-
蒋日阿错剖面黏土矿物典型X射线衍射图谱如图3所示。根据三种不同衍射图谱识别出伊利石、绿泥石、蒙脱石和伊/蒙混层4种黏土矿物。伊利石的三个衍射峰d(001)(1.0 nm)、d(002)(0.5 nm)、d(003)(0.333 nm)经过乙二醇处理或加热处理后均不发生任何变化,说明样品中存在伊利石。绿泥石的d(002)(0.715 nm)在N片中与高岭石d(001)(0.72 nm)重叠,但可通过EG片识别绿泥石d(004)(0.353 nm)和高岭石d(002)(0.358 nm)将二者区分,研究区图谱仅识别出绿泥石d(004)(0.353 nm)且为单峰形态,说明样品中只含绿泥石,不含高岭石。在N片中,衍射峰d=1.4~1.5 nm可能存在蒙脱石d(001)(1.4~1.5 nm)与绿泥石d(001)(1.42 nm)重叠的情况,但在经过乙二醇饱和处理后,该衍射峰的d值变为1.7 nm,与蒙脱石d(001)经乙二醇处理后的特征一致,证明样品中含有蒙脱石。对比不同的EG片发现,d=1.7 nm衍射峰峰形大多宽而不对称,且向低角度一侧扩散,该衍射特征表明样品中存在较多伊/蒙混层矿物,只有少量样品为蒙脱石[29-31]。
图 3 伦坡拉盆地蒋日阿错剖面典型样品X衍射图谱
Figure 3. X⁃ray diffraction patterns of typical samples from the Jiangriacuo section, Lunpola Basin
蒋日阿错剖面主要黏土矿物的含量及变化如图4和表1所示。黏土矿物主要以伊/蒙混层矿物为主,相对含量变化于38%~92%,平均含量为63%;其次为伊利石,相对含量变化于7%~58%,平均值为31%,其结晶度变化于0.24°~0.48°,平均值为0.41;绿泥石和蒙脱石含量较少,绿泥石相对含量变化于1%~8%,平均含量为3%。需要指出的是,蒙脱石只在5个样品中(JR-03,JR12-1,JR-13,JR-17-1,JR-19-1)出现,它们的黏土矿物含量及特征十分特殊,除含少量伊利石(7%~11%)和1%的绿泥石外,蒙脱石相对含量较高(89%~93%),平均含量为90%(表1)。蒙脱石主要存在两种成因[14,36-39]:其一为陆源碎屑的化学风化产物,为淋滤作用较强的环境下陆源碎屑的碱金属阳离子和碱土金属元素流失形成;其二为凝灰质火山喷发产物经水解作用而成。鉴于前人在研究区蒋日阿错向斜北翼的牛堡桥剖面对应层位已经发现有凝灰岩和斑脱岩夹层[22,26-27](图2b),意味着同时期可能存在火山喷发活动,因此认为剖面单独出现的这5层蒙脱石应该为区域火山喷发产物。但在5个样品中,仅JR-13号样品为泥质岩,其全岩X射线分析显示石英含量46.01%,长石含量12.90%,碳酸盐岩矿物含量5.20%,黏土矿物含量35.38%,显示了斑脱岩的特征,而在其余的四个样品中,主要矿物成分为碳酸盐矿物(含量高达68.00%~83.50%),黏土矿物含量较低(表2)。
图 4 伦坡拉盆地蒋日阿错剖面渐新世—中新世之交黏土矿物含量、特征参数及全球深海氧同位素变化曲线
Figure 4. Clay mineral content, characteristic parameters, and global deep sea oxygen isotope variation curve at the Oligocene Miocene intersection of the Jiangricuo section, Lunpola Basin
表 1 伦坡拉盆地蒋日阿错剖面泥质岩类黏土矿物含量测试结果(%)
编号 岩性 伊利石 蒙脱石 绿泥石 伊/蒙混层 编号 岩性 伊利石 蒙脱石 绿泥石 伊/蒙混层 JR-20-1 灰岩 24 — 3 72 JR-33-2 泥岩 54 — 5 41 JR-19-2 泥岩 36 — 7 57 JR-33-1 灰岩 42 — 8 50 JR-19-1 灰岩 7 93 1 — JR-32-2 泥岩 53 — 5 42 JR-18-2 泥岩 46 — 4 50 JR-32-1 灰岩 54 — 6 40 JR-18-1 灰岩 11 — 1 87 JR-31-2 泥岩 58 — 4 38 JR-17-2 泥岩 47 — 3 50 JR-31-1 灰岩 30 — 4 66 JR-17-1 灰岩 8 92 1 — JR-30 泥岩 35 — 3 61 JR-16-2 泥岩 41 — 4 56 JR-29-2 灰岩 51 — 5 44 JR-16-1 灰岩 11 — 1 88 JR-29-1 泥岩 10 — 2 88 JR-15-2 泥岩 27 — 2 71 JR-28-2 灰岩 47 — 4 49 JR-15-1 灰岩 22 — 1 77 JR-28-1 泥岩 12 — 2 86 JR-13 泥岩 11 89 1 — JR-27-2 泥岩 47 — 4 49 JR-12-2 泥岩 42 — 3 55 JR-27-1 灰岩 37 — 4 60 JR-12-1 灰岩 9 90 1 — JR-26-2 泥岩 41 — 5 54 JR-11 泥岩 27 — 2 72 JR-26-1 灰岩 28 — 3 69 JR-10-2 泥岩 24 — 1 75 JR-25-2 泥岩 44 — 4 52 JR-10-1 灰岩 21 — 2 77 JR-25-1 灰岩 23 — 3 75 JR-09-3 泥岩 25 — 2 74 JR-24-2 泥岩 39 — 5 56 JR-09-2 泥岩 40 — 1 59 JR-24-1 灰岩 19 — 3 78 JR-09-1 灰岩 25 — 1 74 JR-23-2 泥岩 41 — 7 52 JR-08 泥岩 43 — 2 55 JR-23-1 灰岩 8 — 1 91 JR-07 灰岩 29 — 3 68 JR-22-2 泥岩 49 — 3 47 JR-06 泥岩 39 — 3 58 JR-22-1 灰岩 18 — 2 80 JR-05 灰岩 7 — 1 92 JR-21-2 泥岩 41 — 4 55 JR-04 泥岩 42 — 2 56 JR-21-1 灰岩 21 — 6 73 JR-03 灰岩 10 90 1 — JR-20-2 泥岩 39 — 4 58 表 2 五个蒙脱石含量较高样品矿物组成与黏土矿物X射线衍射结果(%)
编号 岩性 全岩矿物 黏土矿物 石英 长石 碳酸盐矿物 黏土总量 蒙脱石 伊利石 绿泥石 JR-19-1 灰岩 6.68 2.70 83.50 6.58 92.81 6.53 0.66 JR-17-1 泥灰岩 6.77 2.70 77.30 12.74 91.80 7.57 0.63 JR-13 斑脱岩 46.01 12.90 5.20 35.38 88.77 10.53 0.71 JR-12-1 泥灰岩 18.08 2.90 68.00 10.51 89.57 9.29 1.13 JR-03 泥灰岩 8.47 5.70 73.40 12.05 89.55 9.73 0.72 蒋日阿错剖面黏土矿物相对含量的垂向变化规律为:剖面下部伊利石和绿泥石含量较低,伊/蒙混层矿物相对含量位于高值区,其中伊利石的相对含量变化于6.84%~42.76%,平均值为26.13%,绿泥石的相对含量变化于0.71%~3.27%,平均值为1.68%,伊/蒙混层含量变化于0~92.15%,平均值为67.90%。剖面中部伊/蒙混层矿物和伊利石的相对含量呈现明显的波动变化,伊利石的相对含量变化于6.53%~49.42%,平均值为29.10%,绿泥石的相对含量变化于0.63%~7.19%,平均值为3.28%,伊/蒙混层含量变化于0~90.52%,平均值为65.47%。剖面上部伊利石和绿泥石含量远高于中下部,而伊/蒙混层的含量相对较低,伊利石相对含量变化于10.16%~57.65%,平均值为41.15%,绿泥石含量变化于2.04%~7.98%,平均值为4.29%,伊蒙混层相对含量变化于38.43%~87.80%,平均值为54.56%(图4d,f)。
Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet
-
摘要: 为揭示伦坡拉盆地渐新世—中新世之交黏土矿物蕴含的古气候信息,探讨其与青藏高原隆升及全球气候响应过程的关系,利用X射线衍射和荧光光谱分析对蒋日阿错剖面的黏土矿物特征进行了深入研究。结果表明:区内泥质岩中黏土矿物以伊/蒙混层矿物为主,伊利石次之,仅含有少量绿泥石和蒙脱石。黏土矿物的垂向组合特征显示伊利石和绿泥石含量在剖面下部低、上部高,伊/蒙混层含量与之相反,伊/蒙混层和伊利石在剖面中部呈明显波动变化,蒙脱石只出现在剖面中下部,可能为区域火山喷发产物在碱性环境中蚀变而成。伊利石结晶度变化于0.24°~0.48°,平均值为0.41°,表明样品未发生明显成岩蚀变,主微量元素比值指示研究区物源位置未发生较大改变,因此研究剖面黏土矿物特征可以有效反映伦坡拉盆地古气候演化过程。根据自生黏土矿物的习性指出伦坡拉盆地在渐新世—中新世之交出现了一次明显的降温事件,并且这次降温在青藏高原内部及周缘地区普遍存在,但造成这次降温事件的根本原因仍值得进一步探讨。Abstract: Paleoclimatic investigations based on clay minerals analysis of samples from the Oligocene-Miocene boundary in the Lunpola Basin were conducted to explore the relationship between the Tibetan Plateau uplift and global climate response. Modern techniques of X-ray diffraction(XRD)and X-ray fluorescence(XRF)spectrometry were implemented to examine major clay minerals characteristics from the Jiangriacuo section. Results show that the majority of samples in the study area are dominated by illite/montmorillonite mixed-layer minerals, followed by illite with minor contents of chlorite and montmorillonite. The stratigraphic vertical composition of clay minerals shows that the illite and chlorite content is low in the lower part of the studied section compared to higher composition at the upper part, whereas the mixed-layer illite/montmorillonites show an overall converse trend to the illite and chlorite. At the middle part of the section, the illite/montmorillonite interlayer and illite content exhibit significant fluctuations. The montmorillonite that originates from the alteration of the volcanic eruption products under alkaline conditions only appears in the middle and lower intervals of the profile. The crystallinity of illite ranges from 0.24° to 0.48° with an average of 0.41°, indicating no significant diagenetic overprint of the studied samples, and the major/trace-elemental data also show that the provenance source for the Jiangriacuo section is not significantly changed. This indicates that the characteristics of clay minerals in the Jiangriacuo profile are related to the paleoclimatic evolution of the Lunpola Basin. Based on geochemical and clay mineral characteristics, an obvious cooling event in the Lunpola Basin at ca. 23 Ma is documented, which is a widespread event that impacted the inner and peripheral areas of the Tibetan Plateau. However, the fundamental factor that triggered this cooling event at times of the Oligocene-Miocene transition is still worthy of further discussion.
-
Key words:
- clay minerals /
- paleoclimate /
- Oligocene-Miocene boundary /
- cooling event /
- Tibetan Plateau
-
表 1 伦坡拉盆地蒋日阿错剖面泥质岩类黏土矿物含量测试结果(%)
编号 岩性 伊利石 蒙脱石 绿泥石 伊/蒙混层 编号 岩性 伊利石 蒙脱石 绿泥石 伊/蒙混层 JR-20-1 灰岩 24 — 3 72 JR-33-2 泥岩 54 — 5 41 JR-19-2 泥岩 36 — 7 57 JR-33-1 灰岩 42 — 8 50 JR-19-1 灰岩 7 93 1 — JR-32-2 泥岩 53 — 5 42 JR-18-2 泥岩 46 — 4 50 JR-32-1 灰岩 54 — 6 40 JR-18-1 灰岩 11 — 1 87 JR-31-2 泥岩 58 — 4 38 JR-17-2 泥岩 47 — 3 50 JR-31-1 灰岩 30 — 4 66 JR-17-1 灰岩 8 92 1 — JR-30 泥岩 35 — 3 61 JR-16-2 泥岩 41 — 4 56 JR-29-2 灰岩 51 — 5 44 JR-16-1 灰岩 11 — 1 88 JR-29-1 泥岩 10 — 2 88 JR-15-2 泥岩 27 — 2 71 JR-28-2 灰岩 47 — 4 49 JR-15-1 灰岩 22 — 1 77 JR-28-1 泥岩 12 — 2 86 JR-13 泥岩 11 89 1 — JR-27-2 泥岩 47 — 4 49 JR-12-2 泥岩 42 — 3 55 JR-27-1 灰岩 37 — 4 60 JR-12-1 灰岩 9 90 1 — JR-26-2 泥岩 41 — 5 54 JR-11 泥岩 27 — 2 72 JR-26-1 灰岩 28 — 3 69 JR-10-2 泥岩 24 — 1 75 JR-25-2 泥岩 44 — 4 52 JR-10-1 灰岩 21 — 2 77 JR-25-1 灰岩 23 — 3 75 JR-09-3 泥岩 25 — 2 74 JR-24-2 泥岩 39 — 5 56 JR-09-2 泥岩 40 — 1 59 JR-24-1 灰岩 19 — 3 78 JR-09-1 灰岩 25 — 1 74 JR-23-2 泥岩 41 — 7 52 JR-08 泥岩 43 — 2 55 JR-23-1 灰岩 8 — 1 91 JR-07 灰岩 29 — 3 68 JR-22-2 泥岩 49 — 3 47 JR-06 泥岩 39 — 3 58 JR-22-1 灰岩 18 — 2 80 JR-05 灰岩 7 — 1 92 JR-21-2 泥岩 41 — 4 55 JR-04 泥岩 42 — 2 56 JR-21-1 灰岩 21 — 6 73 JR-03 灰岩 10 90 1 — JR-20-2 泥岩 39 — 4 58 表 2 五个蒙脱石含量较高样品矿物组成与黏土矿物X射线衍射结果(%)
编号 岩性 全岩矿物 黏土矿物 石英 长石 碳酸盐矿物 黏土总量 蒙脱石 伊利石 绿泥石 JR-19-1 灰岩 6.68 2.70 83.50 6.58 92.81 6.53 0.66 JR-17-1 泥灰岩 6.77 2.70 77.30 12.74 91.80 7.57 0.63 JR-13 斑脱岩 46.01 12.90 5.20 35.38 88.77 10.53 0.71 JR-12-1 泥灰岩 18.08 2.90 68.00 10.51 89.57 9.29 1.13 JR-03 泥灰岩 8.47 5.70 73.40 12.05 89.55 9.73 0.72 -
[1] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. [2] Zachos J C, Flower B P, Paul H. Orbitally paced climate oscillations across the Oligocene/Miocene boundary[J]. Nature, 1997, 388(6642): 567-570. [3] Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1): 87-140. [4] Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848. [5] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the Early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174. [6] 李吉均,周尚哲,赵志军,等. 论青藏运动主幕[J]. 中国科学(D辑):地球科学,2015,45(10):1597-1608. Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2015, 45(10): 1597-1608. [7] Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1/2/3): 39-57. [8] 李炳元,潘保田,高红山. 可可西里东部地区的夷平面与火山年代[J]. 第四纪研究,2002,22(5):397-405. Li Bingyuan, Pan Baotian, Gao Hongshan. A planation surface and ages of volcanic rocks in eastern Hoh Xil, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2002, 22(5): 397-405. [9] 邓涛,吴飞翔,王世骐,等. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折[J]. 科学通报,2019,64(27):2894-2906. Deng Tao, Wu Feixiang, Wang Shiqi, et al. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2894-2906. [10] Wu F X, Miao D S, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene[J]. Scientific Reports, 2017, 7(1): 878. [11] Su T, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189. [12] Miao Y F, Fang X M, Song C Het al. Pollen and fossil wood's linkage with Mi-1 Glaciation in northeastern Tibetan Plateau, China[J]. Palaeoworld, 2013, 22(3/4): 101-108. [13] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992. [14] 陈涛,王欢,张祖青,等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420. Chen Tao, Wang Huan, Zhang Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4): 416-420. [15] Robert C, Kennett J P. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: Clay mineral and oxygen isotope evidence[J]. Geology, 1997, 25(7): 587-590. [16] Devleeschouwer X, Herbosch A, Préat A. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 171-193. [17] [18] [19] [20] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, Basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878. [21] 马鹏飞,王立成,冉波. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报,2013,29(3):990-1002. Ma Pengfei, Wang Licheng, Ran Bo. Subsidence analysis of the Cenozoic Lunpola Basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2013, 29(3): 990-1002. [22] 曾胜强,王剑,陈文彬,等. 伦坡拉盆地西部丁青湖组新发现凝灰岩锆石U-Pb年龄及其地层学意义[J]. 地质学报,2020,94(8):2354-2366. Zeng Shengqiang, Wang Jian, Chen Wenbing, et al. Zircon U-Pb age and stratigraphic significance of the newly discovered tuff layers in the Dingqinghu Formation, west Lunpola Basin[J]. Acta Geologica Sinica, 2020, 94(8): 2354-2366. [23] Fang X M, Dupont-Nivet G, Wang C S, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): eaba7298. [24] Mao Z Q, Meng Q Q, Fang X M, et al. Recognition of tuffs in the Middle-Upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 525: 44-56. [25] Deng T, Wang S Q, Xie G P, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269. [26] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the Latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30. [27] He H Y, Sun J M, Li Q L, et al. New age determination of the Cenozoic Lunpola Basin, central Tibet[J]. Geological Magazine, 2012, 149(1): 141-145. [28] 杜佰伟,谢尚克,董宇,等. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版),2016,46(3):671-680. Du Baiwei, Xie Shangke, Dong Yu, et al. Characteristics of oil shale of Oligocene Dingqinghu Formation and its geological significance, Lunpola Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 671-680. [29] Grim R E. Crystal structures of clay minerals and their X-ray identification G.W. Brindley and G. Brown (Editors), 1980. Mineralogical Society, London, 495 pp., £stg. 28.00, US$ 70.00 (incl. of postage)[J]. Earth-Science Reviews, 1982, 18(1): 84-85. [30] Johns W D, Grim R E, Bradley W F. Quantitative estimations of clay minerals by diffraction methods[J]. Journal of Sedimentary Research, 1954, 24(4): 242-251. [31] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. [32] Kübler B. Les argiles, indicateurs de métamorphisme[J]. Revue de L′Institut Francais du Pétrole, 1964, 19: 1093-1112. [33] 王河锦,周健. 关于伊利石结晶度诸指数的评价[J]. 岩石学报,1998,14(3):395-405. Wang Hejin, Zhou Jian. On the indices of illite crystallinity[J]. Acta Petrologica Sinica, 1998, 14(3): 395-405. [34] 詹秀春,罗立强. 偏振激发—能量色散X-射线荧光光谱法快速分析地质样品中34种元素[J]. 光谱学与光谱分析,2003,23(4):804-807. Zhan Xiuchun, Luo Liqiang. Rapid multi-element analysis of geological sample by polarized energy dispersive X-Ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2003, 23(4): 804-807. [35] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. [36] 刘志飞,李夏晶. 南海沉积物中蒙脱石的成因探讨[J]. 第四纪研究,2011,31(2):199-206. Liu Zhifei, Li Xiajing. Discussion on smectite formation in South China Sea sediments[J]. Quaternary Sciences, 2011, 31(2): 199-206. [37] Chamley H. Clay sedimentology[M]. Berlin Heidelberg: Springer, 1989. [38] Singer A. The paleoclimatic interpretation of clay minerals in sediments—a review[J]. Earth-Science Reviews, 1984, 21(4): 251-293. [39] 刘志飞. 南海沉积物中的黏土矿物:指示东亚季风演化历史?[J]. 沉积学报,2010,28(5):1012-1019. Liu Zhifei. Clay mineral assemblages in sediments of the South China Sea: East Asian monsoon evolution proxies[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1012-1019. [40] 王开发,杨蕉文,李哲,等. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学,1975,10(4):366-374. Wang Kaifa, Yang Jiaowen, Li Zhe, et al. On the Tertiary sporo-pollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance[J]. Scientia Geologica Sinica, 1975, 10(4): 366-374. [41] 徐正余. 西藏伦坡拉盆地第三系及其含油性[J]. 石油与天然气地质,1980,1(2):153-158. Xu Zhengyu. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet[J]. Oil & Gas Geology, 1980, 1(2): 153-158. [42] 夏金宝. 藏北班戈县及其邻近地区的新生界[J]. 青藏高原地质文集,1983(6):243-254. Xia Jinbao. Cenozoic of Baingoin and it’s bordering, Xizang (Tibet)[J]. Geological Collection of Qinghai-Tibet Plateau, 1983(6): 243-254. [43] [44] Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents[J]. Marine Geology, 2001, 179(3/4): 135-146. [45] Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1): 133-148. [46] 郑庆福,刘艇,赵兰坡,等. 东北黑土耕层土壤黏粒矿物组成的区域差异及其演化[J]. 土壤学报,2010,47(4):734-746. Zheng Qingfu, Liu Ting, Zhao Lanpo, et al. Spatial variation and evolution mechanism of clay mineral composition in agric horizon of black soil in Northeast China[J]. Acta Pedologica Sinica, 2010, 47(4): 734-746. [47] 师育新,戴雪荣,宋之光,等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报,2005,23(4):690-695. Shi Yuxin, Dai Xuerong, Song Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695. [48] 蒋梅茵,杨德涌,熊毅. 中国土壤胶体研究:ⅥⅡ. 五种主要土壤的粘粒矿物组成[J]. 土壤学报,1982,19(1):62-70. Jiang Meiyin, Yang Deyong, Xiong Yi. Soil colloid researches ⅥⅡ. the mineralogical composition of the colloids of five important soils in China[J]. Acta Pedologica Sinica, 1982, 19(1): 62-70. [49] Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996. [50] 张志春,潘根兴,孔尚成,等. 青藏高原三江源南部下拉秀剖面粘土矿物组合特征及其环境意义[J]. 水土保持学报,2015,29(5):181-186,308. Zhang Zhichun, Pan Genxing, Kong Shangcheng, et al. Characteristics and environmental significance of clay minerals composition of Xialaxiu profile in Three Rivers Source southern, Qinghai-Tibet Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(5): 181-186, 308. [51] [52] 王朝文,洪汉烈,向树元,等. 东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义[J]. 地质科技情报,2008,27(5):37-42. Wang Chaowen, Hong Hanlie, Xiang Shuyuan, et al. Characteristics of clay minerals and their paleoclimatic indicator of Early Pleistocene sediments from Alag Lake, East Kunlun[J]. Geological Science and Technology Information, 2008, 27(5): 37-42. [53] Bronger A, Winter R, Sedov S. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: Towards a Quaternary paleoclimatic record in Central Asia[J]. CATENA, 1998, 34(1/2): 19-34. [54] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302. [55] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670. [56] Wei G J, Liu Y, Li X H, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 331-342. [57] Roddaz M, Viers J, Brusset S, et al. Controls on weathering and provenance in the Amazonian foreland Basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments[J]. Chemical Geology, 2006, 226(1/2): 31-65. [58] McLennan S M, Nance W B, Taylor S R, et al. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1833-1839. [59] 李蒙,赵红格,李文厚,等. 贺兰山地区晚三叠世沉积主微量元素物源分析及方法探讨[J]. 高校地质学报,2018,24(6):841-555. Li Meng, Zhao Hongge, Li Wenhou, et al. Major and trace elements of the Late Triassic strata in the Helan Mountain: Constraints on the provenance and discussions on different methods[J]. Geological Journal of China Universities, 2018, 24(6): 841-555. [60] 伊海生,林金辉,周恳恳,等. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,2007,9(3):303-312. Yi Haisheng, Lin Jinhui, Zhou Kenken, et al. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2007, 9(3): 303-312. [61] 吴珍汉,吴中海,胡道功,等. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回[J]. 中国地质,2009,36(5):966-975. Wu Zhenhan, Wu Zhonghai, Hu Daogong, et al. Carbon and oxygen isotope changes and palaeoclimate cycles recorded by lacustrine deposits of Miocene Wudaoliang Group in northern Tibetan Plateau[J]. Geology in China, 2009, 36(5): 966-975. [62] 伊海生,林金辉,王成善,等. 藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J]. 成都理工学院学报,2002,29(5):473-480. Yi Haisheng, Lin Jinhui, Wang Chengshan, et al. Biomarkers and carbon isotopic anomaly from the Miocene lacustrine oil shales in Hoh Xil Basin of northern Tibetan Plateau[J]. Journal of Chengdu University of Technology, 2002, 29(5): 473-480. [63] 张以茀,郑健康. 青海可可西里及邻区地质概论[M]. 北京:地震出版社,1994.[ Zhang Yifu, Zheng Jiankang. Geological overview in Kokshili, Qinghai and adjacent areas.[M]. Beijing: Seismological Press, 1994. [64] Qiu Z D, Li C K. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China (Seri. D): Earth Sciences, 2005, 48(8): 1246-1258. [65] Wu C H, Xia G Q, Wagreich M, et al. Early Miocene expansion of C4 vegetation on the northern Tibetan Plateau[J]. Global and Planetary Change, 2019, 177: 173-185. [66] 吴珍汉,吴中海,叶培盛,等. 青藏高原晚新生代孢粉组合与古环境演化[J]. 中国地质,2006,33(5):966-979. Wu Zhenhan, Wu Zhonghai, Ye Peisheng, et al. Late Cenozoic environmental evolution of the Qinghai-Tibet Plateau as indicated by the evolution of sporopollen assemblages[J]. Geology in China, 2006, 33(5): 966-979. [67] [68] 颜其德. 南极:全球气候变暖的敏感区[J]. 科学,1996,48(1):19-22. Yan Qide. Antarctica-The sensitive region of global climate warming [J]. Science, 1996, 48(1): 19-22. [69] Sellwood B W, Price G D, Valdest P J. Cooler estimates of Cretaceous temperatures[J]. Nature, 1994, 370(6489): 453-455. [70] Kidder D L, Worsley T R. A human-induced hothouse climate?[J]. GSA Today, 2012, 22(2): 4-11. [71] Johnson N M, Stix J, Tauxe L, et al. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan[J]. The Journal of Geology, 1985, 93(1): 27-40. [72] Hough B G, Garzione C N, Wang Z C, et al. Timing and spatial patterns of Basin segmentation and climate change in Northeastern Tibet[M]//Nie J S, Horton B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorado: The Geological Society of America, 2014: 129-153. [73] Lease R O. Cenozoic mountain building on the northeastern Tibetan Plateau[M]//Nie J S, HortoN B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorda: The Geological Society of America, 2014: 115-127. [74] [75] Wang P X. Progress in Late Cenozoic palaeoclimatology of China: A brief review[M]//Whyte R O. The Evolution of the East Asian Environment. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1984: 165-187. [76] 刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,18(3):194-204. Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, 18(3): 194-204. [77] Sun X J, Wang P X. How old is the Asian monsoon system?: Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222. [78] 张仲石,郭正堂. 根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义[J]. 第四纪研究,2005,25(4):523-530. Zhang Zhongshi, Guo Zhengtang. Spatial character reconstruction of different periods in Oligocene and Miocene[J]. Quaternary Sciences, 2005, 25(4): 523-530. [79] 祝淑雅,吴海斌,李琴,等. 晚新生代以来中国西北植被演化及反映的干旱化过程[J]. 第四纪研究,2016,36(4):820-831. Zhu Shuya, Wu Haibin, Li Qin, et al. Aridification in northwestern China since the Late Cenozoic evidenced by the vegetation change[J]. Quaternary Sciences, 2016, 36(4): 820-831. [80] Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795. [81] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052): 1663-1670. [82] 张林源. 青藏高原上升对我国第四纪环境演变的影响[J]. 兰州大学学报,1981(3):142-155. Zhang Linyuan. The influence of the uplift of Qinghai-Xizang Plateau on the Quaternary environmental evolution in China[J]. Journal of Lanzhou University, 1981(3): 142-155. [83] Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: Numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18393-18407. [84] Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Science Bulletin, 1999, 44(23): 2117-2124. [85] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. [86] Liu X D, Kutzbach J, Liu Z Y, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon[J]. Geophysical Research Letters, 2003, 30(16): 1839. [87] Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306. [88] Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. [89] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to Middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680. [90] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 64-76. [91] Quade J, Breecker D O, Daëron M, et al. The paleoaltimetry of Tibet: An isotopic perspective[J]. American Journal of Science, 2011, 311(2): 77-115. [92] Wang H, Dutta S, Kelly R S, et al. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet[J]. Palaeoworld, 2018, 27(4): 506-513. [93] Ma P F, Wang C S, Meng J, et al. Late Oligocene-Early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records[J]. Gondwana Research, 2017, 48: 224-236. [94] Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436. [95] Valdes P J, Lin D, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474.