-
SZP剖面为含文化层剖面,地层界线分明,清晰可见(表1)。该剖面在铜官窑遗址范围内,是专门开挖的平行剖面,距离湘江约50 m,位于河流二级阶地且靠近丘陵。剖面厚度为320 cm,未见底。以每间隔2 cm或10 cm不等距取样,共采集99份样品,样品编号为SZP001~SZP099。文化层为260~290 cm,出土大量的瓷块和瓷片,时间约在唐代中晚期。
表 1 SZP剖面描述
地层深度/cm 地层特征 0~70 灰黄色黏土,含黑色斑块与胶膜、红色碎块、青灰色小砾石(0.5~1 cm)以及大量虫孔。在5~10 cm处发现灰色陶片 70~80 灰黄色黏土,沿裂隙发育大量红色Fe、Mn胶膜 80~145 青灰色淤泥,沿裂隙面发育红黄色胶膜,含虫孔 145~215 浅黄色,粉砂质黏土,无层理 215~230 灰黄色黏土 230~260 灰色淤泥层,含大量陶片 260~290 唐代中晚期文化层,含大量的陶块和陶片、红烧土 290~310 灰黄色,含少量烧土,含大量的碳粒和碳片,厚度约5~10 cm 310以下 浅黄色生土 -
所有样品在实验室进行自然风干,取出5 g样品使用玛瑙研钵进行研磨,过200目筛。然后实验前,对磨好的样品在烘箱内烘干,烘干后称取25 mg样品置于自制高压密闭溶样装置中。加入0.5 mL浓HF后加热蒸干,去除样品中的部分Si。再加入1 mL浓HF和0.5 mL浓HNO3于190 ℃溶解,蒸干至湿盐状,再加入1 mL HNO3蒸干至湿盐状,去除过量HF。蒸干后以5 mL的30%(v/v) HNO3在140 ℃时提取残渣,冷却后加入1 mL的500 ng/mL的RH内标溶液稀释到50 mL用以减轻基体效应及仪器漂移带来的影响。测得Li、Sc、Ti、V、Cr、U、Be、Pb等共33种微量元素,分析结果与标样测定结果进行比较,误差均小于±10%。微量元素的含量用高分辨率电感耦合等离子体质谱仪(HR-ICPMS)进行测定,实验在南京大学地球科学系内生金属矿床成矿机制研究国家重点实验室完成[25]。分别在94~96 cm、139~141 cm和149~151 cm以及290~292 cm采集了3个OSL和1个AMS14C样品进行年代测定(表2),实验在北京大学AMS14C/OSL实验室(用CALIB 7.01校准)完成。除此以外,在剖面260~290 cm间的文化层中出土的陶器碎片被确定为中晚唐的器物。利用Tan et al.[26]基于测年结果和瓷器类型学建立的相对年代学框架,建立了一个年代—深度模型(图2)。
表 2 SZP剖面中的AMS14C/OSL年代数据[26]
样品编号 深度/cm 校正年代/a B.P. AB120171 94~96 451±32 AB120172 139~141 879±65 AB120173 149~151 1 182±85 BA120171(AMS14C) 290~292 1 320±30 -
剖面选择4个样品完成年代测试,其中AMS14C(用Calib7.01校准)1个和OSL年代3个。OSL年代测定使用Riso-TL/OSL-DA15测年系统,在SZP剖面260~290 cm间的文化层中出土的大量瓷器碎片被确定为中晚唐的器物。建立的剖面年代序列如表2和图2。
-
SZP剖面地球化学元素(Ti、Mn、Li、Be、Sc、V、Cr、Co、Ni、Cu、Zn、Rb、Sr、Y、Zr、Mo、Sn、Cs、Ba、Hf、Pb、Th、U)含量变化如表3。Ti含量最高,平均值达到5 405.8 μg/g,其次是Mn,平均值为988.8 μg/g。元素中含量平均值较高的有Li、Mn、Zr、Ba、Rb、Zn,均在100 μg/g以上。含量较低的是Be、Mo、Hf、Ta、W、Bi、U,平均值皆在10 μg/g以下。最低的是Mo,平均值为0.9 μg/g。剖面含量均值由大到小为:Ti>Mn>Ba>Zr>Rb>Zn>Li>Cr>V>Pb>Sr>Cu>Y>Ni>Th>Cs>Co>Sc>Sn>Hf>U>Be>Mo。
表 3 SZP剖面地球化学元素含量(μg/g)
深度 Li Be Sc Ti V Cr Mn Co Ni Cu Zn Rb Sr Y Zr Mo Sn Cs Ba Hf Pb Th U 80 cm以上 最小 100.9 3.1 15.9 5 421.7 63.7 60.0 620.0 18.0 33.3 35.6 117.5 165.2 47.9 32.0 209.3 0.8 7.1 19.1 484.2 6.6 49.9 30.9 4.9 最大 115.7 4.0 16.4 5 638.9 66.0 67.3 2 493.1 23.9 36.5 38.7 137.1 180.4 50.0 34.3 271.9 1.2 10.9 22.9 646.1 8.2 74.4 32.7 6.2 均值 107.6 3.5 16.2 5 506.9 64.6 63.6 1 146.1 20.4 34.7 37.0 127.3 174.7 49.0 33.2 235.3 1.0 9.2 20.1 526.7 7.3 56.9 31.9 5.5 80~230 cm 最小 104.6 3.3 13.8 5 386.1 58.9 57.4 503.2 14.9 28.8 34.9 111.8 171.3 47.5 27.8 199.6 0.7 7.6 18.1 502.1 6.0 53.1 24.5 5.0 最大 118.9 4.5 17.6 6 023.6 70.7 72.5 1 578.8 24.5 37.4 44.2 141.4 186.6 53.5 37.7 260.4 1.3 15.3 22.3 546.8 7.9 66.9 33.4 6.5 均值 110.0 3.8 16.0 5 676.8 66.2 64.7 876.3 20.3 34.1 38.4 129.9 177.1 49.8 32.7 228.3 1.0 11.3 19.3 519.3 7.1 57.9 31.0 5.8 230~310 cm 最小 89.9 3.3 12.9 4 864.8 48.1 49.3 800.9 16.0 26.5 30.4 102.2 155.4 45.6 30.5 220.4 0.6 7.0 21.2 506.4 6.5 38.8 22.7 4.7 最大 106.4 4.0 14.8 5 279.2 57.8 57.6 1 997.9 18.8 29.6 97.3 125.4 183.4 55.4 37.1 317.3 0.8 20.2 27.1 631.3 9.3 129.7 28.4 5.5 均值 97.0 3.6 13.7 5 042.7 51.8 54.1 1 093.2 17.2 28.4 41.4 115.5 173.1 50.1 34.2 275.0 0.7 9.9 24.7 543.1 8.2 58.3 25.4 5.1 310~320 cm 最小 100.2 3.5 14.7 5 168.6 53.4 55.8 628.9 15.1 28.4 26.7 110.1 178.8 48.8 33.0 241.2 0.8 6.9 25.0 509.3 7.3 37.3 22.3 5.3 最大 102.2 3.6 14.9 5 230.8 53.6 69.4 695.3 15.4 35.1 29.0 126.0 182.7 49.7 34.2 248.3 0.8 7.5 25.1 530.1 7.5 40.4 23.7 5.4 均值 101.2 3.6 14.8 5 199.7 53.5 62.6 662.1 15.3 31.8 27.8 118.1 180.7 49.2 33.6 244.7 0.8 7.2 25.0 519.7 7.4 38.9 23.0 5.3 全剖面 最小 89.9 3.3 12.9 4 864.8 48.1 49.3 503.2 14.9 26.5 26.7 102.2 155.4 45.6 27.8 199.6 0.6 6.9 18.1 502.1 6.0 37.3 22.3 4.7 最大 118.9 4.5 17.6 6 023.6 70.7 72.5 1 997.9 24.5 37.4 97.3 141.4 186.6 55.4 37.7 317.3 1.3 20.2 27.1 631.3 9.3 129.7 33.4 6.5 均值 104.0 3.7 14.9 5 371.0 58.9 60.4 991.6 18.4 31.5 40.6 121.9 175.8 50.0 33.3 249.7 0.9 10.7 22.2 532.6 7.6 58.2 27.6 5.4 湖南土壤背景值[27] 1.06 11 136 68 441 14 32 27 95 139 57 27 260 347 27 17 4.2 湘江沉积物背景值[28] 46.7 2.83 4 487 92.1 66.8 855 13.6 29.9 30 87.4 48.6 27 347 1.28 8.45 354 39.7 17.8 4.21 上陆壳UCC[29] 20 3 13.6 4 100 107 83 600 17 44 25 71 112 350 22 190 1.5 5.5 4.6 550 5.8 17 10.7 2.8 元素含量随着深度的变化而变化,可能与当时的沉积环境和物质来源相关。元素Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn变化趋势一致,在80~230 cm的地层为高值区,在230 cm以下的地层为低值区。Pb、Cu、Sn、Hf、Zr、Y、Ba、Mn、Sr与上述元素呈相反的变化趋势,230 cm以下的地层为它们的高值区。Pb、Cu在230 cm以上的地层波动不大,在230~310 cm出现最大值,Sn、Hf、Zr、Y、Ba、Mn、Sr在80~230 cm之间出现小幅升高。在80 cm上出现峰值的有Ba、Mn、Mo、Co。
-
微量元素之间相关性高,表明它们的来源可能一致,若相关性较差,来源可能就不同[30]。Ti与微量元素Sc、Li、V、Cr显著相关,相关系数均在0.8以上(置信度为99%)(表4)。Sc与Li、V、Cr、Ni;V与Li、Sr、Cr、Ni;Ni与Mo、Th;Cr与V、Ni;Co与Mo、Th在0.01水平上高度正相关,相关系数在0.8以上。这说明它们可能具有相同的物质来源。Pb与Cu(0.877)、Sn(0.759)呈正相关,与Rb(-0.25)、Cs(-0.456)负相关。Cu与Sn(0.794)正相关,与Sr(0.454)呈弱相关。Hf与Zr(0.983)、Y(0.736)显著相关,Zr与Y(0.668)相关性较高。Ba与Mn(0.744)相关性显著,与Sr(0.594)相关性较高,与Cu(0.444)弱相关。Mn与Sr(0.365)弱相关。
表 4 SZP剖面地球化学元素相关性分析
Li Be Sc Ti V Cr Mn Co Cu Ni Zn Rb Sr Y Zr Mo Sn U Th Pb Hf Ba Li 1.000 Be 0.370 1.000 Sc 0.875 0.325 1.000 Ti 0.863 0.370 0.910 1.000 V 0.898 0.274 0.933 0.937 1.000 Cr 0.799 0.443 0.877 0.830 0.838 1.000 Mn -0.165 -0.209 -0.004 -0.155 -0.084 -0.158 1.000 Co 0.435 0.122 0.681 0.590 0.681 0.522 0.498 1.000 Cu 0.064 0.122 0.002 0.005 0.062 0.039 0.377 0.275 1.000 Ni 0.737 0.326 0.900 0.794 0.846 0.936 0.039 0.713 0.135 1.000 Zn 0.648 0.423 0.731 0.704 0.667 0.722 -0.139 0.527 0.282 0.791 1.000 Rb 0.480 0.314 0.445 0.399 0.335 0.431 -0.264 -0.010 -0.581 0.305 0.300 1.000 Sr 0.014 0.379 0.062 0.062 -0.052 0.036 0.365 0.158 0.454 0.149 0.406 0.028 1.000 Y -0.263 0.387 0.048 -0.123 -0.132 0.090 0.358 0.327 -0.025 0.156 0.031 0.079 0.215 1.000 Zr -0.692 -0.014 -0.518 -0.540 -0.605 -0.433 0.329 -0.114 -0.024 -0.437 -0.464 -0.257 0.026 0.668 1.000 Mo 0.558 0.281 0.781 0.746 0.766 0.718 0.201 0.840 0.152 0.814 0.566 0.062 0.166 0.240 -0.232 1.000 Sn 0.390 0.370 0.255 0.332 0.323 0.297 0.019 0.209 0.794 0.276 0.459 -0.250 0.287 -0.199 -0.337 0.208 1.000 U 0.741 0.414 0.766 0.750 0.720 0.670 -0.223 0.451 -0.040 0.679 0.769 0.559 0.179 0.059 -0.458 0.548 0.240 1.000 Th 0.630 0.244 0.753 0.726 0.814 0.706 0.148 0.812 0.339 0.803 0.661 0.014 -0.003 0.171 -0.247 0.731 0.367 0.602 1.000 Pb 0.182 0.139 0.096 0.135 0.192 0.115 0.167 0.276 0.877 0.173 0.313 -0.593 0.197 -0.122 -0.186 0.194 0.759 0.033 0.442 1.000 Hf -0.615 0.034 -0.419 -0.462 -0.519 -0.346 0.329 -0.011 -0.013 -0.329 -0.344 -0.202 0.041 0.736 0.983 -0.151 -0.329 -0.328 -0.118 -0.162 1.000 Ba -0.194 -0.003 -0.154 -0.259 -0.222 -0.199 0.744 0.252 0.444 -0.039 -0.017 -0.138 0.594 0.274 0.149 0.033 0.157 -0.204 -0.044 0.247 0.151 1.000 Cs -0.633 -0.275 -0.625 -0.696 -0.774 -0.674 0.189 -0.532 -0.315 -0.686 -0.530 0.067 0.145 0.217 0.524 -0.589 -0.516 -0.448 -0.771 -0.456 0.458 0.285 -
因子分析前的KMO(Kaiser-Meyer-Olkin检验)=0.534,Bartlett球度检验结果显示(DF=253,Sig.<0.001),说明样品数据适用于因子分析。通过主成分分析,可分为五个主成分,第一主成分的特征值为10.053,方差贡献为43.710%;第二主成分的特征值为3.912,贡献了17.007%;第三主成分特征值为3.016,贡献了13.112%;第四主成分特征值为1.802,贡献了7.836%;第五主成分的特征值为1.520,贡献了6.610%。这五个主成分的总累积解释方差为88.274%,大于85%,说明这五个主成分可反映所有数据的大部分信息(表5)。以累积方差贡献88.274%为准,可以提取五个主成因子:F1包括Sc、V、Ni、Th、Mo、Ti、Cr、Co、Li、U、Zn;F2包括Pb、Cu、Sn;F3包括Hf、Zr、Y;F4包括Ba、Mn、Sr;F5包括Be。
表 5 SZP剖面沉积物地球化学元素变量的载荷因子
元素 成分 成分1 成分2 成分3 成分4 成分5 Sc 0.936 -0.095 -0.191 0.009 0.157 V 0.929 0.033 -0.290 -0.110 0.047 Ni 0.927 0.030 -0.072 0.062 0.157 Th 0.889 0.319 0.109 -0.033 -0.040 Mo 0.883 0.084 0.115 0.139 -0.030 Ti 0.873 -0.016 -0.264 -0.124 0.205 Cr 0.862 -0.021 -0.105 -0.135 0.289 Co 0.837 0.158 0.208 0.340 -0.202 Li 0.765 -0.009 -0.466 -0.086 0.259 Cs -0.716 -0.441 0.221 0.327 0.017 U 0.709 -0.146 -0.182 -0.054 0.453 Zn 0.690 0.168 -0.191 0.095 0.485 Pb 0.157 0.927 -0.094 0.097 0.028 Cu 0.065 0.904 -0.007 0.348 0.095 Sn 0.216 0.786 -0.262 0.062 0.348 Rb 0.287 -0.740 -0.191 -0.011 0.461 Hf -0.260 -0.045 0.931 0.071 -0.031 Zr -0.374 -0.039 0.891 0.066 -0.070 Y 0.160 -0.131 0.874 0.227 0.220 Ba -0.113 0.174 0.087 0.909 0.011 Mn 0.098 0.131 0.303 0.807 -0.362 Sr 0.000 0.168 0.011 0.712 0.547 Be 0.272 0.119 0.213 -0.080 0.820 特征值 10.053 3.912 3.016 1.802 1.520 变量解释/% 43.710 17.007 13.112 7.836 6.610 累积/% 43.710 60.717 73.829 81.664 88.274 -
聚类分析能够直接观察各元素之间的远疏距离,距离系数的长短代表元素间来源的相关性程度,最先连接且距离最短的元素之间相关性高且来源相似[31]。对SZP剖面的地球化学元素进行R型聚类分析(图3),当距离系数选为15时,可以分成五组,聚类分析结果与主成分分析结果完全一致。
Geochemical Element Characteristics and Provenance Changes at Tongguanyao Site Section in Changsha
-
摘要: 使用HR-ICPMS对长沙铜官窑遗址石渚坪(SZP)剖面的地球化学元素进行测定,分析了遗址剖面地球化学含量变化特征,揭示其沉积环境演变及其物源变化。结果表明,元素的含量变化特征显著,元素Ti、Cr、Co、V、Ni等在80~230 cm逐渐升高出现峰值,230~310 cm逐渐降低至谷值。Pb、Zr、Mn等分布趋势与其相反。其中,Ti含量最高,平均值达5 405.8 μg/g;最低的是Mo,平均值为0.9 μg/g。含量均值由大到小为:Ti>Mn>Ba>Zr>Rb>Zn>Li>Cr>V>Pb>Sr>Cu>Y>Ni>Th>Cs>Co>Sc>Sn>Hf>U>Be>Mo。SZP剖面记录了一个近1 300年来的沉积环境变化过程:风尘堆积—石渚湖形成—河漫滩沉积—石渚湖再次形成—石渚坪。物质来源也发生相应变化:310 cm以下来源为末次冰期风尘堆积;310~230 cm(年代为1 288~1 094 a B.P.)地层中含大量瓷片,物源主要是铜官窑瓷器煅烧过程中金属矿物开采及冶炼产生的废料;230~80 cm(年代为1 094~380 a B.P.),下层物源是湘江输入的泥沙,主要是上游的石灰岩沉积,上层是中下游地区砂岩的风化侵蚀和水流搬运沉积;80 cm以上(年代为380 a B.P.以来)与人类活动有关,主要为人工垫土和坡地周边风化侵蚀堆积。Abstract: High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied to determine the geochemical element content in sediments from the Shizhuping (SZP) profile of the Tongguan kiln site in Changsha, Hunan province, China. The variation of geochemical content was analyzed to reveal environmental evolution and provenance change. The content varies significantly. The elements Ti, Cr, Co, V, Ni, etc. gradually increase at depths from 80 cm to peak at 230 cm, then decrease from 230 cm to 310 cm to the lowest value s; Pb, Zr and Mn show the opposite trend. Of these, Ti content is the highest (average 5 405.8 μg/g). The lowest is Mo, with an average of 0.9 μg/g. The order of the average content from higher to lower is Ti > Mn > Ba> Zr> Rb> Zn> Li> Cr> V> Pb >Sr > Cu> Y> Ni> Th> Cs> Co> Sc> Sn> Hf> Be> Mo. The SZP section has recorded the changes in the sedimentary environment over the past 1 300 years: loess sediment⁃SZP lake formation⁃flood plain sediment⁃SZP lake reformed⁃SZP terrace. Correspondingly, the provenance of the section has changed significantly. The source below 310 cm is dust accumulated in the most recent glacial period. The formation at 310⁃230 cm depths (1 288⁃1 094 a B.P.) contains a large number of ceramic tablets, and the sediments are mainly the waste products of mining and smelting of metal minerals in the calcination process of Tongguan kiln porcelain. From 230 cm to 80 cm (1 094⁃380 a B.P.), the lower sediment source is from the Xiangjiang River; the upper sediment is weathering erosion and water transport of sandstone in the middle-to-lower reaches. Above 80 cm (380 a B.P. to present) the sediments are related to human activity, comprising mainly an artificial soil cushion and weathering erosion accumulation around the slope.
-
Key words:
- major elements /
- trace elements /
- sedimentary environment /
- provenance /
- Tongguan kiln site
-
表 1 SZP剖面描述
地层深度/cm 地层特征 0~70 灰黄色黏土,含黑色斑块与胶膜、红色碎块、青灰色小砾石(0.5~1 cm)以及大量虫孔。在5~10 cm处发现灰色陶片 70~80 灰黄色黏土,沿裂隙发育大量红色Fe、Mn胶膜 80~145 青灰色淤泥,沿裂隙面发育红黄色胶膜,含虫孔 145~215 浅黄色,粉砂质黏土,无层理 215~230 灰黄色黏土 230~260 灰色淤泥层,含大量陶片 260~290 唐代中晚期文化层,含大量的陶块和陶片、红烧土 290~310 灰黄色,含少量烧土,含大量的碳粒和碳片,厚度约5~10 cm 310以下 浅黄色生土 表 2 SZP剖面中的AMS14C/OSL年代数据[26]
样品编号 深度/cm 校正年代/a B.P. AB120171 94~96 451±32 AB120172 139~141 879±65 AB120173 149~151 1 182±85 BA120171(AMS14C) 290~292 1 320±30 表 3 SZP剖面地球化学元素含量(μg/g)
深度 Li Be Sc Ti V Cr Mn Co Ni Cu Zn Rb Sr Y Zr Mo Sn Cs Ba Hf Pb Th U 80 cm以上 最小 100.9 3.1 15.9 5 421.7 63.7 60.0 620.0 18.0 33.3 35.6 117.5 165.2 47.9 32.0 209.3 0.8 7.1 19.1 484.2 6.6 49.9 30.9 4.9 最大 115.7 4.0 16.4 5 638.9 66.0 67.3 2 493.1 23.9 36.5 38.7 137.1 180.4 50.0 34.3 271.9 1.2 10.9 22.9 646.1 8.2 74.4 32.7 6.2 均值 107.6 3.5 16.2 5 506.9 64.6 63.6 1 146.1 20.4 34.7 37.0 127.3 174.7 49.0 33.2 235.3 1.0 9.2 20.1 526.7 7.3 56.9 31.9 5.5 80~230 cm 最小 104.6 3.3 13.8 5 386.1 58.9 57.4 503.2 14.9 28.8 34.9 111.8 171.3 47.5 27.8 199.6 0.7 7.6 18.1 502.1 6.0 53.1 24.5 5.0 最大 118.9 4.5 17.6 6 023.6 70.7 72.5 1 578.8 24.5 37.4 44.2 141.4 186.6 53.5 37.7 260.4 1.3 15.3 22.3 546.8 7.9 66.9 33.4 6.5 均值 110.0 3.8 16.0 5 676.8 66.2 64.7 876.3 20.3 34.1 38.4 129.9 177.1 49.8 32.7 228.3 1.0 11.3 19.3 519.3 7.1 57.9 31.0 5.8 230~310 cm 最小 89.9 3.3 12.9 4 864.8 48.1 49.3 800.9 16.0 26.5 30.4 102.2 155.4 45.6 30.5 220.4 0.6 7.0 21.2 506.4 6.5 38.8 22.7 4.7 最大 106.4 4.0 14.8 5 279.2 57.8 57.6 1 997.9 18.8 29.6 97.3 125.4 183.4 55.4 37.1 317.3 0.8 20.2 27.1 631.3 9.3 129.7 28.4 5.5 均值 97.0 3.6 13.7 5 042.7 51.8 54.1 1 093.2 17.2 28.4 41.4 115.5 173.1 50.1 34.2 275.0 0.7 9.9 24.7 543.1 8.2 58.3 25.4 5.1 310~320 cm 最小 100.2 3.5 14.7 5 168.6 53.4 55.8 628.9 15.1 28.4 26.7 110.1 178.8 48.8 33.0 241.2 0.8 6.9 25.0 509.3 7.3 37.3 22.3 5.3 最大 102.2 3.6 14.9 5 230.8 53.6 69.4 695.3 15.4 35.1 29.0 126.0 182.7 49.7 34.2 248.3 0.8 7.5 25.1 530.1 7.5 40.4 23.7 5.4 均值 101.2 3.6 14.8 5 199.7 53.5 62.6 662.1 15.3 31.8 27.8 118.1 180.7 49.2 33.6 244.7 0.8 7.2 25.0 519.7 7.4 38.9 23.0 5.3 全剖面 最小 89.9 3.3 12.9 4 864.8 48.1 49.3 503.2 14.9 26.5 26.7 102.2 155.4 45.6 27.8 199.6 0.6 6.9 18.1 502.1 6.0 37.3 22.3 4.7 最大 118.9 4.5 17.6 6 023.6 70.7 72.5 1 997.9 24.5 37.4 97.3 141.4 186.6 55.4 37.7 317.3 1.3 20.2 27.1 631.3 9.3 129.7 33.4 6.5 均值 104.0 3.7 14.9 5 371.0 58.9 60.4 991.6 18.4 31.5 40.6 121.9 175.8 50.0 33.3 249.7 0.9 10.7 22.2 532.6 7.6 58.2 27.6 5.4 湖南土壤背景值[27] 1.06 11 136 68 441 14 32 27 95 139 57 27 260 347 27 17 4.2 湘江沉积物背景值[28] 46.7 2.83 4 487 92.1 66.8 855 13.6 29.9 30 87.4 48.6 27 347 1.28 8.45 354 39.7 17.8 4.21 上陆壳UCC[29] 20 3 13.6 4 100 107 83 600 17 44 25 71 112 350 22 190 1.5 5.5 4.6 550 5.8 17 10.7 2.8 表 4 SZP剖面地球化学元素相关性分析
Li Be Sc Ti V Cr Mn Co Cu Ni Zn Rb Sr Y Zr Mo Sn U Th Pb Hf Ba Li 1.000 Be 0.370 1.000 Sc 0.875 0.325 1.000 Ti 0.863 0.370 0.910 1.000 V 0.898 0.274 0.933 0.937 1.000 Cr 0.799 0.443 0.877 0.830 0.838 1.000 Mn -0.165 -0.209 -0.004 -0.155 -0.084 -0.158 1.000 Co 0.435 0.122 0.681 0.590 0.681 0.522 0.498 1.000 Cu 0.064 0.122 0.002 0.005 0.062 0.039 0.377 0.275 1.000 Ni 0.737 0.326 0.900 0.794 0.846 0.936 0.039 0.713 0.135 1.000 Zn 0.648 0.423 0.731 0.704 0.667 0.722 -0.139 0.527 0.282 0.791 1.000 Rb 0.480 0.314 0.445 0.399 0.335 0.431 -0.264 -0.010 -0.581 0.305 0.300 1.000 Sr 0.014 0.379 0.062 0.062 -0.052 0.036 0.365 0.158 0.454 0.149 0.406 0.028 1.000 Y -0.263 0.387 0.048 -0.123 -0.132 0.090 0.358 0.327 -0.025 0.156 0.031 0.079 0.215 1.000 Zr -0.692 -0.014 -0.518 -0.540 -0.605 -0.433 0.329 -0.114 -0.024 -0.437 -0.464 -0.257 0.026 0.668 1.000 Mo 0.558 0.281 0.781 0.746 0.766 0.718 0.201 0.840 0.152 0.814 0.566 0.062 0.166 0.240 -0.232 1.000 Sn 0.390 0.370 0.255 0.332 0.323 0.297 0.019 0.209 0.794 0.276 0.459 -0.250 0.287 -0.199 -0.337 0.208 1.000 U 0.741 0.414 0.766 0.750 0.720 0.670 -0.223 0.451 -0.040 0.679 0.769 0.559 0.179 0.059 -0.458 0.548 0.240 1.000 Th 0.630 0.244 0.753 0.726 0.814 0.706 0.148 0.812 0.339 0.803 0.661 0.014 -0.003 0.171 -0.247 0.731 0.367 0.602 1.000 Pb 0.182 0.139 0.096 0.135 0.192 0.115 0.167 0.276 0.877 0.173 0.313 -0.593 0.197 -0.122 -0.186 0.194 0.759 0.033 0.442 1.000 Hf -0.615 0.034 -0.419 -0.462 -0.519 -0.346 0.329 -0.011 -0.013 -0.329 -0.344 -0.202 0.041 0.736 0.983 -0.151 -0.329 -0.328 -0.118 -0.162 1.000 Ba -0.194 -0.003 -0.154 -0.259 -0.222 -0.199 0.744 0.252 0.444 -0.039 -0.017 -0.138 0.594 0.274 0.149 0.033 0.157 -0.204 -0.044 0.247 0.151 1.000 Cs -0.633 -0.275 -0.625 -0.696 -0.774 -0.674 0.189 -0.532 -0.315 -0.686 -0.530 0.067 0.145 0.217 0.524 -0.589 -0.516 -0.448 -0.771 -0.456 0.458 0.285 表 5 SZP剖面沉积物地球化学元素变量的载荷因子
元素 成分 成分1 成分2 成分3 成分4 成分5 Sc 0.936 -0.095 -0.191 0.009 0.157 V 0.929 0.033 -0.290 -0.110 0.047 Ni 0.927 0.030 -0.072 0.062 0.157 Th 0.889 0.319 0.109 -0.033 -0.040 Mo 0.883 0.084 0.115 0.139 -0.030 Ti 0.873 -0.016 -0.264 -0.124 0.205 Cr 0.862 -0.021 -0.105 -0.135 0.289 Co 0.837 0.158 0.208 0.340 -0.202 Li 0.765 -0.009 -0.466 -0.086 0.259 Cs -0.716 -0.441 0.221 0.327 0.017 U 0.709 -0.146 -0.182 -0.054 0.453 Zn 0.690 0.168 -0.191 0.095 0.485 Pb 0.157 0.927 -0.094 0.097 0.028 Cu 0.065 0.904 -0.007 0.348 0.095 Sn 0.216 0.786 -0.262 0.062 0.348 Rb 0.287 -0.740 -0.191 -0.011 0.461 Hf -0.260 -0.045 0.931 0.071 -0.031 Zr -0.374 -0.039 0.891 0.066 -0.070 Y 0.160 -0.131 0.874 0.227 0.220 Ba -0.113 0.174 0.087 0.909 0.011 Mn 0.098 0.131 0.303 0.807 -0.362 Sr 0.000 0.168 0.011 0.712 0.547 Be 0.272 0.119 0.213 -0.080 0.820 特征值 10.053 3.912 3.016 1.802 1.520 变量解释/% 43.710 17.007 13.112 7.836 6.610 累积/% 43.710 60.717 73.829 81.664 88.274 -
[1] 牛彩香,雒昆利. 陕西蓝田段家坡黄土剖面地球化学元素特征及古气候效应分析[J]. 西北地质,2010,43(1):66-74. Niu Caixiang, Luo Kunli. Characteristics of geochemical element and paleoclimate effect-a case studying of Duanjiapo section during Late Neogene and Quaternary, in Lantian, Shaanxi[J]. Northwestern Geology, 2010, 43(1): 66-74. [2] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348. Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348. [3] Yan Y, Xia B, Lin G, et al. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary[J]. Sedimentary Geology, 2007, 197(1/2): 127-140. [4] 高华中. 沂沭河流域7470~2550a BP气候变化的元素地球化学记录[J]. 地球与环境,2016,44(6):595-599. Gao Huazhong. Elemental geochemistry for climate change of Yishu River Basin during 7470-2550 a B.P.[J]. Earth and Environment, 2016, 44(6): 595-599. [5] Das B K, Al-Mikhlafi A S, Kaur P. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting[J]. Journal of Asian Earth Sciences, 2006, 26(6): 649-668. [6] Jia X P, Wang H B, Xiao J H. Geochemical elements characteristics and sources of the riverbed sediment in the Yellow River’s desert channel[J]. Environmental Earth Sciences, 2011, 64(8): 2159-2173. [7] 刘平贵,范淑贤,李雪菊. 银川盆地第四纪地球化学元素特征及沉积环境[J]. 地质力学学报,2000, 6(4):43-50,94. Liu Pinggui, Fan Shuxian, Li Xueju. The geochemical element characteristics and paleosedimentary environment of the Quaternary deposits in Yinchuan Basin[J]. Journal of Geomechanics, 2000, 6(4): 43-50, 94. [8] 陶树,汤达祯,周传祎,等. 川东南—黔中及其周边地区下组合烃源岩元素地球化学特征及沉积环境意义[J]. 中国地质,2009,36(2):397-403. Tao Shu, Tang Dazhen, Zhou Chuanyi, et al. Element geochemical characteristics of the lower assemblage hydrocarbon source rocks in southeast Sichuan-central Guizhou (Chuandongnan-Qianzhong) region and its periphery areas and their implications to sedimentary environments[J]. Geology in China, 2009, 36(2): 397-403. [9] Wang H, Huang Q H, Bai X F, et al. Geochemical characteristics and depositional environment of trace elements and rare earth elements of sedimentary rocks of Middle-Upper Permian boundary in Xing-Meng area[M]//Lin J E. Proceedings of the international field exploration and development conference 2019. Singapore: Springer, 2020. [10] 张文翔,张虎才,雷国良,等. 柴达木贝壳堤剖面元素地球化学与环境演变[J]. 第四纪研究,2008,28(5):917-928. Zhang Wenxiang, Zhang Hucai, Lei Guoliang, et al. Elemental geochemistry and paleoenvironment evolution of shell bar section at Qarhan in the Qaidam Basin[J]. Quaternary Sciences, 2008, 28(5): 917-928. [11] 周笃珺,马海州,高东林,等. 青海湖南岸全新世黄土地球化学特征及气候环境意义[J]. 中国沙漠,2004,24(2):144-148. Zhou Dujun, Ma Haizhou, Gao Donglin, et al. Geochemical characteristics and climatic environmental significance of Holocene loess on south Qinghai Lake shore[J]. Journal of Desert Research, 2004, 24(2): 144-148. [12] Kraft R A. Reconstruction of Holocene and Early Eocene terrestrial environments using multiple stable isotope proxies[D]. Washington: The Johns Hopkins University, 2012. [13] Piper D Z, Ludington S, Duval J S, et al. Geochemistry of bed and suspended sediment in the Mississippi River system: Provenance versus weathering and winnowing[J]. Science of the Total Environment, 2006, 362(1/2/3): 179-204. [14] Zhang S, Dong W J, Zhang L C, et al. Geochemical characteristics of heavy metals in the Xiangjiang River, China[M]//Sly P G, Hart B T. Sediment/water interactions. Dordrecht: Springer, 1989: 253-262. [15] 吴雅霁,彭渤,杨霞,等. 湘江竹埠港段河床沉积物元素地球化学特征[J]. 地质调查与研究,2014,37(4):274-282. Wu Yaji, Peng Bo, Yang Xia, et al. Geochemical characteristics of elements in the sediments of Zhubugang Xiangjiang River[J]. Geological Survey and Research, 2014, 37(4): 274-282. [16] 徐婧喆. 湘江长沙段沉积物重金属污染地球化学分析[D]. 长沙:湖南师范大学,2012. Xu Jingzhe. Geochemical study on heavy metal contamination developed in bed sediments of the Xiangjiang River, Hunan province, China[D]. Changsha: Hunan Normal University, 2012. [17] 刘春早,黄益宗,雷鸣,等. 湘江流域土壤重金属污染及其生态环境风险评价[J]. 环境科学,2012,33(1):260-265. Liu Chunzao, Huang Yizong, Lei Ming, et al. Soil contamination and assessment of heavy metals of Xiangjiang River Basin[J]. Chinese Journal of Environmental Science, 2012, 33(1): 260-265. [18] Mao L J, Mo D W, Guo Y Y, et al. Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China[J]. Environmental Earth Sciences, 2012, 69(3): 765-771. [19] 彭渤,唐晓燕,余昌训,等. 湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪[J]. 地质学报,2011,85(2):282-299. Peng Bo, Tang Xiaoyan, Yu Changxun, et al. Heavy metal contamination of inlet sediments of the Xiangjiang River and Pb isotopic geochemical implication[J]. Acta Geologica Sinica, 2011, 85(2): 282-299. [20] 长沙窖课题组. 长沙窑[M]. 北京:紫禁城出版社,1996:7-28. Project Team of Changsha cellar. Changsha Kiln[M]. Beijing: Forbidden City Press, 1996: 7-28. [21] 封昊阳. 湘东地区传统村落及民居空间分布与形态文化地理研究[D]. 广州:华南理工大学,2017. Feng Haoyang. The research of spatial distribution and form of traditional villages and houses in eastern Hunan basing on the cultural geography[D]. Guangzhou: South China University of Technology, 2017. [22] 廖小红,王维俊,宋平,等. 湘江流域径流特性分析[J]. 湖南水利水电,2019(02):46-48. Liao Xiaohong, Wang Weijun, Song Ping, et al. Analysis of runoff characteristics in Xiangjiang River Basin[J]. Hunan Hydro & Power, 2019(02): 46-48. [23] 高冠民,窦秀英. 湖南自然地理[M]. 长沙:湖南人民出版社,1981:179-180. Gao Guanmin, Dou Xiuying. Hunan physical geography[M]. Changsha: Hunan People's Press, 1981: 179-180. [24] 唐晓燕,彭渤,余昌训,等. 湘江沉积物重金属元素环境地球化学特征[J]. 云南地理环境研究,2008,20(3):26-32. Tang Xiaoyan, Peng Bo, Yu Changxun, et al. Environmental-geochemical characteristics of heavy metals in sediments from the Xiang River[J]. Yunnan Geographic Environment Research, 2008, 20 (3): 26-32. [25] 高剑峰,陆建军,赖鸣远,等. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报(自然科学),2003,39(6):844-850. Gao Jianfeng, Lu Jianjun, Lai Mingyuan, et al. Analysis of trace elements in rock samples using HR-ICPMS[J]. Journal of Nanjing University (Natural Science), 2003, 39 (6): 844-850. [26] Tan Z H, Mao L J, Han Y M, et al. Black carbon and charcoal records of fire and human land use over the past 1300 years at the Tongguan Kiln archaeological site, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 162-169. [27] 潘佑民. 湖南土壤背景值及研究方法[M]. 北京:中国环境科学出版社,1988:159-275. Pan Youmin. Soil background values and research methods in Hunan[M]. Beijing: China Environmental Science Press, 1988: 159-275. [28] 王晓丽. 河口沉积物采样代表性研究[D]. 北京:中国地质大学,2006. Wang Xiaoli. Research on representativeness of estuarine sediment sampling[D]. Beijing: China University of Geosciences, 2006. [29] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4):203-236. [30] 王建丰,雷天柱,张生银,等. 刘家峡水库表层沉积物微量元素地球化学特征[J]. 沉积与特提斯地质,2018,38(3):51-59. Wang Jianfeng, Lei Tianzhu, Zhang Shengyin, et al. Trace element geochemistry of the surface sediments in the Liujiaxia reservoir, Gansu[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(3): 51-59. [31] 刘良,张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志,2013,34(6):7-15. Liu Liang, Zhang Zulu. Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6): 7-15. [32] 金秉福,林振宏,季福武. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展,2003,21(1):99-106. Jin Bingfu, Lin Zhenhong, Ji Fuwu. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science, 2003, 21(1): 99-106. [33] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社,1997:26-176. Zhang Hucai. Epigenetic geochemical characteristics and theoretical basis of elements[M]. Lanzhou: Lanzhou University Press, 1997: 26-176. [34] 张元培,黄春娟,孙卫国,等. 秭归地区闪长岩岩体风化壳微量元素地球化学特征[J]. 物探与化探,2012,36(5):755-759. Zhang Yuanpei, Huang Chunjuan, Sun Weiguo, et al. Geochemical characteristics of trace elements in the diorite weathered crust of Zigui area[J]. Geophysical and Geochemical Exploration, 2012, 36(5): 755-759. [35] 付胜云,唐分配,李大江,等. 湖南省铜矿成矿规律[J]. 有色金属(矿山部分),2015,67(6):36-43. Fu Shengyun, Tang Fenpei, Li Dajiang, et al. Metallogenic regularities of copper mines in Hunan province[J]. Nonferrous Metals (Mining Section), 2015, 67(6): 36-43. [36] 李振红,赵亚辉,周厚祥. 硫同位素地质特征及其在湖南省铜矿床成矿物质来源示踪中的应用[J]. 华南地质与矿产,2018,34(1):72-77. Li Zhenhong, Zhao Yahui, Zhou Houxiang. Sulfur isotopic characteristics of copper deposits in Hunan province[J]. Geology and Mineral Resources of South China, 2018, 34(1): 72-77. [37] 魏晓,文雪峰,杨瑞东. 贵州从江县大融砖厂新元古界浅变质岩现代风化壳剖面中微量元素分布特征与相关性分析[J]. 地球与环境,2010,38(3):304-313. Wei Xiao, Wen Xuefeng, Yang Ruidong. Trace element distribution characteristics and correlation analysis of modern weathering crust profile of Neoproterozoic epimetamorphic rocks in Darong, Congjiang county, Guizhou province [J]. Earth and Environment, 2010, 38(3): 304-313. [38] 陈卫锋,陈培荣,黄宏业,等. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究[J]. 中国科学(D辑):地球科学,2007,37(7):873-893. Chen Weifeng, Chen Peirong, Huang Hongye, et al. Chronological and geochemical studies of granite and enclave in Baimashan pluton, Hunan, South China[J]. Science China (Seri. D): Earth Sciences, 2007, 37(7): 873-893. [39] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:8-10. Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 8-10. [40] 赵海权. 湖南省主要稀有稀土金属矿床特征研究[J]. 世界有色金属,2019(3):273-274. Zhao Haiquan. Study on the characteristics of the major rare earth metal deposits in Hunan province[J]. World Nonferrous Metals, 2019(3): 273-274. [41] 黄春长. 环境变迁[M]. 北京:科学出版社,1998:110. Huang Chunchang. Environmental change[M]. Beijing:Science Press,1998:110. [42] 杨达源. 晚更新世冰期最盛时长江中下游地区的古环境[J]. 地理学报,1986,41(4):302-310. Yang Dayuan. The paleoenvironment of the mid-lower regions of Changjiang in the full-glacial period of Late Pleistocene[J]. Journal of Geography, 1986, 41(4): 302-310. [43] 庄检平,贾玉连,马春梅,等. 末次冰期间冰阶晚期长江中游风尘堆积及环境意义[J]. 沉积学报,2007,25(3):424-428. Zhuang Jianping, Jia Yulian, Ma Chunmei, et al. Eolian deposits in the middle reaches of the Yangtze River during Late Interstadial of the Last Glacial (40-22 ka B.P.) and its environmental significance[J]. Acta Sedimentologica Sinica, 2007, 25(3): 424-428. [44] 于玲玲,贾玉连,陈晓玲, 等. 长江中游末次冰期风成堆积及其环境指示[J]. 华中师范大学学报(自然科学版),2010,44(1):158-162. Yu Lingling, Jia Yulian, Chen Xiaoling, et al. Aeolian deposits in the middle reaches of Changjiang River during the Last Glaciation and their environmental implication[J]. Journal of Central China Normal University (Natural Sciences), 2010, 44(1): 158-162. [45] 包浪,李海平. 第四纪末次间冰期—冰期的气候变化和驱动机制[J]. 城市地理,2017(18):108. Bao Lang, Li Haiping. Climate change and driving mechanism of the Last Interglacial Glaciation in Quaternary[J]. Urban Geography, 2017(18): 108. [46] 贾玉芳. 末次冰期以来鄱阳湖沙山沉积及其环境意义研究[D]. 济南:山东师范大学,2012. Jia Yufang. Research on sand hills and their environmental significance in Poyang Lake region since Last Glacial Period[D]. Ji’nan: Shandong Normal University, 2012. [47] 刘美观. 长沙窑纪年瓷研究[J]. 收藏,2010(2):56-58. Liu Meiguan. Research on chronological porcelain of Changsha Kiln[J]. Collection, 2010(2): 56-58. [48] 李偏,张茂恒,孔兴功,等. 近2000年来东亚夏季风石笋记录及与历史变迁的关系[J]. 海洋地质与第四纪地质,2010,30(4):206-213. Li Pian, Zhang Maoheng, Kong Xinggong, et al. A stalagmite-record of East Asian summer monsoon in the last 2000 years and its correlation with historical records[J]. Marine Geology & Quaternary Geology, 2010, 30 (4): 206-213. [49] 林亦秋. 长沙窑蓝釉与铜红釉器及宗教纹饰:黑石号沉船的发现[C] //2009年古陶瓷科学技术国际学术讨论会(ISAC'09)论文集. 北京:中国科学院上海硅酸盐研究所,2009. Lin Yiqiu. Changsha kiln blue glaze and copper red glaze ware and religious decoration: Discovery of the wreck of the black stone[C]//Proceedings of the 2009 international symposium on ancient ceramic science and technology. Beijing: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2009. [50] 廖政文. 湘江上游泥沙的产生和特性[J]. 湖南水利水电,2004(1):28-29. Liao Zhengwen. Sediment formation and characteristic in upstream of Xiangjiang River[J]. Hunan Hydro & Power, 2004(1): 28-29.