,由于大型沉积物波波高幅度较低,在地震分辨率限制下很难识别;但是随着埋藏深度增加,地层水被排出,压实作用下纵向上沉积波叠加,在一定程度上加大了沉积物波波峰和波谷间的幅度,因此在浅层可以显示出来。
研究区浅层可识别两种类型的大型沉积物波,均发育在非限定环境下,一种显示为长波长、低幅度浅层构造特征(图8a),波长大于3 000 m,波高小于10 m。在海底对应发育的是小型沉积物波。这种大型沉积物波顶面延伸长度目前并不清楚,大型沉积物波剖面上具有向下游迁移或轻微加积特征。另一种为在早期滑塌地貌基础上发育的向上游方向迁移的大型沉积物波(图8b)。从图中可见滑塌界面上地层向下游方向倾斜,中部逐渐过渡到平行现象,上部形成向上游倾斜地层。从下至上,剖面结构逐渐从向下迁移转换为向上迁移特征。因此可解释为底部向下游方向倾斜地层为重力滑塌作用形成,断裂面共同收敛到滑塌面上,进而构成早期起伏地貌,后期在起伏地貌基础上发育向上游方向倾斜的大型沉积物波。
Deep-water Bedform Patterns and Genesis in the Cote d’Ivoire Basin, West Africa
-
摘要: 通过三维地震资料海底平面成像和浅层地震剖面解释、分析,识别和描述了西非科特迪瓦盆地深水底形类型。研究区发育下切水道、侵蚀冲坑、周期阶坎、小型沉积物波、大型沉积物波多种深水底形。下切水道表现为直线型,地形坡度从上斜坡5°过渡到下斜坡1.9°,水道历经多次合并,合并后水道内部起伏地貌指示侵蚀—沉积交互作用;识别出孤立状、串珠状和猫爪状三种类型侵蚀冲坑;在斜坡限制性水道内部地形坡度1.9°~3.1°之间识别出8个不同波长和波高的“周期阶坎”底形,周期阶坎具有剖面上向上游方向迁移、平面上呈新月形态的特征,从上游到下游波长有逐渐变短的趋势。小型沉积物波发育于水道内和水道外两种环境,其中限定性环境小型沉积物波发育在周期阶坎上游方向,非限定环境小型沉积物波发育地形坡度为1°左右,具有加积或轻微向下迁移的内部反射结构。大型沉积物波发育在非限定环境中,显示为长波长、低幅度浅层构造特征,分析认为早期滑塌地貌对晚期大型沉积物波的形成具有重要的控制作用。在现象描述基础上,对不同底形的成因、形成过程、控制因素和其发育的深水动力学背景与环境展开探讨,加深了对西非赤道段科特迪瓦盆地深水底形成因的认识,可对未来深水区油气勘探砂体分布预测提供借鉴和参考。Abstract: Types of submarine bedforms from the Cote d 'Ivoire Basin have been identified and described by three-dimensional seismic seabed imaging, interpretation, and analysis of shallow reflection characteristics in West Africa. In the study area, a variety of deep-water bedforms were identified, such as small-scale sediment waves, large-scale sediment waves, cyclic steps, scours, and erosional channels. The down-cutting channels are primarily linear, and the topographic slope gradient changes from 5° on the upper slope to 1.9° on the lower slope. The channels have been merged many times, and the undulating landform inside the channel indicates the interaction of erosion and deposition. Three types of erosion scours were identified, including isolated, bead-like, and cat claw scour. Eight cyclic steps with different wave amplitudes and heights were identified within the confined channel, and the gradient of slope developed ranged from 1.9° to 3.1°. The cross-section was characterized by up-slope migration, and the plane-view by a crescent shape. The wavelength displayed a shortening trend from upstream to downstream. Small-scale sediment waves can develop in two environments: confined and unconfined environment. The location of confined environmental small-scale sediment waves was upstream of the cyclic steps. The slope of the unconfined environmental small-scale sediment wave is approximately 1°, with either an internal accretion reflection or slight down-slope migration structure. Large-scale sediment waves developed in an unconfined environment, displaying long wavelength and low amplitude based on shallow structure characteristics. The analysis indicates that the early slump geomorphology played an important role in controlling the formation of the late-stage large-scale sediment wave. Based on the phenomenon description, the controlling factors and processes of the different bedforms were discussed, and the background of deep-water flow dynamic and environment of their development were analyzed, which deepens the understanding of the deep-water bottom formation factors of the Cote d ’Ivoire Basin in the equatorial section of West Africa and provides future reference for the prediction of the distribution of oil and gas exploration sandstones in the deep-water area.
-
Key words:
- West Africa /
- Cote d ’Ivoire Basin /
- bedforms /
- cyclic steps /
- sediment wave /
- genesis analysis
-
表 1 研究区周期阶坎计算参数表(m)
序号 水平距离L 垂向距离L 波长L 水平距离h 垂向距离h 波高h No.1 2 049 97 2 051.29 163 83 182.92 No.2 1 928 52 1 928.70 79 58 98.01 No.3 2 166 143 2 170.72 209 130 246.13 No.4 1 267 94 1 270.48 120 42 127.14 No.5 1 406 69 1 407.69 97 74 122.00 No.6 1 043 78 1 045.91 88 32 93.64 No.7 1 607 60 1 608.12 112 72 133.15 No.8 1 411 66 1 412.54 107 49 117.69 -
[1] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352: 451-468. [2] Clift P, Gaedicke C. Accelerated mass flux to the Arabian Sea during the Middle to Late Miocene[J]. Geology, 2002, 30(3): 207-210. [3] Covault J A, Romans B W, Fildani A, et al. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system[J]. The Journal of Geology, 2010, 118(3): 247-259. [4] Pettingill H S, Weimer P. Worlwide deepwater exploration and production: Past, present, and future[J]. The Leading Edge, 2002, 21(4): 371-376. [5] Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169. [6] Flood R D, Shor A N. Mud waves in the Argentine Basin and their relationship to regional bottom circulation patterns[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(6): 943-971. [7] Piper D J W, Savoye B. Processes of Late Quaternary turbidity current flow and deposition on the Var Deep-Sea fan, North-West Mediterranean sea[J]. Sedimentology, 1993, 40(3): 557-582. [8] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology, 2002, 192(1/2/3): 7-22. [9] Gong C L, Wang Y M, Peng X C, et al. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the northern Pacific deep water into the South China Sea[J]. Marine and Petroleum Geology, 2012, 32(1): 95-109. [10] Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1031-1054. [11] Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006, 44(5): 631-653. [12] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits-A synthesis[J]. Geology, 2014, 42(11): 987-990. [13] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168. [14] Heerema C J, Talling P J, Cartigny M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532: 116023. [15] Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148. [16] Paull C K, Ussler III W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geosphere, 2010, 6(6): 755-774. [17] Babonneau N, Delacourt C, Cancouët R, et al. Direct sediment transfer from land to deep-sea: Insights into shallow multibeam bathymetry at La Réunion Island[J]. Marine Geology, 2013, 346: 47-57. [18] Arzola R G, Wynn R B, Lastras G, et al. Sedimentary features and processes in the Nazaré and Setúbal submarine canyons, west Iberian margin[J]. Marine Geology, 2008, 250(1/2): 64-88. [19] 李全,吴伟,康洪全,等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质,2019,40(4):917-929. Li Quan, Wu Wei, Kang Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil & Gas Geology, 2019, 40(4): 917-929. [20] Shepard F P. Submarine canyons: Multiple causes and long-time persistence[J]. AAPG Bulletin, 1981, 65(6): 1062-1077. [21] Normark W R. Growth patterns of deep-sea fans[J]. AAPG Bulletin, 1970, 54(11): 2170-2195. [22] Normark W R, Carlson P R. Giant submarine canyons: Is size any clue to their importance in the rock record?[M]//Chan M A, Archer A W. Extreme depositional environments: Mega end members in geologic time. Geological Society of America, 2003: 175-190. [23] Smith P A. Submarine topography off the California coast: Canyons and tectonic interpretation by Francis P. Shepard, K. O. Emery[J]. Geographical Review, 1942, 32(4): 691-693. [24] Li Q, Wu W, Liang J S, et al. Deep-water channels in the Lower Congo Basin: Evolution of the geomorphology and depositional environment during the Miocene[J]. Marine and Petroleum Geology, 2020, 115: 104260. [25] Wu W, Li Q, Yu J, et al. The Central Canyon depositional patterns and filling process in east of Lingshui Depression, Qiongdongnan Basin, northern South China Sea[J]. Geological Journal, 2018, 53(6): 3064-3081. [26] Li Q, Yu S, Wu W, et al. Detection of a deep-water channel in 3D seismic data using the sweetness attribute and seismic geomorphology: A case study from the Taranaki Basin, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2017, 6(3): 199-208. [27] Paull C K, McGann M, Sumner E J, et al. Sub-decadal turbidite frequency during the Early Holocene: Eel Fan, offshore northern California[J]. Geology, 2014, 42(10): 855-858. [28] Macdonald H A, Wynn R B, Huvenne V A I, et al. New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin[J]. Geosphere, 2011, 7(4): 845-867. [29] Terrinha P, Matias L, Vicente J, et al. Morphotectonics and strain partitioning at the Iberia-Africa plate boundary from multibeam and seismic reflection data[J]. Marine Geology, 2009, 267(3/4): 156-174. [30] Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology, 2006, 53(6): 1265-1287. [31] Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. GSA Bulletin, 2015, 127(5/6): 804-824. [32] Duarte J C, Terrinha P, Rosas F M, et al. Crescent-shaped morphotectonic features in the Gulf of Cadiz (offshore SW Iberia)[J]. Marine Geology, 2010, 271(3/4): 236-249. [33] Armitage D A, McHargue T, Fildani A, et al. Postavulsion channel evolution: Niger Delta continental slope[J]. AAPG Bulletin, 2012, 96(5): 823-843. [34] Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41: 48-61. [35] Rowan M G, Peel F J, Vendeville B C. Gravity-driven fold belts on passive margins[M]//McClay K R. Thrust tectonics and hydrocarbon systems. AAPG Memoir, 2004: 159-186. [36] Collot J Y, Agudelo W, Ribodetti A, et al. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-South Colombia oceanic margin[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B12): B12102. [37] Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304. [38] Smith D P, Ruiz G, Kvitek R, et al. Semiannual patterns of erosion and deposition in Upper Monterey Canyon from serial multibeam bathymetry[J]. GSA Bulletin, 2005, 117(9/10): 1123-1133. [39] Conway K W, Barrie J V, Picard K, et al. Submarine channel evolution: Active channels in fjords, British Columbia, Canada[J]. Geo-Marine Letters, 2012, 32(4): 301-312. [40] Lee H J, Syvitski J P M, Parker G, et al. Distinguishing sediment waves from slope failure deposits: Field examples, including the ‘Humboldt slide’, and modelling results[J]. Marine Geology, 2002, 192(1/2/3): 79-104. [41] Berndt C, Cattaneo A, Szuman M, et al. Sedimentary structures offshore Ortona, Adriatic Sea-Deformation or sediment waves?[J]. Marine Geology, 2006, 234(1/2/3/4): 261-270. [42] Urgeles R, De Mol B, Liquete C, et al. Sediment undulations on the Llobregat prodelta: Signs of early slope instability or sedimentary bedforms?[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05102. [43] Ballard J A. Structure of the lower continental rise hills of the western North Atlantic[J]. Geophysics, 1966, 31(3): 506-523. [44] Gardner J V, Prior D B, Field M E. Humboldt slide-A large shear-dominated retrogressive slope failure[J]. Marine Geology, 1999, 154(1/2/3/4): 323-338. [45] Howe J A. Turbidite and contourite sediment waves in the northern Rockall Trough, North Atlantic Ocean[J]. Sedimentology, 1996, 43(2): 219-234. [46] Damuth J E. Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology, 1979, 7(11): 520-523. [47] Normark W R, Hess G R, Stow D A V, et al. Sediment waves on the Monterey Fan Levee: A preliminary physical interpretation[J]. Marine Geology, 1980, 37(1/2): 1-18. [48] Nakajima T, Satoh M, Okamura Y. Channel-levee complexes, terminal deep-sea fan and sediment wave fields associated with the Toyama deep-sea channel system in the Japan Sea[J]. Marine Geology, 1998, 147(1/2/3/4): 25-41. [49] Smith D P, Kvitek R, Iampietro P J, et al. Twenty-nine months of geomorphic change in Upper Monterey Canyon (2002-2005)[J]. Marine Geology, 2007, 236(1/2): 79-94. [50] Migeon S, Savoye B, Faugeres J C. Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J]. Sedimentary Geology, 2000, 133(3/4): 265-293. [51] Piper D J W, Aksu A E. The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets[J]. Geo-Marine Letters, 1987, 7(4): 177-182. [52] Piper D J W, Shor A N, Farre J A, et al. Sediment slides and turbidity currents on the Laurentian Fan: Sidescan sonar investigations near the epicenter of the 1929 Grand Banks earthquake[J]. Geology, 1985, 13(8): 538-541. [53] Piper D J W, Shor A N, Hughes Clarke J E. The 1929 “Grand Banks” earthquake, slump, and turbidity current[M]//Clifton H E. Sedimentologic consequences of convulsive geologic events. Geological Society of America, 1988: 77-92. [54] Covault J A, Romans B W. Growth patterns of deep-sea fans revisited: Turbidite-system morphology in confined basins, examples from the California Borderland[J]. Marine Geology, 2009, 265(1/2): 51-66. [55] Mutti E. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (south-central Pyrenees, Spain)[J]. Sedimentology, 1977, 24(1): 107-131. [56] Russell H A J, Arnott R W C. Hydraulic-jump and hyper concentrated-flow deposits of a glacigenic subaqueous fan: Oak Ridges moraine, southern Ontario, Canada[J]. Journal of Sedimentary Research, 2003, 73(6): 887-905. [57] Kostic S, Parker G. Conditions under which a supercritical turbidity current traverses an abrupt transition to vanishing bed slope without a hydraulic jump[J]. Journal of Fluid Mechanics, 2007, 586: 119-145. [58] Xu J P, Wong F L, Kvitek R, et al. Sandwave migration in Monterey Submarine Canyon, central California[J]. Marine Geology, 2008, 248(3/4): 193-212. [59] Migeon S, Savoye B, Zanella E, et al. Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): Significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine and Petroleum Geology, 2001, 18(2): 179-208. [60] Wynn R B, Piper D J W, Gee M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones[J]. Marine Geology, 2002, 192(1/2/3): 59-78. [61] Embley R W, Langseth M G. Sedimentation processes on the continental rise of northeastern South America[J]. Marine Geology, 1977, 25(4): 279-297. [62] McHugh C M G, Ryan W B F. Sedimentary features associated with channel overbank flow: Examples from the Monterey Fan[J]. Marine Geology, 2000, 163(1/2/3/4): 199-215. [63] Flood R D, Shor A N, Manley P L. Morphology of abyssal mudwaves at Project MUDWAVES sites in the Argentine Basin[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(4/5): 859-888. [64] Blumsack S L, Weatherly G L. Observations of the nearby flow and a model for the growth of mudwaves[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1327-1339. [65] Guiavarc'h C, Treguier A M, Vangriesheim A. Deep currents in the Gulf of Guinea: Along slope propagation of intraseasonal waves[J]. Ocean Science, 2009, 5(2): 141-153. [66] Djakouré S, Penven P, Bourlès B, et al. Respective roles of the guinea current and local winds on the coastal upwelling in the northern gulf of Guinea[J]. Journal of Physical Oceanography, 2017, 47(6): 1367-1387. [67] Blumsack S L. A model for the growth of mudwaves in the presence of time-varying currents[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1993, 40(4/5): 963-974. [68] Castro I P, Snyder W H. Experiments on wave breaking in stratified flow over obstacles[J]. Journal of Fluid Mechanics, 1993, 255: 195-211.