-
蓝田组中黄铁矿形态类型丰富,主要有自形晶、草莓晶和他形晶三种类型(表 1、图 3)。在33-9-10样品(青灰色灰岩)中,除了一些他形和半自形黄铁矿(图 3a)以及后期改造强烈的草莓状黄铁矿分布外,还出现大量柱状或板状黄铁矿(图 3d)。另外,部分黄铁矿集合体呈纺锤形,由一些细小、破碎的他形黄铁矿聚合组成。在岩性为泥质白云岩的49-2-11样品中,发育短柱状、半自形和他形黄铁矿。除了少量未被后期作用改造的草莓状黄铁矿外,大部分草莓状黄铁矿都经历了不同程度的后期蚀变,有的甚至已无法保留原有的草莓晶形态。岩性为黑色页岩的55-2-12样品中具有他形黄铁矿和明显热液成因的脉状黄铁矿,脉状黄铁矿的空隙中还发育大量的草莓状黄铁矿(图 3f)。此外,该样品中还发育大量草莓状黄铁矿的集合体(图 3c,e)。组成这些集合体的草莓状黄铁矿微晶形态主要是八面体形、五角十二面体形、球形以及少量的立方体形。某些草莓晶还具有二次生长现象,部分草莓状黄铁矿聚合体发育溶蚀孔洞现象。65-10-10样品(青灰色泥岩)中黄铁矿形态主要是自形晶体(图 3b),他形晶以及大量分散的椭球形晶体,另外这些他形以及椭球形晶体还发育有溶蚀孔洞现象(图 3g)。72-9-9和70-5-7-2两个样品(碳质灰岩)中具有相似的黄铁矿形态类型,均发育有他形黄铁矿以及经历不同程度成岩作用改造的草莓状黄铁矿(图 3i)以及自形黄铁矿(图 3h)。除此之外,样品70-5-7-2样品中少量保存程度较好的单个草莓晶呈分散状分布,组成这些草莓晶的黄铁矿微晶形态主要是八面体形、五角十二面体形以及少量的立方体形。样品72-9-9中还观察到遭受溶蚀的自形黄铁矿晶体(图 3h)。
表 1 样品中的黄铁矿形态
Table 1. Pyrite in samples, with different morphologies
样品 地层单位 岩性 黄铁矿形态类型数量/个 黄铁矿形态 33-9-10 蓝田组Ⅲ段 青灰色灰岩 5 半自形、他形和自形柱状黄铁矿,纺锤形的黄铁矿以及 后期改造强烈的草莓状黄铁矿 49-2-11 蓝田组Ⅲ段 灰黑色泥质白云岩 4 短柱状黄铁矿、半自形、他形黄铁矿、少量晶形完好的草莓状黄铁矿以及 大量经后期作用改造的草莓状黄铁矿 55-2-12 蓝田组Ⅱ段 黑色页岩 3 他形、脉状黄铁矿,大量完好草莓状黄铁矿的集合体 65-10-10 蓝田组Ⅱ段 青灰色泥岩 3 自形、他形黄铁矿,少量晶形完好的草莓状黄铁矿以及经后期作用改造的草莓状黄铁矿 70-5-7-2 蓝田组Ⅱ段 碳质灰岩 4 自形、半自形、他形黄铁矿以及大量经历不同程度成岩作用改造的草莓状黄铁矿 72-9-9 蓝田组Ⅱ段 碳质灰岩 3 大量半自形、他形黄铁矿,经历不同程度成岩作用改造的草莓状黄铁矿 样品全岩黄铁矿含量与其中的大颗粒黄铁矿含量具有一定正相关关系。所选取的6个样品中,样品70-5-7-2与55-2-12全岩黄铁矿含量均大于1%,其中,70-5-7-2含有大量呈层状分布的自形以及他形黄铁矿晶体,而样品55-2-12中有明显的宽约2 mm的脉状黄铁矿。样品72-9-9、65-10-10、49-2-11和33-9-10全岩黄铁矿含量均小于0.3%(图 4),这些样品中的自形以及他形黄铁矿晶体相对于样品70-5-7-2与55-2-12分布较少。由此可见,样品全岩黄铁矿含量与样品中所含的自形、他形等大颗粒黄铁矿存在一定的相关性,即样品中大颗粒黄铁矿权重较高可能是全岩黄铁矿含量高的重要原因之一。
图 4 样品大颗粒黄铁矿与全岩黄铁矿硫同位素组成特征对比
Figure 4. Comparison of δ34SL-pyr and δ34ST-pyr values in Lantian drill-core samples
对比不同形态黄铁矿的形成环境,草莓状黄铁矿的硫同位素组成最有可能反映古海水中硫同位素的分馏情况。根据本文观察结果,蓝田岩芯碎屑岩样品中的草莓状黄铁矿无论从含量还是晶体完好程度上,都优于碳酸盐岩样品。前人研究中普遍发现碳酸盐岩中具有较高的黄铁矿硫同位素值,很可能与其中的草莓状黄铁矿受到广泛成岩作用有关[2, 7, 9],更确切的原因需今后进一步的系统工作来深入分析。
-
52个样品硫同位素测定结果如表 2和图 4a所示。本次测试样品中(包括6个显微镜观察样品),δ34SL-pyr最大值为39.4‰,最小值为-33.0‰,78%的样品δ34SL-pyr为正值,并且37%样品的δ34SL-pyr值大于现代海水硫酸盐δ34S值(21‰)。通过与同一样品的δ34ST-pyr值比较,发现两者(δ34ST-pyr、δ34SL-pyr)存在明显的差异,其中66-7-7样品中的差值可达48.16‰。岩性为页岩、泥岩的样品的δ34ST-pyr、δ34SL-pyr差值要大于碳酸盐岩样品(图 4b)。
表 2 蓝田岩芯中黄铁矿硫同位素特征
Table 2. Sulfur isotope characteristics of pyrite in Lantian drill core
样号 高度/m 岩性 FeS2 wt./% δ34ST-pyr/‰ δ34SL-pyr/‰ (CDT) (CDT) 86-1-8 11.3 泥质灰岩 0.0 9.1 16.5 79-1-9-light 30.8 灰白色泥岩 0.1 -30.5 -16.3 78-3-8 32.9 灰白色泥岩 0.5 -31.5 -32.3 77-7-7~7-7-1-dark 33.9 黑色泥岩 0.3 -29.6 -18.0 77-1-7-light 35.9 灰白色泥岩 1.1 -16.9 -19.8 76-6-13-dark 37.9 灰黑色泥岩 0.2 -19.2 -10.0 75-5-5-dark 40.4 黑色泥岩 0.3 -20.6 -20.5 74-6-10-2 44.1 黑色页岩 3.7 1.2 -3.0 72-9-9 48.9 碳质灰岩 0.1 -8.7 7.2 72-5-9 49.8 黑色页岩 2.4 -10.1 6.6 70-7-7 54.3 碳质灰岩 0.5 -3.5 5.5 70-5-7-2 54.9 碳质灰岩 1.2 3.8 26.7 70-5-7-light 55.1 黑色页岩 2.2 -2.7 0.9 70-2-7 56.2 黑色页岩 -1.5 26.0 69-5-7~5-7-1 57.2 黑色页岩 -7.9 -0.4 68-3-3-1 59.1 黑色页岩 -8.5 -1.8 66-7-7 64.0 灰色泥岩 0.0 -8.7 39.4 65-10-10 66.1 灰色泥岩 0.2 24.9 2.5 61-7-9~7-9-1 74.3 灰色泥岩 0.9 14.6 17.5 61-1-9~2-9 74.7 灰色泥岩 15.9 8.9 56-2-7 80.4 黑色页岩 0.2 -10.6 7.5 55-2-12 85.7 黑色页岩 1.5 -13.6 11.0 54-1-11~2-11 89.0 黑色泥岩 1.2 14.0 16.4 53-7-7-up 89.3 黑色泥岩 5.3 6.6 15.2 52-5-5-1-up 91.8 黑色泥岩 7.1 -10.1 17.5 52-5-5 93.2 钙质泥岩 4.3 -3.7 1.7 50-5-5-up 97.9 泥质白云岩 9.1 -23.9 16.7 49-2-11 101.9 泥质白云岩 0.2 -7.8 13.0 45-3-7 114.1 碳质白云岩 -8.7 17.4 45-1-7 114.6 黑色页岩 0.3 -1.6 20.1 44-12-12 115.1 白云质泥岩 1.3 -2.4 19.2 42-1-5-2~1-5-3 120.9 泥质白云岩 0.4 -8.0 31.6 41-4-7 122.6 白云质泥岩 0.7 5.2 31.1 41-3-7-1 123.5 白云岩 0.0 19.8 35.9 40-2-7 125.5 灰岩 2.3 17.4 29.5 39-2-7 128.1 白云岩 16.2 33.7 38-6-12 130.3 灰岩 0.0 9.7 11.0 37-5-11-R 132.7 灰岩 3.1 13.9 14.6 36-8-11 134.6 灰岩 1.4 15.7 16.2 35-12-12 136.6 灰岩 17.2 17.8 35-2-12 138.6 灰岩 1.0 12.7 13.6 33-9-10 141.9 灰岩 0.1 9.9 -10.4 32-4-4 144.0 灰岩 1.7 11.0 13.4 31-5-7 146.3 灰岩 12.5 4.4 30-1-2 148.4 灰岩 1.2 26.0 3.9 29-4-5 151.2 灰岩 10.4 7.3 28-5-7 153.0 灰岩 0.1 8.1 3.9 27-7-7 155.1 灰岩 1.9 5.8 7.3 26-9-10 157.2 灰岩 2.0 17.9 10.4 24 160.8 灰岩 0.3 22.6 16.3 22 166.6 灰岩 5.6 3.2 18-1-4 176.4 黑色泥岩 6.6 -33.0 注:表格中“高度”表示采样位置与蓝田组底部的距离。 沉积黄铁矿中硫同位素组成可以间接反映当时海洋中的氧化还原条件。不同形态的黄铁矿由于形成环境不同而具有不同的δ34Spyr值。早期的黄铁矿形成环境为开放体系,硫酸盐还原细菌优先利用32S形成黄铁矿沉淀,从而导致早期形成的自形晶与草莓状黄铁矿δ34S值较低;而后期成岩作用改造的黄铁矿形成于封闭环境中或有其他来源的硫酸根输入,导致黄铁矿中的34S相对富集,因此δ34S值较高。本研究的初步实验结果表明样品中的大颗粒黄铁矿与全岩黄铁矿所测得的δ34Spyr值存在明显差异,沉积地层中所测得的较高的δ34ST-pyr值很有可能混合了部分δ34SL-pyr,这为古海洋环境的恢复造成一定的困扰。为尽量降低大颗粒黄铁矿对全岩样品硫同位素测定的影响,在处理样品时应小心对手标本进行肉眼或显微镜下观察,去除样品中的大颗粒黄铁矿。如有条件,应结合显微镜以及扫描电子显微镜仔细区分样品中不同形态的黄铁矿,尽量选取含同生黄铁矿丰富的样品部位进行测试。利用SIMS测定微区黄铁矿硫同位素也可以提高全岩硫同位素测试的准确性。提高采样的分辨率或结合其他同位素信息均可使获得的全岩δ34Spyr值更为准确地反映古海水的氧化还原条件。
-
经详细的镜下观察,样品中不仅有大量的黄铁矿,也存在低温热液成因的其他硫化物矿物。55-2-12样品中不仅发育有脉状黄铁矿,还发育黄铜矿(CuFeS2)与闪锌矿(ZnS)。能谱面扫描结果(图 5)显示有黄铜矿的区域明显富集Fe、Cu、S,元素Zn无明显富集;而有闪锌矿的区域明显富集Zn和S。分析测试得出黄铜矿的硫同位素值为2.6‰,闪锌矿的硫同位素值为10.4‰。两种硫化物硫同位素值均小于相同样品中δ34SL-pyr(12.1‰),但均高于δ34ST-pyr(-13.6‰)。
Morphologic and Isotopic Characteristics of Sedimentary Pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China
-
摘要: 地质历史时期新元古代大气氧含量普遍较低。在硫酸盐还原细菌作用下,作为海洋重要的氧化性离子,陆源硫酸根离子有效促进了深层海水的氧化进程。在此过程中,硫元素在硫酸根和黄铁矿之间发生显著同位素分馏,其分馏程度可反推当时古海洋的氧化还原状态。沉积地层中的黄铁矿普遍具有多种形态,不同形态黄铁矿的形成环境多有不同。如草莓状黄铁矿多形成于底层缺氧水体或沉积物的浅表面,而大颗粒单晶黄铁矿或脉状黄铁矿则多沉积于成岩早期的沉积物孔隙或形成于成岩后期的热液改造。与草莓状黄铁矿不同,大颗粒单晶或脉状黄铁矿的硫同位素组成并不能反映沉积时期的古海洋氧化还原条件。判定沉积地层中不同形态的黄铁矿及形成过程,是获得有效反映海洋沉积环境硫同位素组成特征的基本前提。简要总结了地质历史时期沉积地层中的黄铁矿类型及矿物形成过程,并以华南埃迪卡拉纪蓝田组岩芯样品为例,识别出各个样品中的黄铁矿形态组成特征,对比分析了全岩黄铁矿与样品中大颗粒黄铁矿硫同位素组成差异。研究结果表明:不同岩性样品中黄铁矿的形态种类及含量均存在差异。页岩样品保存有更好形态的自形晶以及草莓状黄铁矿;碳酸盐岩样品中具有较多自形晶以及他形晶黄铁矿,并且其中的少量草莓状黄铁矿遭受后期成岩作用而发生不同程度的晶体蚀变。样品中大颗粒黄铁矿的硫同位素值(δ34SL-pyr)通常显著高于全岩黄铁矿的硫同位素值(δ34ST-pyr),最大差值可达48.5‰。在利用黄铁矿的硫同位素组成来反推当时古海洋环境时,需要区分不同形态黄铁矿,仔细剔除大颗粒黄铁矿,降低成岩期黄铁矿对样品中硫同位素组成的影响。更细致的微区黄铁矿硫同位素分析工作将依赖于SIMS分析测试手段进行。Abstract: In the low-oxygen atmospheric conditions during the Neoproterozoic, continental sulfate was a major oxidant in anoxic deep ocean water. Bacterial sulfate reduction (BSR) caused significant isotopic fractionation between seawater sulfates and sedimentary pyrite, which reveals the paleo-ocean redox conditions. Sedimentary pyrite occurs in a variety of forms in sedimentary rocks, each indicating its depositional process and microenvironment. For example, most framboidal pyrite was deposited from the euxinic bottom water or in surface sediments overlain by oxic or suboxic bottom water. Large-grained single-crystal pyrite mainly formed in pore-water during early diagenesis, and pyrite veins were formed by late hydrothermal activity; neither of these indicate paleo-ocean redox conditions. Identifying sedimentary pyrite morphologies and determining their formation processes are fundamental for determining the sulfur isotopes of the ancient seawater. In this study, sedimentary pyrite morphological types and formation processes are briefly summarized, along with morphological observations and sulfur isotope analyses for pyrite in fresh drill-core samples of Ediacaran Lantian Formation (deep-water facies) in the southern Anhui Province, South China. The morphologies and contents of the pyrite were found to vary in different lithological samples. Euhedral crystal and framboidal pyrites preserved in Lantian Formation black shales have better morphology than in carbonates, indicating that less crystal alteration took place during late diagenesis in the black shales. The sulfur isotope content in large-grained pyrite (δ34SL-pyr) is generally greater than in bulk rock samples (δ34ST-pyr), with differences up to 48.16‰. The study suggests that analysis of sedimentary pyrite with different morphologies is needed to obtain reliable sulfur isotope values indicative of seawater redox conditions. High-resolution analysis requires secondary-ion mass spectrometry (SIMS) measurements on individual pyrite crystals and framboids.
-
Key words:
- Yangtze platform /
- Ediacaran /
- Lantian Formation /
- pyrite morphology /
- sulfur isotopic compositions
-
图 2 皖南埃迪卡拉系蓝田组岩芯样品的硫同位素组成特征(据Wang et al. [9])
(a)样品33-9-10中的团块状黄铁矿(蓝田组Ⅲ段);(b)样品49-2-11中的团块状黄铁矿(蓝田组Ⅲ段);(c)样品55-2-12中的脉状黄铁矿(蓝田组Ⅱ段);(d)样品65-10-10中的小团块状黄铁矿(蓝田组Ⅱ段);(e)样品70-5-7-2中的条带状黄铁矿(蓝田组Ⅱ段);(f)样品72-9-9中的条带状黄铁矿(蓝田组Ⅱ段)
Figure 2. Sulfur isotope characteristics in Lantian Formation drill-core(after Wang et al. [9])
(a) pyrite cluster, sample 33-9-10(Member Ⅲ); (b) pyrite cluster, sample 49-2-11(Member Ⅲ); (c) pyrite vein, sample 55-2-12(Member Ⅱ); (d) small pyrite cluster, sample 65-10-10(Member Ⅱ); (e) pyrite layer, sample 70-5-7-2(Member Ⅱ); (f) pyrite layer, sample 72-9-9(Member Ⅱ)
图 3 蓝田组样品中不同形态的黄铁矿
(a)样品33-9-10中半自形、他形晶黄铁矿(反射光显微照片);(b)样品65-10-10中自形晶黄铁矿(反射光显微照片);(c)样品55-2-12中草莓状黄铁矿聚集体(反射光显微照片);(d)样品33-9-10中板状黄铁矿(SEM背散射电子图像);(e)样品55-2-12中草莓状黄铁矿集合体(SEM背散射电子图像,(e)为(c)的放大图);(f)样品55-2-12中黄铁矿脉中的草莓状黄铁矿(SEM背散射电子图像);(g)样品65-10-10中椭球形晶黄铁矿(SEM背散射电子图像);(h)样品中72-9-9中遭受溶蚀的自形晶黄铁矿(SEM背散射电子图像);(i)样品中72-9-9中具有外包壳的草莓状黄铁矿(SEM背散射电子图像)
Figure 3. Pyrite with different morphologies in Lantian drill-core samples
(a) hypidiomorphic and anhedral pyrite, sample 33-9-10 (reflected light photomicrograph); (b) euhedral pyrite, sample 65-10-10 (ditto); (c) framboidal pyrite aggregates, sample 55-2-12 (ditto); (d) platelike pyrite, sample 33-9-10 (SEM backscattered electron image); (e) framboidal pyrite aggregates, sample 55-2-12 (ditto) (enlarged view of (c)); (f) fram-boidal pyrite, pyrite vein, sample 55-2-12 (ditto); (g) ellipsoidal pyrite, sample 65-10-10 (ditto); (h) partially dissolved euhedral pyrite, sample 72-9-9 (ditto); (i) pyrite framboid with outer encrustation, sample 72-9-9 (ditto)
表 1 样品中的黄铁矿形态
Table 1. Pyrite in samples, with different morphologies
样品 地层单位 岩性 黄铁矿形态类型数量/个 黄铁矿形态 33-9-10 蓝田组Ⅲ段 青灰色灰岩 5 半自形、他形和自形柱状黄铁矿,纺锤形的黄铁矿以及 后期改造强烈的草莓状黄铁矿 49-2-11 蓝田组Ⅲ段 灰黑色泥质白云岩 4 短柱状黄铁矿、半自形、他形黄铁矿、少量晶形完好的草莓状黄铁矿以及 大量经后期作用改造的草莓状黄铁矿 55-2-12 蓝田组Ⅱ段 黑色页岩 3 他形、脉状黄铁矿,大量完好草莓状黄铁矿的集合体 65-10-10 蓝田组Ⅱ段 青灰色泥岩 3 自形、他形黄铁矿,少量晶形完好的草莓状黄铁矿以及经后期作用改造的草莓状黄铁矿 70-5-7-2 蓝田组Ⅱ段 碳质灰岩 4 自形、半自形、他形黄铁矿以及大量经历不同程度成岩作用改造的草莓状黄铁矿 72-9-9 蓝田组Ⅱ段 碳质灰岩 3 大量半自形、他形黄铁矿,经历不同程度成岩作用改造的草莓状黄铁矿 表 2 蓝田岩芯中黄铁矿硫同位素特征
Table 2. Sulfur isotope characteristics of pyrite in Lantian drill core
样号 高度/m 岩性 FeS2 wt./% δ34ST-pyr/‰ δ34SL-pyr/‰ (CDT) (CDT) 86-1-8 11.3 泥质灰岩 0.0 9.1 16.5 79-1-9-light 30.8 灰白色泥岩 0.1 -30.5 -16.3 78-3-8 32.9 灰白色泥岩 0.5 -31.5 -32.3 77-7-7~7-7-1-dark 33.9 黑色泥岩 0.3 -29.6 -18.0 77-1-7-light 35.9 灰白色泥岩 1.1 -16.9 -19.8 76-6-13-dark 37.9 灰黑色泥岩 0.2 -19.2 -10.0 75-5-5-dark 40.4 黑色泥岩 0.3 -20.6 -20.5 74-6-10-2 44.1 黑色页岩 3.7 1.2 -3.0 72-9-9 48.9 碳质灰岩 0.1 -8.7 7.2 72-5-9 49.8 黑色页岩 2.4 -10.1 6.6 70-7-7 54.3 碳质灰岩 0.5 -3.5 5.5 70-5-7-2 54.9 碳质灰岩 1.2 3.8 26.7 70-5-7-light 55.1 黑色页岩 2.2 -2.7 0.9 70-2-7 56.2 黑色页岩 -1.5 26.0 69-5-7~5-7-1 57.2 黑色页岩 -7.9 -0.4 68-3-3-1 59.1 黑色页岩 -8.5 -1.8 66-7-7 64.0 灰色泥岩 0.0 -8.7 39.4 65-10-10 66.1 灰色泥岩 0.2 24.9 2.5 61-7-9~7-9-1 74.3 灰色泥岩 0.9 14.6 17.5 61-1-9~2-9 74.7 灰色泥岩 15.9 8.9 56-2-7 80.4 黑色页岩 0.2 -10.6 7.5 55-2-12 85.7 黑色页岩 1.5 -13.6 11.0 54-1-11~2-11 89.0 黑色泥岩 1.2 14.0 16.4 53-7-7-up 89.3 黑色泥岩 5.3 6.6 15.2 52-5-5-1-up 91.8 黑色泥岩 7.1 -10.1 17.5 52-5-5 93.2 钙质泥岩 4.3 -3.7 1.7 50-5-5-up 97.9 泥质白云岩 9.1 -23.9 16.7 49-2-11 101.9 泥质白云岩 0.2 -7.8 13.0 45-3-7 114.1 碳质白云岩 -8.7 17.4 45-1-7 114.6 黑色页岩 0.3 -1.6 20.1 44-12-12 115.1 白云质泥岩 1.3 -2.4 19.2 42-1-5-2~1-5-3 120.9 泥质白云岩 0.4 -8.0 31.6 41-4-7 122.6 白云质泥岩 0.7 5.2 31.1 41-3-7-1 123.5 白云岩 0.0 19.8 35.9 40-2-7 125.5 灰岩 2.3 17.4 29.5 39-2-7 128.1 白云岩 16.2 33.7 38-6-12 130.3 灰岩 0.0 9.7 11.0 37-5-11-R 132.7 灰岩 3.1 13.9 14.6 36-8-11 134.6 灰岩 1.4 15.7 16.2 35-12-12 136.6 灰岩 17.2 17.8 35-2-12 138.6 灰岩 1.0 12.7 13.6 33-9-10 141.9 灰岩 0.1 9.9 -10.4 32-4-4 144.0 灰岩 1.7 11.0 13.4 31-5-7 146.3 灰岩 12.5 4.4 30-1-2 148.4 灰岩 1.2 26.0 3.9 29-4-5 151.2 灰岩 10.4 7.3 28-5-7 153.0 灰岩 0.1 8.1 3.9 27-7-7 155.1 灰岩 1.9 5.8 7.3 26-9-10 157.2 灰岩 2.0 17.9 10.4 24 160.8 灰岩 0.3 22.6 16.3 22 166.6 灰岩 5.6 3.2 18-1-4 176.4 黑色泥岩 6.6 -33.0 注:表格中“高度”表示采样位置与蓝田组底部的距离。 -
[1] Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013 [2] Sahoo S K, Planavsky N J, Kendall B, et al. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature, 2012, 489(7417):546-549. doi: 10.1038/nature11445 [3] Canfield D E, Habicht K S, Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658 [4] Habicht K S, Gade M, Thamdrup B, et al. Calibration of sulfate levels in the Archean Ocean[J]. Science, 2002, 298(5602):2372-2374. doi: 10.1126/science.1078265 [5] Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7120):744-747. doi: 10.1038/nature05345 [6] Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 382(6587):127-132. doi: 10.1038/382127a0 [7] McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9):3197-3202. doi: 10.1073/pnas.0708336105 [8] Shi W, Li C, Luo G M, et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion[J]. Geology, 2018, 46(3):267-270. doi: 10.1130/G39663.1 [9] Wang W, Guan C G, Zhou C M, et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China:Spatial gradient, ocean redox oscillation, and fossil distribution[J]. Geobiology, 2017, 15(4):552-571. doi: 10.1111/gbi.12226 [10] Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation[J]. Geochimica et Cosmochimica Acta, 2011, 75(5):1357-1373. doi: 10.1016/j.gca.2010.12.015 [11] Ries J B, Fike D A, Pratt L M, et al. Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia:A consequence of low seawater sulfate at the dawn of animal life[J]. Geology, 2009, 37(8):743-746. doi: 10.1130/G25775A.1 [12] 周春光, 杨起, 康西栋, 等.华北晚古生代煤中黄铁矿形成世代的硫同位素证据[J].中国煤田地质, 2000, 12(1):19-22. doi: 10.3969/j.issn.1674-1803.2000.01.007 Zhou Chunguang, Yang Qi, Kang Xidong, et al. Sulfur-isotope evidence of pyrite generation in coal of Late Palaeozoic in northern China[J]. Coal Geology of China, 2000, 12(1):19-22. doi: 10.3969/j.issn.1674-1803.2000.01.007 [13] Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections:A complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8):1265-1279. doi: 10.1130-B30042.1/ [14] 张明亮, 郭伟, 沈俊, 等.古海洋氧化还原地球化学指标研究新进展[J].地质科技情报, 2017, 36(4):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704012 Zhang Ming-liang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704012 [15] 初凤友, 陈丽蓉, 申顺喜, 等.南黄海自生黄铁矿成因及其环境指示意义[J].海洋与湖沼, 1995, 26(3):227-233. doi: 10.3321/j.issn:0029-814X.1995.03.001 Chu Fengyou, Chen Lirong, Shen Shunxi, et al. Origin and environmental significance of authigenic pyrite from the South Yellow (Huanghai) Sea sediments[J]. Oceanologia et Limnologia Sinica, 1995, 26(3):227-233. doi: 10.3321/j.issn:0029-814X.1995.03.001 [16] 严育通, 李胜荣, 贾宝剑, 等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘, 2012, 19(4):214-226. http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023 Yan Yutong, Li Shengrong, Jia Baojian, et al. Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J]. Earth Science Frontiers, 2012, 19(4):214-226. http://d.old.wanfangdata.com.cn/Periodical/dxqy201204023 [17] Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology, 2001, 140(1/2):143-175. [18] Machel H G. Some aspects of diagenetic sulphate-hydrocarbon redox reactions[J]. Geological Society, London, Special Publications, 1987, 36(1):15-28. http://cn.bing.com/academic/profile?id=31bb1b8c98362e1e861e2010973d12d5&encoded=0&v=paper_preview&mkt=zh-cn [19] Krouse H R, Viau C A, Eliuk L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6172):415-419. doi: 10.1038/333415a0 [20] Gomes M L, Fike D A, Bergmann K D, et al. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures[J]. Geobiology, 2018, 16(1):17-34. doi: 10.1111/gbi.12265 [21] Cui H, Kitajima K, Spicuzza M J, et al. Questioning the biogenicity of Neoproterozoic superheavy pyrite by SIMS[J]. American Mineralogist, 2018, 103(9):1362-1400. doi: 10.2138/am-2018-6489 [22] Riciputi L R, Cole D R, Machel H G. Sulfide formation in reservoir carbonates of the Devonian Nisku Formation, Alberta, Canada:An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1996, 60(2):325-336. doi: 10.1016/0016-7037(96)83133-4 [23] Zhang J, Liang H D, He X D, et al. Sulfur isotopes of framboidal pyrite in the Permian-Triassic boundary clay at meishan section[J]. Acta Geologica Sinica (English Edition), 2011, 85(3):694-701. doi: 10.1111/j.1755-6724.2011.00462.x [24] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. doi: 10.1016/S0016-7037(01)00552-X [25] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440:26-41. doi: 10.1016/j.chemgeo.2016.07.007 [26] 王平康.松辽盆地晚白垩世青山口组一段黄铁矿形态及古湖泊演化[D].北京: 中国地质大学(北京), 2009. http://cdmd.cnki.com.cn/article/cdmd-11415-2009075997.htm Wang Pingkang. Pyrite morphology and the evolution of ancient lake in unit 1 of Qingshankou Formation of Late Cretaceous, Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2009. http://cdmd.cnki.com.cn/article/cdmd-11415-2009075997.htm [27] Raiswell R, Berner R A. Pyrite formation in euxinic and semieuxinic sediments[J]. American Journal of Science, 1985, 285(8):710-724. doi: 10.2475/ajs.285.8.710 [28] Rickard D. Sulfidic sediments and sedimentary rocks[M]. Newnes:Elsevier, 2012. [29] Berner R A. Sedimentary pyrite formation:An update[J]. Geochimica et cosmochimica Acta, 1984, 48(4):605-615. doi: 10.1016/0016-7037(84)90089-9 [30] Wang Q W, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology[J]. Marine Chemistry, 1996, 52(2):99-121. doi: 10.1016/0304-4203(95)00082-8 [31] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8):1244-1263. doi: 10.2475/ajs.282.8.1244 [32] Wang P K, Huang Y J, Wang C S, et al. 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385:125-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2334489d30f4d68cb4042b5d5f0d8317 [33] Rust G W. Colloidal primary copper ores at Cornwall Mines, southeastern Missouri[J]. The Journal of Geology, 1935, 43(4):398-426. doi: 10.1086/624318 [34] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2):323-339. doi: 10.1016/S0016-7037(96)00320-1 [35] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8 [36] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4):831-849. doi: 10.1016/j.gr.2011.01.006 [37] Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. Terra Nova, 2008, 20(4):289-294. doi: 10.1111/j.1365-3121.2008.00819.x [38] Condon D, Zhu M Y, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China[J]. Science, 2005, 308(5718):95-98. doi: 10.1126/science.1107765 [39] Guan C G, Zhou C M, Wang W, et al. Fluctuation of shelf basin redox conditions in the Early Ediacaran:Evidence from Lantian Formation black shales in South China[J]. Precambrian Research, 2014, 245:1-12. doi: 10.1016/j.precamres.2014.01.003