-
牙寨剖面的δ13Ccarb变化较小,整体比较稳定(图4),变化范围为-5.0‰至-3.0‰,平均值为-3.9‰;δ18O变化范围为-14.4‰至-0.8‰,平均值为-8.1‰;δ13Corg变化范围为-25.8‰至-24.2‰,平均值为-25.1‰;TOC含量为0.05%至0.17%,平均值为0.07%;碳酸盐岩铁(Fe)含量3 717×10-6至16 690×10-6,平均为8 858×10-6;锰(Mn)含量为3 611×10-6至9 016×10-6,平均为5 648×10-6;锶(Sr)含量为444×10-6至1 165×10-6,平均为837×10-6(表1)。
表 1 富禄组碳酸盐岩同位素与元素含量
样品编号 TOC/% δ13Corg/‰ δ13Ccarb/‰ δ18O/‰ Fe/✕10-6 Mn/✕10-6 Sr/✕10-6 13FM-18-1 0.07 -26.9 -3.1 -7.5 18 560 6 350 930 13FM-18-2 0.08 -27.8 -3.1 -6.5 7 096 6 041 892 13FM-19 0.10 -27.1 -3.1 -7.2 4 924 5 203 913 13FM-20 0.07 -24.0 -3.2 -6.0 1 295 5 595 884 13FM-21 0.06 -25.5 -3.2 -7.3 16 128 7 357 839 13FM-22-1 0.05 -27.0 -3.1 -7.9 26 129 8 279 1 003 13FM-22-2 0.04 -26.1 -3.2 -9.6 70 683 9 032 980 13FM-23 0.04 -25.3 -3.2 -7.7 19 317 8 128 886 13FM-24 0.06 -23.7 -3.2 -6.4 22 014 4 145 685 13FM-25 0.11 -23.1 -3.5 -6.9 23 307 3 670 654 13FM-26 0.06 -23.7 -3.2 -7.4 10 296 3 606 627 13FM-27 0.05 -23.1 -3.3 -7.3 11 933 3 703 613 13FM-28 0.05 -24.3 — — — — — 13FM-30 0.04 -22.2 -3.0 -6.6 41 067 4 626 560 13FM-31 0.04 -23.7 -3.4 -7.3 30 341 5 448 542 13FM-32 0.08 -26.2 -3.2 -7.6 29 227 3 937 649 13FM-33 0.05 -24.6 -3.3 -6.9 31 211 3 967 616 14YZ-0 0.08 -25.6 -3.0 -0.8 8 291 4 107 444 14YZ-1 0.17 -25.6 -5.0 -6.2 7 534 4 794 565 14YZ-2 0.08 -25.1 -3.2 -3.1 3 717 5 523 520 14YZ-3 0.07 -24.7 -3.2 -2.6 7 293 6 245 556 14YZ-4 0.07 -25.8 -3.5 -5.1 16 690 7 941 663 14YZ-5 0.05 -25.7 -3.9 -7.7 13 749 9 016 725 14YZ-18 0.07 -25.1 -3.9 -9.5 9 374 5 899 944 14YZ-19 0.06 -25.1 -4.0 -10.0 10 099 6 175 1 165 14YZ-20 0.06 -24.5 -4.0 -10.9 12 101 5 583 948 14YZ-21 0.06 -25.1 -3.7 -8.7 4 862 5 247 1 002 14YZ-22 0.05 -24.2 — — — — — 14YZ-23 0.06 -24.2 -4.0 -11.2 14 282 3 611 980 14YZ-24 0.07 -25.4 -3.9 -9.72 6 021 3 909 909 14YZ-25 0.08 -25.5 -3.9 -11.9 — — — 14YZ-26 0.07 -25.0 -3.6 -8.9 6 052 5 044 1 056 14YZ-27 0.06 -24.3 -4.7 -14.4 5 278 5 132 1 041 14YZ-28 0.08 -25.8 -4.0 -8.5 7 531 6 491 1 042 注: —指低于检测线。 -
枫木剖面的δ13Ccarb相对均一(图4),变化范围为-3.5‰~-3.0‰,平均值为-3.2‰;δ18O变化范围为-9.6‰~-6.0‰,平均值为-7.25‰;δ13Corg存在明显的波动,变化范围是-27.8‰~-22.2‰,平均值为-24.96‰;TOC含量为0.04%至0.11%,平均值为0.06%;碳酸盐岩Fe含量为1 295×10-6~70 683×10-6,平均值为22 721×10-6;碳酸盐岩Mn含量为3 606×10-6~9 032×10-6,平均值为5 568×10-6;Sr含量为542×10-6~1 003×10-6,平均值为767×10-6(表1)。
Active Marine Carbon Cycle During the Sturtian “Snowball Earth” Glaciation
-
摘要: 目的 斯图特雪球地球事件是地质历史时期最极端的冰室气候。在冰期过程中,冰盖分布范围达到低纬度甚至古赤道区域,海洋被完全冰冻。目前,斯图特雪球地球过程中的古海洋化学研究相对薄弱,且生物地球化学循环机制尚不明确。 方法 对桂北地区成冰系富禄组开展了详细的野外调查和碳氧同位素及元素地球化学研究。 结果 桂北地区成冰系富禄组形成于斯图特雪球地球过程中,岩性主要为一套碎屑岩,并发育多套碳酸盐岩夹层。地球化学分析显示这些碳酸盐岩具有相对稳定的碳同位素值(平均值为-3.5‰),并与伴生的有机碳同位素呈现不耦合关系。 结论 富禄组碳酸盐岩的碳同位素值明显高于地幔碳同位素值(-6‰),指示斯图特雪球地球过程中的海洋初级生产力并未完全停止,只是表现为较低的水平。海洋热液系统提供的磷可能是维持冰期海洋初级生产力的主要原因。Abstract: Objective The Cryogenian so-called “Snowball Earth” glaciation was the most extreme icehouse climate in the Earth’s history. During this time,ice sheets may have extended to the low latitudes or even as far as the paleo-equatorial area,leading to a globally frozen earth and inspiring the term “Snowball Earth”. However,marine chemistry and biogeochemical cycles remained unconstrained. Methods To examine this,detailed geochemical analysis was carried out for the Yazhai and Fengmu sections of the Fulu Formation in the Yangtze Block,northern Guangxi province. Results The Fulu Formation in this region mainly consists of sandstones with rare carbonate interbeds. The stratigraphic correlation suggests that the carbonates were deposited during Sturtian glaciation. Geochemical analysis shows almost uniform carbonate carbon isotope δ13Ccarb values (mean -3.5‰),decoupled from organic carbon isotope variation. The δ13Ccarb values are significantly higher than the mantle carbon isotope values (-6‰). Conclusion This indicates a low level of marine primary productivity during Sturtian glaciation. Massive P from marine hydrothermal activity may have provided the nutrients to sustain synglacial organic matter production.
-
Key words:
- carbon isotope /
- carbonate /
- Fulu Formation /
- Neoproterozoic
-
图 1 桂北地区地质图及采样位置[17]
图 2 华南成冰系地层对比图[8]
表 1 富禄组碳酸盐岩同位素与元素含量
样品编号 TOC/% δ13Corg/‰ δ13Ccarb/‰ δ18O/‰ Fe/✕10-6 Mn/✕10-6 Sr/✕10-6 13FM-18-1 0.07 -26.9 -3.1 -7.5 18 560 6 350 930 13FM-18-2 0.08 -27.8 -3.1 -6.5 7 096 6 041 892 13FM-19 0.10 -27.1 -3.1 -7.2 4 924 5 203 913 13FM-20 0.07 -24.0 -3.2 -6.0 1 295 5 595 884 13FM-21 0.06 -25.5 -3.2 -7.3 16 128 7 357 839 13FM-22-1 0.05 -27.0 -3.1 -7.9 26 129 8 279 1 003 13FM-22-2 0.04 -26.1 -3.2 -9.6 70 683 9 032 980 13FM-23 0.04 -25.3 -3.2 -7.7 19 317 8 128 886 13FM-24 0.06 -23.7 -3.2 -6.4 22 014 4 145 685 13FM-25 0.11 -23.1 -3.5 -6.9 23 307 3 670 654 13FM-26 0.06 -23.7 -3.2 -7.4 10 296 3 606 627 13FM-27 0.05 -23.1 -3.3 -7.3 11 933 3 703 613 13FM-28 0.05 -24.3 — — — — — 13FM-30 0.04 -22.2 -3.0 -6.6 41 067 4 626 560 13FM-31 0.04 -23.7 -3.4 -7.3 30 341 5 448 542 13FM-32 0.08 -26.2 -3.2 -7.6 29 227 3 937 649 13FM-33 0.05 -24.6 -3.3 -6.9 31 211 3 967 616 14YZ-0 0.08 -25.6 -3.0 -0.8 8 291 4 107 444 14YZ-1 0.17 -25.6 -5.0 -6.2 7 534 4 794 565 14YZ-2 0.08 -25.1 -3.2 -3.1 3 717 5 523 520 14YZ-3 0.07 -24.7 -3.2 -2.6 7 293 6 245 556 14YZ-4 0.07 -25.8 -3.5 -5.1 16 690 7 941 663 14YZ-5 0.05 -25.7 -3.9 -7.7 13 749 9 016 725 14YZ-18 0.07 -25.1 -3.9 -9.5 9 374 5 899 944 14YZ-19 0.06 -25.1 -4.0 -10.0 10 099 6 175 1 165 14YZ-20 0.06 -24.5 -4.0 -10.9 12 101 5 583 948 14YZ-21 0.06 -25.1 -3.7 -8.7 4 862 5 247 1 002 14YZ-22 0.05 -24.2 — — — — — 14YZ-23 0.06 -24.2 -4.0 -11.2 14 282 3 611 980 14YZ-24 0.07 -25.4 -3.9 -9.72 6 021 3 909 909 14YZ-25 0.08 -25.5 -3.9 -11.9 — — — 14YZ-26 0.07 -25.0 -3.6 -8.9 6 052 5 044 1 056 14YZ-27 0.06 -24.3 -4.7 -14.4 5 278 5 132 1 041 14YZ-28 0.08 -25.8 -4.0 -8.5 7 531 6 491 1 042 注: —指低于检测线。 -
[1] Hoffman P F,Abbot D S,Ashkenazy Y,et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances,2017,3(11): e1600983. [2] Hoffman P F,Kaufman A J,Halverson G P,et al. A Neoproterozoic Snowball Earth[J]. Science,1998,281(5381): 1342-1346. [3] 赵彦彦,郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报,2011,27(2):545-565. Zhao Yanyan,Zheng Yongfei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica,2011,27(2): 545-565. [4] Lang X G,Chen J T,Cui H,et al. Cyclic cold climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block,South China[J]. Precambrian Research,2018,310: 243-255. [5] Cox G M,Halverson G P,Stevenson R K,et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth[J]. Earth and Planetary Science Letters,2016,446: 89-99. [6] Fairchild I J,Kennedy M J. Neoproterozoic glaciation in the earth system[J]. Journal of the Geological Society,2007,164(5): 895-921. [7] Corsetti F A,Olcott A N,Bakermans C. The biotic response to Neoproterozoic Snowball Earth[J]. Palaeogeography,Palaeo- climatology,Palaeoecology,2006,232(2/3/4): 114-130. [8] Lang X G,Zhao Z Q,Ma H R,et al. Cracking the superheavy pyrite enigma: Possible roles of volatile organosulfur compound emission[J]. National Science Review,2021,8(10): nwab034. [9] Li Z X,Evans D A D,Halverson G P. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J]. Sedimentary Geology,2013,294: 219-232. [10] Cox G M,Halverson G P,Minarik W G,et al. Neoproterozoic iron formation: An evaluation of its temporal,environmental and tectonic significance[J]. Chemical Geology,2013,362: 232-249. [11] Canfield D E,Poulton S W,Knoll A H,et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science,2008,321(5891): 949-952. [12] Lang X G,Shen B,Peng Y B,et al. Ocean oxidation during the deposition of basal Ediacaran Doushantuo cap carbonates in the Yangtze Platform,South China[J]. Precambrian Research,2016,281: 253-268. [13] Huang K J,Teng F Z,Shen B,et al. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(52): 14904-14909. [14] Lang X G,Shen B,Peng Y B,et al. Transient marine euxinia at the end of the terminal Cryogenian glaciation[J]. Nature Communications,2018,9(1): 3019. [15] Rooney A D,Yang C,Condon D J,et al. U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian Snowball Earth aftermath[J]. Geology,2020,48(6): 625-629. [16] Poulton S W,Canfield D E. Ferruginous conditions: A dominant feature of the ocean through earth's history[J]. Elements,2011,7(2): 107-112. [17] 蔡娟娟,崔晓庄,兰中伍,等. 华南扬子陆块成冰纪冰川作用的启动时限及其全球对比[J]. 古地理学报,2018,20(1):65-86. Cai Juanjuan,Cui Xiaozhuang,Lan Zhongwu,et al. Onset time and global correlation of the Cryogenian glaciations in Yangtze Block,South China[J]. Journal of Palaeogeography,2018,20(1): 65-86. [18] 王剑,刘宝珺,潘桂棠. 华南新元古代裂谷盆地演化:Rodinia超大陆解体的前奏[J]. 矿物岩石,2001,21(3):135-145. Wang Jian,Liu Baojun,Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology,2001,21(3): 135-145. [19] Zhang Q R,Chu X L,Feng L J. Neoproterozoic glacial records in the Yangtze region,China[J]. Geological Society,London,Memoirs,2011,36(1): 357-366. [20] 张启锐,储雪蕾. 扬子地区江口冰期地层的划分对比与南华系层型剖面[J]. 地层学杂志,2006,30(4):306-314. Zhang Qirui,Chu Xuelei. The stratigraphic classification and correlation of the Jiangkou glaciation in the Yangtze Block and the stratotype section of the Nanhuan System[J]. Journal of Stratigraphy,2006,30(4): 306-314. [21] 尹崇玉,高林志. 中国南华系的范畴、时限及地层划分[J]. 地层学杂志,2013,37(4):534-541. Yin Chongyu,Gao Linzhi. Definition,time limit and stratigraphic subdivision of the Nanhua system in China[J]. Journal of Stratigraphy,2013,37(4): 534-541. [22] Lan Z W,Huyskens M H,Lu K,et al. Toward refining the onset age of Sturtian glaciation in South China[J]. Precambrian Research,2020,338: 105555. [23] Lan Z W,Li X H,Zhu M Y,et al. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research,2014,255: 401-411. [24] Lan Z W,Mitchell R N,Gernon T M,et al. Did an asteroid impact cause temporary warming during Snowball Earth?[J]. Earth and Planetary Science Letters,2022,581: 117407. [25] Lan Z W,Li X H,Zhang Q R,et al. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group,South China[J]. Precambrian Research,2015,267: 28-38. [26] Kaufman A J,Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research,1995,73(1/2/3/4): 27-49. [27] Kaufman A J,Corsetti F A,Varni M A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation,Death Valley,USA[J]. Chemical Geology,2007,237(1/2): 47-63. [28] Kah L C,Bartley J K,Teal D A. Chemostratigraphy of the Late Mesoproterozoic Atar Group,Taoudeni Basin,Mauritania: Muted isotopic variability,facies correlation,and global isotopic trends[J]. Precambrian Research,2012,200-203: 82-103. [29] Gernon T M,Hincks T K,Tyrrell T,et al. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup[J]. Nature Geoscience,2016,9(3): 242-248. [30] Planavsky N J,Rouxel O J,Bekker A,et al. The evolution of the marine phosphate reservoir[J]. Nature,2010,467(7319): 1088-1090. [31] Cui H,Kaufman A J,Xiao S H,et al. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation,South China[J]. Chemical Geology,2017,450: 59-80. [32] Rothman D H,Hayes J M,Summons R E. Dynamics of the Neoproterozoic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(14): 8124-8129. [33] Swanson-Hysell N L,Rose C V,Calmet C C,et al. Cryogenian glaciation and the onset of carbon-isotope decoupling[J]. Science,2010,328(5978): 608-611. [34] Busfield M E,Le Heron D P. Sequencing the Sturtian icehouse: Dynamic ice behaviour in South Australia[J]. Journal of the Geological Society,2014,171(3): 443-456.