高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例

张风顺 谭谦 施泽进 彭秋 易驰 宁科科 唐劭禹

张风顺, 谭谦, 施泽进, 彭秋, 易驰, 宁科科, 唐劭禹. 早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例[J]. 沉积学报, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
引用本文: 张风顺, 谭谦, 施泽进, 彭秋, 易驰, 宁科科, 唐劭禹. 早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例[J]. 沉积学报, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
ZHANG FengShun, TAN Qian, SHI ZeJin, PENG Qiu, YI Chi, NING KeKe, TANG ShaoYu. Differential Genesis and Paleoenvironmental Significance of Early Triassic Ooids and Giant Ooids: A case study from the Yuanba area in northern Sichuan[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
Citation: ZHANG FengShun, TAN Qian, SHI ZeJin, PENG Qiu, YI Chi, NING KeKe, TANG ShaoYu. Differential Genesis and Paleoenvironmental Significance of Early Triassic Ooids and Giant Ooids: A case study from the Yuanba area in northern Sichuan[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083

早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例

doi: 10.14027/j.issn.1000-0550.2023.083
基金项目: 

国家自然科学基金项目 41872137

详细信息
    作者简介:

    张风顺,男,1999年出生,硕士研究生,地质资源与地质工程,E-mail: 1367903935@qq.com

    通讯作者:

    谭谦,男,讲师,E-mail: 799285676@qq.com

Differential Genesis and Paleoenvironmental Significance of Early Triassic Ooids and Giant Ooids: A case study from the Yuanba area in northern Sichuan

Funds: 

National Natural Science Foundation of China 41872137

  • 摘要: 目的 早三叠世是生物大灭绝之后的一段特殊地质历史时期,在全球浅水碳酸盐岩台地广泛发育鲕粒和巨鲕沉积,但有关鲕粒和巨鲕成因及其古海洋环境意义的研究还存在较大争议。 方法 在野外和岩心观察的基础之上,利用岩石学、矿物学和地球化学分析,探究元坝地区早三叠世飞仙关组鲕粒和巨鲕沉积特征、成因及其古环境意义。 结果 元坝地区飞仙关组鲕粒和巨鲕主要发育在飞二段台缘带,鲕粒类型以同心鲕和单晶鲕为主,发育在米级沉积旋回中上部呈厚层、块状产出,指示其形成于水动力较强且易暴露的浅水环境;巨鲕则以同心鲕为主,在米级沉积旋回中上部的鲕粒灰岩和下部的泥晶灰岩均发育,呈薄层状产出、且见明显冲刷底面,指示其形成于间歇性强水动力条件,多为风暴作用。结合地球化学分析发现,鲕粒同心圈层的Sr含量较高,晶体结构多为针状或棒状,指示其原始矿物以文石沉积为主;而巨鲕同心圈层Sr含量较低,晶体结构多为不规则镶嵌状,指示其原始矿物以方解石沉积为主。此外,鲕粒同心圈层具有Fe含量高、Ce弱正异常、Eu正异常明显、LREE相对HREE富集和较低Y/Ho值等特征,指示其形成于铁化的还原环境;而巨鲕具有Fe含量低、Ce弱负异常、轻稀土(LREE)相对重稀土(HREE)亏损和较高Y/Ho值等特征,指示其形成于弱氧化环境。 结论 早三叠世飞仙关组沉积时期海水性质整体以缺氧的文石海为主,但在大气逐渐氧化和大陆风化作用加强的背景下,间歇性风暴作用增加了陆源物质(特别是Ca2+)和氧化剂输入,造成浅层海水Mg/Ca降低和弱氧化,发育短暂的弱氧化方解石海。这可能是早三叠世海水环境逐渐改善和生物缓慢复苏的重要原因之一。
  • 图  1  元坝地区早三叠世飞仙关组沉积背景及研究区位置

    (a) global distribution range of Early Triassic oolites and giant oolites (modified from reference [31]); (b) distribution of sedimentary facies in the Fei⁃2 member of the Kaijiang Liangping Trough area (modified from reference [25]); (c) comprehensive histogram of sedimentary strata of the Early Triassic Feixianguan Formation in the Yuanba area

    Figure  1.  Sedimentary background of the Early Triassic Feixianguan Formation in the Yuanba area and location of study area

    Fig.1

    图  2  元坝地区早三叠世飞仙关组二段鲕粒岩石学特征

    (a) oolitic limestone, developed in the upper part of the shallower sedimentary sequence, in the Wangcang Gaoyang section; (b) Enlarged black box area of photo (a), many needle shaped dissolution pores formed by the dissolution of ooids can be seen; (c) oolitic limestone, mainly composed of concentric oolites, cast thin section, plane⁃polarized light (PPL), well Yuanba 27; (d) oolitic particles are well sorted, with a diameter of 0.3⁃0.8 mm, PPL, well Yuanba 5; (e) Concentric ooids, bright crystal cementation, crystallized ooid muds, but concentric layers are still visible (yellow arrow). The dissolved pores in the particles are filled with asphalt, PPL, well Yuanba 22; (f) Compound oolite formed by multiple sedimentation (yellow arrow), PPL, well Yuanba 3; (g) brick structure with mineral composition of aragonite(yellow arrow), PPL, well Yuanba 205; (h) needle⁃like aragonite crystal structure preserved in the oolitic grain layer (yellow arrow), PPL, well Yuanba 2; (i) cathodoluminescence of ooids characterized by non⁃luminescence, well Yuanba 224

    Figure  2.  Characteristics of oolitic petrology in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

    Fig.2

    图  3  元坝地区早三叠世飞仙关组二段巨鲕岩石学特征

    (a) the development of giant ooids in microcrystalline limestone shows a scouring surface (yellow dashed line) at the bottom, and the degree of development and particle size of giant ooids gradually decrease upwards, well Yuanba 27; (b) giant ooids are developed in oolitic limestone, with varying particle sizes and poor sorting. Longtan Village profile; (c) the giant ooid, with its core as bioclastic material, was redeposited and formed by storms, PPL, well Yuanba 21; (d) giant ooids with complex ooids as the core, bright crystal cementation, PPL, well Yuanba 205; (e) giant oolitic shell, composed of inlaid carbonate rock grains (yellow arrow), PPL, well Yuanba 204; (f) a giant ooid with a core of ooids, where the core is corroded and residual ooid structure is observed, indicating that the original minerals of the two are different. Dark microbial drilling can be seen in the shell, PPL, well Yuanba 205; (g) suspected chain⁃like structures resembling Cyanobacteria can be seen in the giant oolitic layer (within the yellow box), PPL, well Yuanba 3

    Figure  3.  Giant oolitic petrology characteristics of the second member of the Early Triassic Feixianguan Formation

    Fig.3

    图  4  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕陆源碎屑和成岩作用影响评价

    (a) there is no significant positive correlation between Al content and ∑REE concentration; (b) there is no significant positive correlation between U content and ∑REE concentration; (c) the correlation between Mn content and PrSN/YbSN is weak; (d) all samples show low Mn/Sr values; (e) the relationship between Ce anomalies and Mn content is poor, indica⁃ting that the interference of Mn (hydrogen oxygen) oxides on oolites and giant oolites can be ignored; (f) there is no significant correlation between Eu anomalies and Ba content

    Figure  4.  Evaluation of the influence of ooid and giant ooid terrestrial clasts and diagenesis on the second member of the Early Triassic Feixianguan Formation in the Yuanba area

    Fig.4

    图  5  元坝地区早三叠世飞仙关组鲕粒和巨鲕的PAAS标准化REY模式

    Figure  5.  PAAS standardized REY model for ooids and giant ooids in the Early Triassic Feixianguan Formation of the Yuanba area, Sichuan Basin

    图  6  元坝27井早三叠世飞二段取心综合柱状图

    Figure  6.  Comprehensive histogram of coring for well Yuanba 27

    图  7  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕部分指标对比

    (a) the content of B and K/Na exhibit good synergy, and the values of giant oolitic layers are clustered in a lower range; (b) the overall Sr/Ba value of ooids is greater than that of ooids; (c) the Sr content of ooids is significantly higher than that of giant ooids, indicating that their sedimentary environment is mainly" Aragonite Sea"; (d) the 87Sr/86Sr value of giant ooids is greater than that of ooids, indicating that continental weathering intensified during the sedimentation of giant ooids

    Figure  7.  Comparison of indices for oolites and giant ooids in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

    Fig.7

    图  8  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕的氧化还原特征

    (a) the V/(V+Ni) and V/Cr values of the giant oolitic layer are significantly lower than those of the oolitic particles, indicating that they were formed in a more oxidizing environment; (b) the Fe and Mn contents of ooids are significantly higher than those of giant ooids, indicating that they were formed in a more ferritic marine environment.

    Figure  8.  Redox characteristics of ooids and giant ooids in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

    Fig.8

    图  9  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕(Pr/Pr*N和(Ce/Ce*N交会图

    Figure  9.  Intersection diagram of ooid and giant ooid (Pr/Pr*)N and (Ce/Ce*)N in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

    图  10  早三叠世鲕粒和巨鲕成因模式

    (a) oolites in the Early Triassic; (b) giant ooids in the Early Triassic

    Figure  10.  Genetic model of Early Triassic ooids and giant ooids

    Fig.10

    表  1  元坝地区早三叠世飞仙关组鲕粒和巨鲕微量元素

    Table  1.   Trace elements of ooids and giant ooids in the Early Triassic Feixianguan Formation of the Yuanba area

    样品号Na/(μg/g)K/(μg/g)Mn/(μg/g)Fe/(μg/g)Sr/(μg/g)Ba/(μg/g)K/NaSr/BaMn/SrV/(V+Ni)V/Cr
    1147.14162.338.97201.431 058.581.941.10544.820.008 50.230.00
    2144.9330.485.98161.48890.093.020.21294.950.006 70.170.69
    3207.22215.0011.77555.21745.092.041.04365.460.015 80.763.16
    4186.50223.836.16311.07977.443.961.20246.950.006 31.001.14
    544.4941.978.61205.43883.600.480.941 851.400.009 70.340.93
    682.63255.497.24478.94979.963.303.09296.880.007 40.410.00
    7152.4254.285.17258.89964.864.180.36230.770.005 40.401.39
    8266.95112.195.55141.98824.931.740.42474.550.006 70.120.64
    9149.1457.067.94156.42622.411.320.38471.660.012 80.430.13
    10172.7496.084.44177.73974.662.100.56464.200.004 60.970.00
    11219.35119.994.98226.78502.290.990.55508.400.009 91.000.32
    1277.0476.915.05204.54419.360.841.00496.410.012 00.420.64
    1357.5955.745.90260.81453.571.160.97389.910.013 00.651.63
    1446.6753.015.77278.15552.891.011.14546.140.010 40.353.00
    1547.5374.913.93163.68553.981.741.58317.780.007 10.470.00
    1679.3139.515.23142.77640.840.490.501 296.160.008 20.560.54
    1721.059.676.01135.50690.120.190.463 545.770.008 70.720.00
    1841.3581.854.57401.80459.000.511.98904.460.010 01.000.76
    19193.63292.438.28977.473 715.825.931.51626.510.002 20.943.98
    20184.79779.0035.201 785.346 964.565.814.221 198.470.005 10.701.20
    21274.12222.628.31748.572 806.383.080.81912.550.003 00.712.02
    22419.56456.0213.361 057.392 563.033.241.09792.220.005 20.773.30
    23223.86331.268.012 578.144 671.775.801.48806.110.001 70.783.35
    24150.87144.9713.04647.43649.541.410.96459.220.020 10.410.58
    25409.42490.7012.951 226.271 087.545.231.20208.030.011 90.681.50
    26349.93459.5314.111 056.81759.955.271.31144.170.018 60.761.78
    27250.80451.1713.70656.55853.893.631.80235.490.016 00.882.34
    28111.99237.7966.401 849.301 755.082.632.12667.970.037 80.541.99
    2994.6744.8910.59389.472 778.621.870.471 488.070.003 80.000.00
    30158.46368.726.41550.78907.172.802.33324.520.007 10.771.12
    31151.76622.7311.39421.78851.472.284.10372.640.013 40.851.76
    32386.47376.866.92426.751 893.111.300.981 456.920.003 70.710.00
    33162.591 043.427.37478.38937.2415.946.4258.800.007 90.923.17
    34371.02145.264.31209.281 230.731.720.39716.650.003 50.971.45
    a243.37404.2115.02941.232 151.624.241.95654.270.010 10.712.11
    b119.1297.796.29247.92732.981.720.97403.490.009 10.561.15
    注:1~18号为巨鲕数据,19~34为鲕粒数据,a为鲕粒平均值,b为巨鲕平均值。
    下载: 导出CSV

    表  2  元坝地区早三叠世飞仙关组鲕粒和巨鲕纹层的稀土元素(μg/g)

    Table  2.   Rare earth elements of oolite and giant oolite layer in the Early Triassic Feixianguan Formation in the Yuanba area (μg/g)

    LaCePrNdSmEuGdTbDyYHoErTmYbLu
    10.330.860.100.380.110.000.130.000.020.480.000.000.000.000.00
    20.160.310.040.120.060.010.020.010.040.380.000.010.010.080.01
    30.200.410.070.300.050.010.040.020.070.370.010.040.020.070.01
    40.270.520.060.230.030.020.050.000.020.450.020.070.010.080.02
    50.841.660.260.820.210.030.140.010.180.920.020.030.000.040.01
    60.260.500.080.200.050.020.070.000.080.340.010.030.000.020.01
    70.230.460.050.120.030.020.010.010.060.400.010.030.010.060.01
    80.240.560.070.210.030.010.030.020.060.490.020.010.000.020.00
    90.170.460.030.110.030.000.040.000.010.360.000.030.010.040.00
    100.170.340.050.140.040.000.000.010.050.410.010.030.000.030.00
    110.300.720.090.430.080.040.120.010.171.780.040.140.020.050.02
    120.240.480.050.310.120.020.120.010.160.850.010.080.010.070.00
    130.330.590.070.250.050.030.100.030.080.920.030.100.010.100.02
    140.260.470.070.350.070.020.190.020.050.980.010.060.010.090.01
    150.290.490.050.270.150.000.120.020.071.020.020.110.000.070.01
    160.210.460.070.180.040.000.070.010.070.620.010.040.010.100.00
    170.270.650.120.430.210.080.380.050.346.820.090.310.050.160.01
    180.411.030.171.040.380.110.430.110.823.960.180.580.100.420.06
    190.912.110.250.930.250.030.150.020.160.800.020.080.010.030.00
    201.343.950.652.570.430.210.400.040.280.470.030.130.010.030.02
    213.205.440.572.410.520.080.280.040.190.120.040.110.010.120.03
    220.410.750.060.330.000.010.080.010.050.380.010.010.010.050.00
    230.601.250.120.600.140.040.150.010.080.650.020.100.010.050.01
    241.432.940.281.070.060.030.290.030.212.620.020.090.000.060.00
    251.292.430.311.290.230.040.210.030.192.210.050.160.040.130.00
    260.972.200.251.010.150.040.240.060.271.940.030.210.030.150.04
    271.232.690.341.270.250.070.440.030.302.190.040.110.030.090.02
    282.234.490.482.010.310.090.250.050.281.420.060.150.010.120.02
    290.220.410.060.160.060.020.030.000.000.120.010.030.010.010.00
    301.172.180.270.910.230.060.120.030.141.070.010.130.020.070.01
    311.272.470.331.020.170.040.140.030.121.020.030.100.010.100.02
    321.413.050.361.360.220.020.420.010.161.720.020.130.000.180.01
    330.972.050.251.060.190.040.160.030.150.980.030.050.010.060.01
    340.510.990.120.510.170.020.120.010.110.710.030.070.010.100.00
    注:1~18号为巨鲕数据,19~34为鲕粒数据。
    下载: 导出CSV

    表  3  元坝地区早三叠世鲕粒和巨鲕的稀土元素和Sr同位素特征

    Table  3.   Rare earth elements and Sr isotope characteristics of Early Triassic ooids and giant ooids in the Yuanba area

    样品号ΣLREEΣHREELaN/YbNPrN/YbNδEuδCeδPrY/Ho87Sr/86Sr
    11.780.150.951.030.707 35
    20.690.170.150.160.740.691.200.707 36
    31.040.280.210.330.500.701.1626.240.707 35
    41.130.280.230.233.360.941.0325.200.707 38
    53.820.441.471.940.860.601.2943.680.707 32
    61.100.221.211.520.501.4127.230.707 37
    70.910.210.270.262.390.611.2439.570.707 36
    81.130.150.821.050.660.671.2228.840.707 37
    90.800.130.340.241.770.720.707 37
    100.750.140.440.530.250.601.2935.430.707 35
    111.670.580.450.572.241.140.9242.53
    121.230.460.240.230.951.590.7885.58
    131.320.470.250.232.270.871.0733.73
    141.240.450.220.251.191.110.9196.43
    151.260.420.310.230.011.570.7943.48
    160.960.310.150.230.000.441.5053.32
    171.751.380.120.231.710.601.2678.42
    183.132.710.070.131.151.060.8922.17
    194.480.472.332.710.820.941.0343.75
    209.150.952.946.222.860.681.1815.40
    2112.220.831.901.461.021.180.922.73
    221.570.230.620.417.171.780.7533.780.707 29
    232.760.430.900.762.281.540.8029.590.707 30
    245.810.701.721.461.691.140.93151.360.707 31
    255.590.820.720.751.020.941.0342.330.707 28
    264.631.030.490.541.041.050.9858.300.707 30
    275.861.061.061.281.630.831.1049.960.707 30
    289.610.941.331.231.441.140.9424.160.707 25
    291.710.091.431.730.621.3311.590.707 30
    304.820.531.261.271.470.771.1477.810.707 28
    315.300.550.971.080.970.681.2137.85
    326.430.920.570.630.810.911.05102.58
    334.560.501.251.370.971.040.9830.68
    342.310.460.360.360.811.060.9721.07
    a5.490.671.230.491.731.021.0234.210.707 29
    b1.590.500.411.441.310.911.0945.460.707 36
    注:1~18号为巨鲕数据,19~34为鲕粒数据,a表示鲕粒平均值,b表示巨鲕平均值,“—”表示无元素检测值。
    下载: 导出CSV
  • [1] Beukes N J. Ooids and oolites of the proterophytic Boomplaas Formation, Transvaal Supergroup, Griqualand west, South Africa[M]//Peryt T M. Coated grains. Berlin: Springer, 1983: 199-214.
    [2] Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-496.
    [3] Davies P J, Bubela B, Ferguson J. The formation of ooids[J]. Sedimentology, 1978, 25(5): 703-730.
    [4] Gaffey S J. Formation and infilling of pits in marine ooid surfaces[J]. Journal of Sedimentary Research, 1983, 53(1): 193-208.
    [5] Reid R P, Visscher P T, Decho A W, et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406(6799): 989-992.
    [6] Duguid S M A, Kyser T K, James N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80(3): 236-251.
    [7] 梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报,2012,30(1):20-32.

    Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1): 20-32.
    [8] Reeder S L, Rankey E C. Controls on morphology and sedimentology of carbonate tidal deltas, Abacos, Bahamas[J]. Marine Geology, 2009, 267(3/4): 141-155.
    [9] Edgcomb V P, Bernhard J M, Beaudoin D, et al. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas[J]. Geobiology, 2013, 11(3): 234-251.
    [10] Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5): 420-436.
    [11] Diaz M R, Van Norstrand J D, Eberli G P, et al. Functional gene diversity of oolitic sands from Great Bahama Bank[J]. Geobiology, 2014, 12(3): 231-249.
    [12] Diaz M R, Swart P K, Eberli G P, et al. Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 2015, 62(7): 2090-2112.
    [13] 周志澄,罗辉,许波,等. 四川江油渔洞子飞仙关组巨鲕灰岩的成因解释:在微观及超微世界里认识华南早三叠世巨鲕灰岩的成因[J]. 地层学杂志,2018,42(2):145-158.

    Zhou Zhicheng, Luo Hui, Xu Bo, et al. Giant oolitic limestone in the Lower Triassic Feixianguan Formation at the Yudongzi section in the Jiangyou area, Sichuan province[J]. Journal of Stratigraphy, 2018, 42(2): 145-158.
    [14] 郭芪恒,金振奎,史书婷,等. 鲕粒成因研究进展[J]. 沉积学报,2023,41(4):959-967.

    Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Research progress on the formation of ooids[J]. Acta Sedimentologica Sinica, 2023, 41(4): 959-967.
    [15] 殷鸿福,宋海军. 古、中生代之交生物大灭绝与泛大陆聚合[J]. 中国科学:地球科学,2013,43(10):1539-1552.

    Yin Hongfu, Song Haijun. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition[J]. Science China Earth Sciences, 2013, 43(10): 1539-1552.
    [16] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.

    Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135.
    [17] 谢树成. 距今2.52亿年前后的生物地球化学循环与海洋生态系统崩溃:对现代海洋的启示[J]. 中国科学:地球科学,2018,48(12):1600-1605.

    Xie Shucheng. The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans[J]. Science China Earth Sciences, 2018, 48(12): 1600-1605.
    [18] Sepkoski J J, Bambach R K, Droser M L. Secular changes in Phanerozoic event bedding and the biological overprint[M]//Einsele G, Rieken W, Scilacher A. Cycles and event in stratigraphy. Berlin: Springer, 1991: 298-312.
    [19] 朱小二. 华南晚二叠世—早三叠世鲕粒成因机制及其环境意义[D]. 北京:中国石油大学(北京),2021.

    Zhu Xiaoer. Formation mechanism of ooids and their environmental significance in Late Permian to Early Triassic, South China[D]. Beijing: China University of Petroleum (Beijing), 2021.
    [20] Dai M Y, Zhang H S, Zheng W, et al. Giant ooids of microbial origin from the Zhangxia Formation (Cambrian Miaolingian Series) in North China[J]. Journal of Palaeogeography, 2022, 11(1): 52-68.
    [21] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
    [22] Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105: 102-120.
    [23] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2021, 49(2): 156-161.
    [24] Lehrmann D J, Minzoni M, Li X W, et al. Lower Triassic oolites of the Nanpanjiang Basin, South China: Facies architecture, giant ooids, and diagenesis: Implications for hydrocarbon reservoirs[J]. AAPG Bulletin, 2012, 96(8): 1389-1414.
    [25] 古强,邢凤存,钱红杉,等. 川东北飞仙关组鲕粒特征与水动力相关性研究[J]. 沉积学报,2021,39(6):1371-1386.

    Gu Qiang, Xing Fengcun, Qian Hongshan, et al. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan Formation, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386.
    [26] Tan Q, Shi Z J, Tian Y M, et al. Origin of ooids in ooidal‐muddy laminites: A case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin, South China[J]. Geological Journal, 2018, 53(5): 1716-1727.
    [27] Lu C J, Li F, Oehlert A M, et al. Reconstructing paleoceanographic conditions during the Middle Ediacaran: Evidence from giant ooids in South China[J]. Precambrian Research, 2020, 351: 105945.
    [28] Groves J R, Altiner D, Boyce, M D, et al. "Disaster Oolites" in the Permian-Triassic boundary interval, Tauride Mountains (Turkey)[J]. Geological Society of America, Abstracts With Programs, North-Central Section, 2003, 35(2): 48.
    [29] Tian L, Bottjer D J, Tong J N, et al. Distribution and size variation of ooids in the aftermath of the Permian-Triassic mass extinction[J]. Palaios, 2015, 30(9): 714-727.
    [30] 黄仁春,邢凤存,范小军,等. 四川盆地元坝地区长兴组—飞仙关组高精度层序地层格架的建立及礁滩储集层预测[J]. 古地理学报,2019,21(2):369-378.

    Huang Renchun, Xing Fengcun, Fan Xiaojun, et al. Establishment of high-precision sequence stratigraphic framework of the Changxing-Feixianguan Formations and prediction of reef-shoal reservoirs in Yuanba area, Sichuan Basin[J]. Journal of Palaeogeography, 2019, 21(2): 369-378.
    [31] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian–Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-science Reviews, 2015, 149: 163-180.
    [32] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
    [33] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
    [34] 李飞,武思琴,刘柯. 鲕粒原生矿物识别及对海水化学成分变化的指示意义[J]. 沉积学报,2015,33(3):500-511.

    Li Fei, Wu Siqin, Liu Ke. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry[J]. Acta Sedimentologica Sinica, 2015, 33(3): 500-511.
    [35] Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107.
    [36] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.

    Xiong Xiaohui, Xiao Jiafei. Geochemical indicators of sedimentary environments: A summary[J]. Earth and Environment, 2011, 39(3): 405-414.
    [37] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

    Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
    [38] Planavsky N, Bekker A, Rouxel O J, et al. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6387-6405.
    [39] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. Earth and Planetary Science Letters, 1989, 92(1): 11-26.
    [40] Kump L R. Alternative modeling approaches to the geochemical cycles of carbon, sulfur, and strontium isotopes[J]. American Journal of Science, 1989, 289(4): 390-410.
    [41] Veizer J. Strontium isotopes in seawater through time[J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167.
    [42] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72.
    [43] Kinsman D J J. Interpretation of Sr+2 concentrations in carbonate minerals and rocks[J]. Journal of Sedimentary Research, 1969, 39(2): 486-508.
    [44] Brand U, Veizer J. origin of coated grains: Trace element constraints[M]//Peryt T M. Coated grains. Berlin: Springer Heidelberg, 1983: 9-26.
    [45] Sandberg P A. New interpretations of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy[J]. Sedimentology, 1975, 22(4): 497-537.
    [46] Zou C H, Mao L J, Tan Z H, et al. Geochemistry of major and trace elements in sediments from the Lubei Plain, China: Constraints for paleoclimate, paleosalinity, and paleoredox environment[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100071.
    [47] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
    [48] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [49] Mishra P K, Mohanty S P. Geochemistry of carbonate rocks of the Chilpi Group, Bastar Craton, India: Implications on ocean paleoredox conditions at the Late Paleoproterozoic Era[J]. Precambrian Research, 2021, 353: 106023.
    [50] Bau M, Möller P, Dulski P. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling[J]. Marine Chemistry, 1997, 56(1/2): 123-131.
    [51] de Carlo E H, Green W J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica[J]. Geochimica et Cosmochimica Acta, 2002, 66(8): 1323-1333.
    [52] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565.
    [53] van Kranendonk M J, Webb G E, Kamber B S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean[J]. Geobiology, 2003, 1(2): 91-108.
    [54] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206-210.
    [55] Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand[J]. Geochimica et Cosmochimica Acta, 2000, 64(23): 3983-3994.
    [56] Bolhar R, van Kranendonk M J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates[J]. Precambrian Research, 2007, 155(3/4): 229-250.
    [57] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833.
    [58] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
    [59] Retallack G J. Permian and Triassic greenhouse crises[J]. Gondwana Research, 2013, 24(1): 90-103.
    [60] Kajiwara Y, Yamakita S, Ishida K, et al. Development of a largely anoxic stratified ocean and its temporary massive mixing at the Permian/Triassic boundary supported by the sulfur isotopic record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 111(3/4): 367-379.
    [61] Algeo T J, Ellwood B, Nguyen T K T, et al. The Permian–Triassic boundary at Nhi Tao, Vietnam: Evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 304-327.
    [62] Song H J, Wignall P B, Tong J N, et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic[J]. Earth and Planetary Science Letters, 2015, 424: 140-147.
    [63] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
    [64] Pietsch C, Bottjer D J. The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic[J]. Earth-Science Reviews, 2014, 137: 65-84.
    [65] Plee K, Ariztegui D, Martini R, et al. Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland[J]. Geobiology, 2008, 6(4): 341-350.
    [66] Kershaw S, Crasquin S, Li Y, et al. Microbialites and global environmental change across the Permian-Triassic boundary: A synthesis[J]. Geobiology, 2012, 10(1): 25-47.
    [67] Pacton M, Ariztegui D, Wacey D, et al. Going nano: A new step toward understanding the processes governing freshwater ooid Formation[J]. Geology, 2012, 40(6): 547-550.
  • [1] 陈杨, 金鑫, 张云望, 陈俞超, 王琴, 时志强.  鄂尔多斯盆地早侏罗世Toarcian大洋缺氧事件时期湖相菱铁矿的成因及其地质意义 . 沉积学报, 2025, (): -. doi: 10.14027/j.issn.1000-0550.2024.126
    [2] 孙沛沛, 操应长, 远光辉, 周立宏, 靳子濠, 吴智平, 付立新, 张飞鹏, 陈长伟.  大港探区南部二叠系致密砂岩储层特征及成因 . 沉积学报, 2024, 42(4): 1447-1459. doi: 10.14027/j.issn.1000-0550.2023.090
    [3] 高抒.  南京地区早三叠世碳酸盐沉积动力过程初探 . 沉积学报, 2023, 41(6): 1673-1680. doi: 10.14027/j.issn.1000-0550.2023.124
    [4] 郭芪恒, 金振奎, 史书婷, 刘元博, 王金艺.  鲕粒成因研究进展 . 沉积学报, 2023, 41(4): 959-967. doi: 10.14027/j.issn.1000-0550.2022.010
    [5] 刘欣宇, 李永祥.  晚塞诺曼期东特提斯洋古海洋环境探析 . 沉积学报, 2021, 39(5): 1171-1184. doi: 10.14027/j.issn.1000-0550.2020.045
    [6] 郭芪恒, 金振奎, 史书婷, 朱小二, 李硕, 陈媛, 王金艺.  鲕粒粒度特征及其指示意义 . 沉积学报, 2020, 38(4): 737-746. doi: 10.14027/j.issn.1000-0550.2019.050
    [7] 杨向荣, 严德天, 张利伟, 张宝, 徐翰文, 刘文慧, 郧嘉琳.  赫南特冰期古海洋环境转变及其成因机制研究现状 . 沉积学报, 2018, 36(2): 319-332. doi: 10.14027/j.issn.1000-0550.2018.037
    [8] 庞谦, 李凌, 胡广, 谭秀成, 马腾, 赵东方, 芦飞凡, 陈虹宇, 熊鹰.  川北地区下寒武统筇竹寺组钙质结核特征及成因机制 . 沉积学报, 2017, 35(4): 681-690. doi: 10.14027/j.cnki.cjxb.2017.04.003
    [9] 王鹏万, 斯春松, 张润合, 李娴静, 马立桥, 黄羚, 徐云俊, 鲁慧丽.  滇黔北坳陷寒武系碳酸盐岩古海洋环境特征及地质意义 . 沉积学报, 2016, 34(5): 811-818. doi: 10.14027/j.cnki.cjxb.2016.05.001
    [10] 汤建荣, 王金友, 章诚诚, 宋广增, 石英涛, 张雷.  致密气源层内沉积特征及与致密砂岩气藏关系——以川东北元坝地区须三段为例 . 沉积学报, 2015, 33(6): 1224-1234. doi: 10.14027/j.cnki.cjxb.2015.06.015
    [11] 太原西山七里沟剖面本溪组铁质鲕粒成因探讨 . 沉积学报, 2013, 31(3): 396-403.
    [12] 罗冰.  蜀南地区飞仙关组鲕滩储层成因机制分析 . 沉积学报, 2009, 27(3): 404-409.
    [13] 罗根明.  西秦岭地区晚二叠世—早三叠世沉积相分析和沉积古环境再造 . 沉积学报, 2007, 25(3): 332-342.
    [14] 马艳萍, 刘立.  大港滩海区第三系湖相混积岩的成因与成岩作用特征 . 沉积学报, 2003, 21(4): 607-614.
    [15] 肖传桃, 李维峰, 胡明毅.  江汉盆地早三叠世生态地层学及古地理特征 . 沉积学报, 1997, 15(1): 85-91.
    [16] 李培军, 侯泉林, 李继亮, 孙枢.  闽西南地区早三叠世溪口组浊流沉积 . 沉积学报, 1997, 15(4): 50-57.
    [17] 何海清.  西秦岭早三叠世沉积特征及其构造控制作用 . 沉积学报, 1996, 14(1): 86-92.
    [18] 韦龙明.  菌藻对碳酸盐颗粒的泥晶化作用研究─以滇西保山地区下石炭统研究为例 . 沉积学报, 1995, 13(3): 89-97.
    [19] 赵永胜, 王多义, 胡志水.  四川盆地西缘早三叠世早期碳酸盐重力流沉积与环境 . 沉积学报, 1994, 12(2): 1-9.
    [20] David C.Kopaska-Merkel, 赖志云.  美国得克萨斯古生界和中生界鲕粒的微孔隙度 . 沉积学报, 1991, 9(4): 27-33.
  • 加载中
图(10) / 表 (3)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-08-28
  • 录用日期:  2023-09-27
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2025-06-10

目录

    早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例

    doi: 10.14027/j.issn.1000-0550.2023.083
      基金项目:

      国家自然科学基金项目 41872137

      作者简介:

      张风顺,男,1999年出生,硕士研究生,地质资源与地质工程,E-mail: 1367903935@qq.com

      通讯作者: 谭谦,男,讲师,E-mail: 799285676@qq.com

    摘要: 目的 早三叠世是生物大灭绝之后的一段特殊地质历史时期,在全球浅水碳酸盐岩台地广泛发育鲕粒和巨鲕沉积,但有关鲕粒和巨鲕成因及其古海洋环境意义的研究还存在较大争议。 方法 在野外和岩心观察的基础之上,利用岩石学、矿物学和地球化学分析,探究元坝地区早三叠世飞仙关组鲕粒和巨鲕沉积特征、成因及其古环境意义。 结果 元坝地区飞仙关组鲕粒和巨鲕主要发育在飞二段台缘带,鲕粒类型以同心鲕和单晶鲕为主,发育在米级沉积旋回中上部呈厚层、块状产出,指示其形成于水动力较强且易暴露的浅水环境;巨鲕则以同心鲕为主,在米级沉积旋回中上部的鲕粒灰岩和下部的泥晶灰岩均发育,呈薄层状产出、且见明显冲刷底面,指示其形成于间歇性强水动力条件,多为风暴作用。结合地球化学分析发现,鲕粒同心圈层的Sr含量较高,晶体结构多为针状或棒状,指示其原始矿物以文石沉积为主;而巨鲕同心圈层Sr含量较低,晶体结构多为不规则镶嵌状,指示其原始矿物以方解石沉积为主。此外,鲕粒同心圈层具有Fe含量高、Ce弱正异常、Eu正异常明显、LREE相对HREE富集和较低Y/Ho值等特征,指示其形成于铁化的还原环境;而巨鲕具有Fe含量低、Ce弱负异常、轻稀土(LREE)相对重稀土(HREE)亏损和较高Y/Ho值等特征,指示其形成于弱氧化环境。 结论 早三叠世飞仙关组沉积时期海水性质整体以缺氧的文石海为主,但在大气逐渐氧化和大陆风化作用加强的背景下,间歇性风暴作用增加了陆源物质(特别是Ca2+)和氧化剂输入,造成浅层海水Mg/Ca降低和弱氧化,发育短暂的弱氧化方解石海。这可能是早三叠世海水环境逐渐改善和生物缓慢复苏的重要原因之一。

    English Abstract

    张风顺, 谭谦, 施泽进, 彭秋, 易驰, 宁科科, 唐劭禹. 早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例[J]. 沉积学报, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
    引用本文: 张风顺, 谭谦, 施泽进, 彭秋, 易驰, 宁科科, 唐劭禹. 早三叠世鲕粒和巨鲕差异成因及其古环境意义——以川北元坝地区为例[J]. 沉积学报, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
    ZHANG FengShun, TAN Qian, SHI ZeJin, PENG Qiu, YI Chi, NING KeKe, TANG ShaoYu. Differential Genesis and Paleoenvironmental Significance of Early Triassic Ooids and Giant Ooids: A case study from the Yuanba area in northern Sichuan[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
    Citation: ZHANG FengShun, TAN Qian, SHI ZeJin, PENG Qiu, YI Chi, NING KeKe, TANG ShaoYu. Differential Genesis and Paleoenvironmental Significance of Early Triassic Ooids and Giant Ooids: A case study from the Yuanba area in northern Sichuan[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1072-1090. doi: 10.14027/j.issn.1000-0550.2023.083
      • 鲕粒(本文特指钙质鲕粒)是由核心和多个壳层组成的球状包壳颗粒,粒径通常小于2 mm,粒径大于2 mm往往被称为巨鲕[12]。鲕粒和巨鲕因其独特的组构特征和油气储集能力,常被用于古海洋环境、古气候和油气成藏等研究,因此其形成机制和分布规律备受国内外学者关注[37]。传统观点认为鲕粒和巨鲕主要形成于水动力较强、碳酸盐饱和的浅水环境,属于“无机成因”[68]。近年来,越来越多证据表明微生物活动是鲕粒和巨鲕形成的必要条件之一,属于“有机成因”,如鲕粒和巨鲕中见微生物组构和钻孔、相对负偏的碳同位素等[914]。但是,鲕粒“有机成因”也遭到部分学者质疑,认为微生物组构和钻孔是鲕粒形成之后微生物活动的产物,并不能作为微生物直接参与鲕粒形成的证据[6]。尽管鲕粒和巨鲕的成因还存在不少争议,但多数学者认为其在古海洋环境和古气候重建中具有重要意义[1112]

        二叠纪—三叠纪之交(PTB,大约252 Ma前)发生了显生宙以来最严重的生物集群灭绝事件,约70%的陆地生物和90%的海洋生物消失[1518]。由于地质历史时期鲕粒和巨鲕主要分布在大陆架边缘和斜坡(如新元古代、寒武系和早三叠世)[1923],因此多数学者认为早三叠世鲕粒和巨鲕的形成与深部海水(具有缺氧、富营养物质和碳酸盐岩饱和的特征)频繁上涌有关[2124]。Lehmann et al.[24] 认为超高碳酸钙饱和度和强水动力的共同作用是控制早三叠世巨鲕形成的关键。古强等[25]则认为早三叠世巨鲕的形成与强水动力无明显关系,主要与微生物作用和碳酸盐饱和度的快速增加有关。Li et al.[23]利用巨鲕形成的物理和化学模型发现,早三叠世海水的碳酸盐饱和度远高于现今海水,也认为超高碳酸钙饱和度是诱发巨鲕形成的主要因素。然而,Tan et al.[26]在研究早寒武系巨鲕形成时认为,深部缺氧、碳酸盐饱和的海水上涌只是巨鲕形成的前提条件,而间歇性风暴作用是直接诱发巨鲕形成的关键因素。

        基于上述背景,本文对四川盆地元坝地区早三叠世飞仙关组二段(飞二段)台地边缘带的鲕粒和巨鲕灰岩进行了精细研究。主要致力于:(1)对比分析元坝地区飞二段鲕粒和巨鲕的岩石学和岩相学特征,讨论早三叠世鲕粒和巨鲕的沉积环境;(2)利用原位微区LA-ICP-MS分析鲕粒和巨鲕同心圈层的微量元素和稀土元素,对比早三叠世鲕粒和巨鲕古海水性质;(3)探讨早三叠世古海水性质频繁变化的原因以及对生物复苏的影响,旨在对鲕粒和巨鲕的成因及早三叠世古海洋环境研究提供更多依据。

      • 四川盆地位于扬子地区西缘,是我国典型的多旋回叠合含油气盆地。在早三叠世沉积时期,全球浅水碳酸盐台地广泛发育鲕粒和巨鲕沉积[2731]图1a)。四川盆地处于古特提斯洋东岸,以浅水碳酸盐台地为主(图1a)。在该时期四川盆地受“峨眉地裂”运动影响,其东北部发育开江—梁平海槽[30],海槽两侧以鲕粒和巨鲕沉积为主。海槽西侧早三叠世飞仙关组鲕粒和巨鲕受白云石化改造较弱,是研究早三叠世鲕粒和巨鲕成因及其古环境意义的理想对象。研究区位于海槽西侧,在行政区划上属于广元、巴中和阆中市(图1b)。根据岩石地层差异,前人将研究区飞仙关组从下到上划分为四段(图1b),分别为飞一段、飞二段、飞三段和飞四段,其中飞一段发育台缘斜坡沉积,水体较深,能量较小,岩性主要为青灰色薄层灰质泥岩和微晶灰岩;飞二段发育台地边缘,岩性主要为中—厚层鲕粒灰岩和薄层巨鲕灰岩;飞三段发育局限台地,岩性主要为含膏紫红色泥岩和浅灰色钙质泥岩,底部见一套浅灰色鲕粒灰岩;飞四段发育蒸发台地,岩性主要为膏盐岩和泥晶云岩。元坝地区早三叠世飞仙关组鲕粒和巨鲕主要分布在飞二段(图1c)。

        图  1  元坝地区早三叠世飞仙关组沉积背景及研究区位置

        Figure 1.  Sedimentary background of the Early Triassic Feixianguan Formation in the Yuanba area and location of study area

      • 本次选取了两条野外剖面(江油二郎庙龙潭村剖面和广元朝天剖面)和7口钻井岩心(元坝2、元坝3、元坝16、元坝21、元坝22、元坝27和元坝205井)开展研究。野外和钻井的岩相和岩性识别主要依靠肉眼观察、放大镜和5%稀盐酸。为了减少成岩作用的影响,鲕粒和巨鲕样品采集时尽量避开溶蚀孔洞和裂缝发育区,共采集了40个新鲜面样品(其中野外剖面10个,钻井岩心30个)。为了减少不同层位古海水化学性质变化的影响,本次研究鲕粒和巨鲕样品全部取自于同一位置和同一层位,即元坝地区飞二段中上部(图1c)。鲕粒和巨鲕的微观观察在成都理工大学油气藏地质及开发工程国家重点实验室完成。

      • 在光学显微镜和阴极发光显微镜观察的基础之上,依据重结晶情况和阴极发光(不发光)情况等,选取受成岩作用影响弱的鲕粒和巨鲕样品。本次共挑选出9个样品进行原位微区微量元素分析,其中鲕粒岩样6个共16个点位,巨鲕岩样3个共18个点位。原位微区微量元素分析用于测定巨鲕以及正常鲕粒碳酸盐岩组分的微量元素和REE浓度。在开始分析前,利用阴极发光(成都理工大学油气藏地质及开发工程国家重点实验室)确定目标靶点,以确定最佳灼蚀位置同时避免可能存在的干扰,例如溶孔、石英矿脉以及沥青等。原位微区微量元素和Sr同位素测试在武汉上谱分析科技有限责任公司开展,在高倍显微镜下确定靶点并编号,然后在反射光下找到相应点位让电脑自动记录每张薄片的点位坐标,使用GeoLas HD激光剥蚀系统,Agilent 7900等离子体质谱仪分析结果,激光能量80 mJ,频率5 Hz,激光束斑直径44 µm。使用国际标准和内部标准独立协议[32]校准元素浓度,微量元素校正标准样品:NIST610、BHVO-2G、BIR-1G、BCR-2G。本文采用后太古代澳大利亚页岩(PAAS)对稀土元素+Y(REY)含量归一化,以便进行比较[33]。此外,在原位微区微量元素分析的基础之上,选取20个点位进行Sr同位素分析(鲕粒和巨鲕分别10个点位)。Sr同位素测试使用GeoLas HD激光剥蚀系统对点位灼蚀,采用激光束斑直径为60 μm,能量强度为10 J/cm2,重复频率为10 Hz,使用多接收质谱MC-ICP-MS检测鲕粒和巨鲕Sr同位素值,标样推荐值:MAD:0.711 80,Durango:0.706 32,YG0440:0.713 72,CPX05G:0.707 41,HNB-12:0.703 86,YG4301:0.703 43。87Sr/86Sr分析误差小于0.000 20。

      • 元坝地区早三叠世飞仙关组鲕粒灰岩主要发育在飞二段的台地边缘,由多套向上变浅的米级沉积序列组成,沉积序列中上部发育厚层、块状鲕粒灰岩层(图1c、图2a),鲕粒类型多为同心鲕和复鲕(粒径多介于0.8~1.2 mm),且见大量鲕粒溶蚀后形成的针状溶孔和铸模孔(图2b,c),主要是文石在地表大气淡水环境中溶蚀形成的。沉积序列中部主要发育厚层状鲕粒灰岩,以同心鲕和泥晶鲕为主(粒径普遍介于0.5~0.8 mm),沉积序列下部的微晶灰岩中含有少量泥晶鲕。多数鲕粒的核心为有机质含量较高的似球粒,少见生物碎屑,指示鲕粒形成的海水条件不利于后生生物发育。多数鲕粒表现为颗粒支撑,基质为亮晶方解石胶结物(图2d,e),说明鲕粒形成于水动力较强的浅水环境。此外,在鲕粒灰岩中常见强水动力环境下形成的破碎鲕和多次搬运形成的复鲕,也说明鲕粒形成的水动力较强(图2f)。

        图  2  元坝地区早三叠世飞仙关组二段鲕粒岩石学特征

        Figure 2.  Characteristics of oolitic petrology in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

        鲕粒的原始矿物是判别海水性质的重要依据。元坝地区飞仙关组部分鲕粒的纹层中见“砖砌结构”(图2g),这种结构主要是文石溶解或新生变形被严格限制在单个纹层内形成的,是文石鲕的判别标志之一[34]。此外,多数鲕粒纹层由针状的碳酸盐晶体组成,这些针状碳酸盐晶体多为文石(图2h)。在阴极发光下,多数鲕粒表现为不发光(图2i),指示这些鲕粒受后期成岩作用改造较弱。

      • 元坝地区早三叠世巨鲕也主要出现在飞二段的台地边缘,但其发育不受向上变浅沉积序列控制,在沉积序列的不同部位均有分布(图3a,b)。多数巨鲕灰岩呈薄层分布,底界面多为冲刷面,下部巨鲕密集分布且粒径较大,向上巨鲕的发育程度和粒径大小均减小(图3a),指示巨鲕发育与间接性强水动力有关,且随着水动力逐渐减弱数量和直径逐渐减小。此外,巨鲕表现出较差的分选性(图3b),进一步说明其形成于间接性强水动力环境,多与风暴作用有关。显微观察发现,巨鲕普遍具有深色和浅色纹层的韵律同心圈层,粒径大小介于2~5 mm。巨鲕的核心类型多样,见生物碎屑、暗色球粒甚至普通鲕粒(图3c,d),可能在强水动力下,生物碎屑和鲕粒可作为核心,继续生长形成巨鲕[25]

        图  3  元坝地区早三叠世飞仙关组二段巨鲕岩石学特征

        Figure 3.  Giant oolitic petrology characteristics of the second member of the Early Triassic Feixianguan Formation

        巨鲕的原始矿物与鲕粒的原始矿物存在明显差异。巨鲕包壳纹层主要由镶嵌状的碳酸盐晶粒组成(图3e),而这些镶嵌状晶体多被认为是低镁方解石[34]。巨鲕的包壳一般保存较好,而鲕粒多被溶蚀或者重结晶(图3f),指示普通鲕粒的原始矿物较巨鲕不稳定,更易遭受溶蚀形成溶孔。在地表环境下,低镁方解石比文石更加稳定。此外,在巨鲕包壳中见暗色微生物钻孔(图3e)和疑似蓝细菌的链状结构(图3g),指示微生物活动与巨鲕形成密切相关。

      • 前人研究认为鲕粒特别是文石质鲕粒不稳定,易从不稳定文石质转变为稳定低镁方解石质,但仍能保留当时原始海水化学信息[35]。尽管如此,本次所选样品还是避开了重结晶鲕粒,而是选择纹层保存较好的鲕粒和巨鲕,同时分析了陆源碎屑和成岩作用等对元坝地区鲕粒和巨鲕稀土元素+Y(REY)成分的影响。如果碳酸盐岩被陆源碎屑污染,则测得的Al、Zr、Th、U等元素含量与ΣREE之间呈正相关关系[3637],本次利用元素和稀土元素的相关性分析,评价了陆源碎屑和成岩作用影响(图4)。Al和U与ΣREE相关性较差(图4a,b),说明这些样品受到的陆源碎屑影响较小。此外,Mn氧化物对Ce异常影响较大[27],元坝地区鲕粒和巨鲕的Mn和Ce异常交会图(图4e)显示,两者的相关性不明显(R2=0.001 5),这意味着Mn氧化物未对鲕粒和巨鲕的Ce异常特征造成明显影响。而Ba含量会对δEu值产生影响,导致Eu正异常偏高[38]。分析结果显示两者并无明显相关性(图4f,R2=0.035 5)。

        图  4  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕陆源碎屑和成岩作用影响评价

        Figure 4.  Evaluation of the influence of ooid and giant ooid terrestrial clasts and diagenesis on the second member of the Early Triassic Feixianguan Formation in the Yuanba area

        Mn/Sr比值是判断碳酸盐矿物是否遭受成岩蚀变的重要指标,如果Mn/Sr小于1,则表示碳酸盐岩样品中的成岩作用影响可忽略不计[26]。本次测试的鲕粒和巨鲕样品都具有极低Mn/Sr值(图4d,Mn/Sr介于0.002~0.040),表明选取的样品受到的成岩蚀变非常微弱。海水成因的碳酸盐岩矿物在阴极发光下,一般不发光,但在成岩蚀变之后一般发红色光[27]。本次测试的鲕粒和巨鲕均不发光(图2i)。此外,所选取的鲕粒和巨鲕样品没有呈现MREE富集的“帽形”稀土元素配分型式(图5),MREE(PrN/YbN)与Mn含量之间相关性较弱(图4c),指示稀土元素含量受到孔隙流体的成岩影响较弱[36]

        图  5  元坝地区早三叠世飞仙关组鲕粒和巨鲕的PAAS标准化REY模式

        Figure 5.  PAAS standardized REY model for ooids and giant ooids in the Early Triassic Feixianguan Formation of the Yuanba area, Sichuan Basin

      • 自然界中文石和低镁方解石的Sr浓度存在明显差异,因此可依据Sr含量判别鲕粒和巨鲕的原始矿物[34]。元坝地区早三叠世鲕粒纹层的Sr含量介于850~7 000 μg/g(平均为2 151.62 μg/g),巨鲕的Sr含量较低,介于622~1 231 μg/g(平均为732.98 μg/g),指示鲕粒和巨鲕的原始矿物存在差异。钠浓度、Sr/Ba和K/Na常被用作古盐度的恢复指标[36]。分析发现元坝地区早三叠世巨鲕平均钠浓度为119.12 μg/g,Sr/Ba值平均为403.49,K/Na值平均为0.97(n=19);而普通鲕粒的平均钠浓度为243.37 μg/g,Sr/Ba值平均为654.27,K/Na值平均为1.95(n=15),鲕粒形成的古盐度明显高于巨鲕。Fe浓度、V/(V+Ni)和V/Cr比值可以指示古环境氧化还原条件变化[19,36]。元坝地区早三叠世鲕粒的Fe含量介于750~2 600 μg/g(平均为941.23 μg/g),V/(V+Ni)平均值为0.71,V/Cr平均值为2.11(n=15);而巨鲕的Fe含量介于141~555 μg/g(平均为247.92 μg/g),V/(V+Ni)平均值为0.56,V/Cr平均值为1.15(n=19)(表1)。这些数据说明鲕粒形成于更加还原的海水中。

        表 1  元坝地区早三叠世飞仙关组鲕粒和巨鲕微量元素

        Table 1.  Trace elements of ooids and giant ooids in the Early Triassic Feixianguan Formation of the Yuanba area

        样品号Na/(μg/g)K/(μg/g)Mn/(μg/g)Fe/(μg/g)Sr/(μg/g)Ba/(μg/g)K/NaSr/BaMn/SrV/(V+Ni)V/Cr
        1147.14162.338.97201.431 058.581.941.10544.820.008 50.230.00
        2144.9330.485.98161.48890.093.020.21294.950.006 70.170.69
        3207.22215.0011.77555.21745.092.041.04365.460.015 80.763.16
        4186.50223.836.16311.07977.443.961.20246.950.006 31.001.14
        544.4941.978.61205.43883.600.480.941 851.400.009 70.340.93
        682.63255.497.24478.94979.963.303.09296.880.007 40.410.00
        7152.4254.285.17258.89964.864.180.36230.770.005 40.401.39
        8266.95112.195.55141.98824.931.740.42474.550.006 70.120.64
        9149.1457.067.94156.42622.411.320.38471.660.012 80.430.13
        10172.7496.084.44177.73974.662.100.56464.200.004 60.970.00
        11219.35119.994.98226.78502.290.990.55508.400.009 91.000.32
        1277.0476.915.05204.54419.360.841.00496.410.012 00.420.64
        1357.5955.745.90260.81453.571.160.97389.910.013 00.651.63
        1446.6753.015.77278.15552.891.011.14546.140.010 40.353.00
        1547.5374.913.93163.68553.981.741.58317.780.007 10.470.00
        1679.3139.515.23142.77640.840.490.501 296.160.008 20.560.54
        1721.059.676.01135.50690.120.190.463 545.770.008 70.720.00
        1841.3581.854.57401.80459.000.511.98904.460.010 01.000.76
        19193.63292.438.28977.473 715.825.931.51626.510.002 20.943.98
        20184.79779.0035.201 785.346 964.565.814.221 198.470.005 10.701.20
        21274.12222.628.31748.572 806.383.080.81912.550.003 00.712.02
        22419.56456.0213.361 057.392 563.033.241.09792.220.005 20.773.30
        23223.86331.268.012 578.144 671.775.801.48806.110.001 70.783.35
        24150.87144.9713.04647.43649.541.410.96459.220.020 10.410.58
        25409.42490.7012.951 226.271 087.545.231.20208.030.011 90.681.50
        26349.93459.5314.111 056.81759.955.271.31144.170.018 60.761.78
        27250.80451.1713.70656.55853.893.631.80235.490.016 00.882.34
        28111.99237.7966.401 849.301 755.082.632.12667.970.037 80.541.99
        2994.6744.8910.59389.472 778.621.870.471 488.070.003 80.000.00
        30158.46368.726.41550.78907.172.802.33324.520.007 10.771.12
        31151.76622.7311.39421.78851.472.284.10372.640.013 40.851.76
        32386.47376.866.92426.751 893.111.300.981 456.920.003 70.710.00
        33162.591 043.427.37478.38937.2415.946.4258.800.007 90.923.17
        34371.02145.264.31209.281 230.731.720.39716.650.003 50.971.45
        a243.37404.2115.02941.232 151.624.241.95654.270.010 10.712.11
        b119.1297.796.29247.92732.981.720.97403.490.009 10.561.15
        注:1~18号为巨鲕数据,19~34为鲕粒数据,a为鲕粒平均值,b为巨鲕平均值。
      • 海水Sr同位素组成主要受河流通量和地幔通量的比例控制[39]。河水的87Sr/86Sr平均比值为0.711 90,热液87Sr/86Sr比值为0.703 50[39]。海水中87Sr/86Sr值的增加可归因于大陆风化增强带来的更多放射性Sr输入,指示陆源风化作用增强[3941]。元坝地区早三叠世巨鲕87Sr/86Sr值介于0.707 32~0.707 38,平均值为0.707 36(n=10),而鲕粒87Sr/86Sr值介于0.707 25~0.707 31(表3),平均值较低,为0.707 29(n=10)。元坝地区早三叠世巨鲕87Sr/86Sr值普遍大于鲕粒,指示陆源风化作用增加,其沉积环境有明显变化。

        表 2  元坝地区早三叠世飞仙关组鲕粒和巨鲕纹层的稀土元素(μg/g)

        Table 2.  Rare earth elements of oolite and giant oolite layer in the Early Triassic Feixianguan Formation in the Yuanba area (μg/g)

        LaCePrNdSmEuGdTbDyYHoErTmYbLu
        10.330.860.100.380.110.000.130.000.020.480.000.000.000.000.00
        20.160.310.040.120.060.010.020.010.040.380.000.010.010.080.01
        30.200.410.070.300.050.010.040.020.070.370.010.040.020.070.01
        40.270.520.060.230.030.020.050.000.020.450.020.070.010.080.02
        50.841.660.260.820.210.030.140.010.180.920.020.030.000.040.01
        60.260.500.080.200.050.020.070.000.080.340.010.030.000.020.01
        70.230.460.050.120.030.020.010.010.060.400.010.030.010.060.01
        80.240.560.070.210.030.010.030.020.060.490.020.010.000.020.00
        90.170.460.030.110.030.000.040.000.010.360.000.030.010.040.00
        100.170.340.050.140.040.000.000.010.050.410.010.030.000.030.00
        110.300.720.090.430.080.040.120.010.171.780.040.140.020.050.02
        120.240.480.050.310.120.020.120.010.160.850.010.080.010.070.00
        130.330.590.070.250.050.030.100.030.080.920.030.100.010.100.02
        140.260.470.070.350.070.020.190.020.050.980.010.060.010.090.01
        150.290.490.050.270.150.000.120.020.071.020.020.110.000.070.01
        160.210.460.070.180.040.000.070.010.070.620.010.040.010.100.00
        170.270.650.120.430.210.080.380.050.346.820.090.310.050.160.01
        180.411.030.171.040.380.110.430.110.823.960.180.580.100.420.06
        190.912.110.250.930.250.030.150.020.160.800.020.080.010.030.00
        201.343.950.652.570.430.210.400.040.280.470.030.130.010.030.02
        213.205.440.572.410.520.080.280.040.190.120.040.110.010.120.03
        220.410.750.060.330.000.010.080.010.050.380.010.010.010.050.00
        230.601.250.120.600.140.040.150.010.080.650.020.100.010.050.01
        241.432.940.281.070.060.030.290.030.212.620.020.090.000.060.00
        251.292.430.311.290.230.040.210.030.192.210.050.160.040.130.00
        260.972.200.251.010.150.040.240.060.271.940.030.210.030.150.04
        271.232.690.341.270.250.070.440.030.302.190.040.110.030.090.02
        282.234.490.482.010.310.090.250.050.281.420.060.150.010.120.02
        290.220.410.060.160.060.020.030.000.000.120.010.030.010.010.00
        301.172.180.270.910.230.060.120.030.141.070.010.130.020.070.01
        311.272.470.331.020.170.040.140.030.121.020.030.100.010.100.02
        321.413.050.361.360.220.020.420.010.161.720.020.130.000.180.01
        330.972.050.251.060.190.040.160.030.150.980.030.050.010.060.01
        340.510.990.120.510.170.020.120.010.110.710.030.070.010.100.00
        注:1~18号为巨鲕数据,19~34为鲕粒数据。

        表 3  元坝地区早三叠世鲕粒和巨鲕的稀土元素和Sr同位素特征

        Table 3.  Rare earth elements and Sr isotope characteristics of Early Triassic ooids and giant ooids in the Yuanba area

        样品号ΣLREEΣHREELaN/YbNPrN/YbNδEuδCeδPrY/Ho87Sr/86Sr
        11.780.150.951.030.707 35
        20.690.170.150.160.740.691.200.707 36
        31.040.280.210.330.500.701.1626.240.707 35
        41.130.280.230.233.360.941.0325.200.707 38
        53.820.441.471.940.860.601.2943.680.707 32
        61.100.221.211.520.501.4127.230.707 37
        70.910.210.270.262.390.611.2439.570.707 36
        81.130.150.821.050.660.671.2228.840.707 37
        90.800.130.340.241.770.720.707 37
        100.750.140.440.530.250.601.2935.430.707 35
        111.670.580.450.572.241.140.9242.53
        121.230.460.240.230.951.590.7885.58
        131.320.470.250.232.270.871.0733.73
        141.240.450.220.251.191.110.9196.43
        151.260.420.310.230.011.570.7943.48
        160.960.310.150.230.000.441.5053.32
        171.751.380.120.231.710.601.2678.42
        183.132.710.070.131.151.060.8922.17
        194.480.472.332.710.820.941.0343.75
        209.150.952.946.222.860.681.1815.40
        2112.220.831.901.461.021.180.922.73
        221.570.230.620.417.171.780.7533.780.707 29
        232.760.430.900.762.281.540.8029.590.707 30
        245.810.701.721.461.691.140.93151.360.707 31
        255.590.820.720.751.020.941.0342.330.707 28
        264.631.030.490.541.041.050.9858.300.707 30
        275.861.061.061.281.630.831.1049.960.707 30
        289.610.941.331.231.441.140.9424.160.707 25
        291.710.091.431.730.621.3311.590.707 30
        304.820.531.261.271.470.771.1477.810.707 28
        315.300.550.971.080.970.681.2137.85
        326.430.920.570.630.810.911.05102.58
        334.560.501.251.370.971.040.9830.68
        342.310.460.360.360.811.060.9721.07
        a5.490.671.230.491.731.021.0234.210.707 29
        b1.590.500.411.441.310.911.0945.460.707 36
        注:1~18号为巨鲕数据,19~34为鲕粒数据,a表示鲕粒平均值,b表示巨鲕平均值,“—”表示无元素检测值。
      • 碳酸盐岩鲕粒的稀土元素研究采用PAAS对样品进行标准化,分析样品的LREE、MREE、LREE/HREE、δEu、δCe等指标,δCe和δEu用Lawrence et al.[42]的方法进行计算,具体公式为:

        (Ce/Ce*)N=CeN/(PrN×(PrN/NdN)) (1)
        (Eu/Eu*)N=EuN/(Sm2N×TbN)1/3 (2)
        (Pr/Pr*)N=PrN/(0.5CeN+0.5NdN) (3)

        式中:(Ce/Ce*)N表示Ce异常值,Eu、Pr同理,XN表示X元素PAAS标准化后的值。

        表2表3列出了鲕粒和巨鲕的微量和REY含量,以及LaN/YbNδEu、δCe等,巨鲕和鲕粒的PAAS标准化REY模式显示:巨鲕具有LREE相对HREE亏损(平均LaN/YbN=0.41)、Ce负异常(平均δCe=0.91)、较弱的Eu正异常(平均δEu=1.31)和较高Y/Ho值特征(平均为45.46);鲕粒显示LREE相对HREE富集(平均LaN/YbN=1.23)、较弱的Ce正异常(平均δCe=1.02)、较强的Eu正异常(平均δEu=1.73)和较低Y/Ho值(平均为34.21)特征(图5)。

      • 传统观点认为水动力条件是控制鲕粒(特别是巨鲕)发育、粒径大小的主要因素[2123,27],但该推断被不少学者质疑,认为微生物作用和碳酸盐饱和度才是鲕粒和巨鲕形成的关键[20,24]。然而,本次研究认为水动力条件仍是控制鲕粒和巨鲕发育的重要因素。岩相古地理显示,元坝地区早三叠世鲕粒和巨鲕主要分布在台地边缘和台内古地貌高地等水动力较强的区域,在台内洼地、斜坡和盆地等碳酸盐饱和、水动力弱的区域欠发育(图1b),这说明水动力大小是控制鲕粒和巨鲕发育和分布的重要因素。此外,通过观察岩心和薄片也发现,元坝地区早三叠世鲕粒和巨鲕类型多为同心鲕,发育亮晶胶结,也指示其形成于强水动力条件。

        进一步分析发现,元坝地区早三叠世鲕粒主要发育在向上变浅沉积序列的中上部,由下到上鲕粒具有逐渐增多、粒径不断增大和铸模孔增多的特征(图2a、图6),说明鲕粒形成于水动力较强且易暴露的浅水环境。然而,巨鲕灰岩的发育不受向上变浅的沉积旋回控制,在沉积旋回下部的微晶灰岩和中上部的鲕粒灰岩均有分布(图6)。巨鲕灰岩与下伏微晶灰岩或者鲕粒灰岩的接触面表现为不平整接触,发育明显的侵蚀底面。巨鲕灰岩的分选性较差,粒径主要介于2~5 mm(图3a、图6)。这些现象说明巨鲕形成于间歇性强水动力环境中,特别是风暴作用发育环境。大量研究发现早三叠时期大气具有超高的CO2分压,这不仅引起了全球低纬度地区的气温和海水表层温度明显升高,也导致当时风暴等极端天气频发[1619]。因此,鲕粒形成于正常浪基面之上且水动力较强的浅水环境,而巨鲕形成于风暴浪基面之上且间歇性水动力影响(多为风暴作用)较强的环境。

        图  6  元坝27井早三叠世飞二段取心综合柱状图

        Figure 6.  Comprehensive histogram of coring for well Yuanba 27

      • 研究发现元坝地区早三叠世鲕粒和巨鲕的原始矿物并不完全一致,鲕粒的原始矿物主要为文石,而巨鲕主要为低镁方解石,主要依据如下:(1)晶体结构差异。晶体结构是判断碳酸盐矿物成分的重要依据,文石属于斜方晶系,晶体以沿C轴生长的针状、柱状、纤维状为主,而方解石为三方晶系,晶体以粒状和镶嵌状为主[34]。研究区早三叠世鲕粒主要由针状文石晶体组成(图2h),且见文石质同心鲕特有的“砖砌结构”(图2g),而巨鲕则主要由镶嵌状低镁方解石晶体组成(图3e);(2)稳定性差异。文石和高镁方解石在地表大气淡水环境下不稳定易发生溶蚀,同时在埋藏环境下由于热力学不稳定易发生重结晶,可转变为稳定的低镁方解石[34]。研究区鲕粒灰岩中常见铸模孔、粒内溶孔和重结晶(图2b、图6),而巨鲕灰岩中却十分少见,指示巨鲕的原始矿物成分比鲕粒更加稳定。(3)Sr含量差异。自然界中,文石的Sr含量较高,而低镁方解石的Sr含量较低[4344]。元坝地区鲕粒的Sr含量介于850~7 000 μg/g,而巨鲕Sr含量介于622~1 231 μg/g(图7c),接近现代海洋环境下低镁方解石质沉积物浓度(1 500~2 000 μg/g)[43],这进一步指示鲕粒和巨鲕的原始矿物分别由文石和低镁方解石组成。

        图  7  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕部分指标对比

        Figure 7.  Comparison of indices for oolites and giant ooids in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

        鲕粒原始矿物成分与海水化学成分之间存在关联,是探究古海水化学成分变化的重要依据[1923]。Sandberg[45]提出在Mg2+/Ca2+大于2的海水中(文石海)鲕粒原生矿物主要为文石和高镁方解石,而在Mg2+/Ca2+小于2的海水中(方解石海)主要为低镁方解石。本次研究发现元坝地区早三叠时期鲕粒和巨鲕的原始矿物表现出文石和低镁方解石的差异,指示早三叠世海水化学成分并不稳定。

      • Na浓度已被广泛用作碳酸盐岩中可能的古盐度指标[36],研究样本中巨鲕平均钠浓度为119.12 μg/g,普通鲕粒的平均钠浓度为243.37 μg/g,但仅靠钠含量指示古盐度存在争议,因此本文还参考了Sr/Ba、K/Na、B等可以指示古盐度的指标[22,36]。Sr/Ba比值上升表明水体盐度增加,气候干旱,蒸发强烈。K/Na值也可指示盐度,K/Na值越大表示水体盐度越高[36]。元坝地区飞仙关组鲕粒较巨鲕含有更高的Sr/Ba值和K/Na值(图7a,b),且具有较好的线性关系(图7a),指示普通鲕粒沉积海水环境可能具有更高的盐度,气候较干旱,蒸发强烈,而在巨鲕出现时期,气候变得相对湿润,海水盐度降低。

      • V/(V+Ni)比值可以用来评估古海水氧化还原条件[46],其值小于0.6表示古海洋水体贫氧环境,介于0.60~0.84指示缺氧弱分层水体,大于0.84则表明为静海相还原环境[47];V/Cr比值也被人们用来指示氧化还原条件,其值小于2表示富氧环境,介于2~4.25指示环境缺氧,大于4.25指示还原环境[48],然而这些判别标准主要是基于碎屑岩的氧化还原研究。碳酸盐岩的V、Ni和Cr等元素含量较低,易受多种因素控制,不能简单按照碎屑岩划分标准进行氧化还原环境判识,但可以通过比值来推断氧化还原程度的变化[49]。元坝地区早三叠世鲕粒的V/(V+Ni)平均为0.71,V/Cr平均为2.11,巨鲕V/(V+Ni)平均为0.56,V/Cr平均为1.15,V/Cr比值与V/(V+Ni)比值协同性较好(图8a),同时鲕粒样品平均Fe含量高于巨鲕(图8b),指示其沉积时海水较铁化(巨鲕平均Fe含量为248 μg/g,鲕粒平均Fe含量为941 μg/g),V/(V+Ni)、V/Cr和Fe元素含量表明鲕粒形成于更加还原的海水中。

        图  8  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕的氧化还原特征

        Figure 8.  Redox characteristics of ooids and giant ooids in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

        稀土元素(REE)特征可定性、定量地指示碳酸盐岩沉积环境的氧化还原状态,主要参考指标有LaN/YbN、Ce和Eu异常以及Y/Ho比值[27,42]。氧化水体中稀土元素一般表现为LREE的亏损,而弱氧和缺氧水体具有富LREE特征[5051],通常情况下用LaN/YbN代替LREEN/HREEN,LaN/YbN小于1代表LREE相对HREE亏损[37]。本研究巨鲕样品平均LaN/YbN=0.41(n=19),LREE相对亏损,而普通鲕粒平均LaN/YbN=1.23(n=15),LREE相对富集,其次鲕粒的平均Y/Ho值低于巨鲕,弱氧和缺氧水体中Y/Ho值会降低[50,5253]

        碳酸盐岩Eu正异常一般与还原性高温热液流体(>200 ℃)有关,可指示高温热液的影响[37]。近年来,不少研究发现在弱氧或缺氧条件下Eu3+被还原为Eu2+,Eu离子的半径增大,从而更易代替Ca2+进入碳酸盐晶格中,与相邻元素性质发生分异,也可以引起Eu正异常[5456]。本次研究发现鲕粒具有较明显的Eu正异常,这可能与其形成于还原的海水环境有关,而非受热液的影响。这主要是因为高温热液流体进入洋底与深部还原海水混合后,溶解的Eu2+离子未被氧化,使得深部海水具有Eu正异常的特征。受深部海水频繁上涌的影响,Eu正异常的海水与浅水台地海水混合,由于早三叠世浅水台地仍处于还原环境,溶解的Eu2+离子在浅水台地仍未氧化,导致浅水台地海水保留了Eu正异常的特征。因此,鲕粒Eu正异常不仅指示了浅水台地还原环境,还一定程度上证实了深部海水频繁上涌的影响。

        Ce异常可定量的说明碳酸盐岩沉积环境的氧化还原状态。Ce3+在氧化环境中会被氧化成不溶于水的Ce4+,有机质、Mn⁃Fe氧化物和黏土颗粒优先吸附Ce4+,使水体呈现Ce亏损(δCe<1)。而弱氧或缺氧水体中,富Mn⁃Fe氧化物/氢氧化物的颗粒会发生还原溶解导致Ce4+被还原为Ce3+并释放到水体中,促使Ce在海水中富集,并呈现Ce正异常(δCe<1)[57]。La的异常会影响到Ce异常的计算结果,使用(Ce/Ce*N与(Pr/Pr*N的交会图的方法可以避免线性计算中正La异常的干扰[37,58],结果显示巨鲕的数据平均值位于正常的负Ce异常区域,代表弱氧化沉积环境,鲕粒的数据平均值位于正常的Ce正异常区域,表示还原沉积环境(图9)。

        图  9  元坝地区早三叠世飞仙关组二段鲕粒和巨鲕(Pr/Pr*N和(Ce/Ce*N交会图

        Figure 9.  Intersection diagram of ooid and giant ooid (Pr/Pr*)N and (Ce/Ce*)N in the second member of the Early Triassic Feixianguan Formation in the Yuanba area

      • 二叠纪—三叠纪之交(PTB)发生了显生宙以来最严重的生物集群灭绝事件,火山活动、大规模海侵、极高的CO2分压和高温、海水缺氧和硫化等多种极端环境事件是造成这次生物灭绝的主要原因[1519,59]。部分极端环境事件持续至早三叠世,不仅严重延缓了生物复苏,还与早三叠世全球鲕粒和巨鲕的广泛分布存在一定的耦合关系[19]

      • 基于鲕粒沉积环境分析,认为元坝地区早三叠世飞二段鲕粒主要形成于强水动力、缺氧、较高盐度和碳酸盐饱和的文石海中(图10a),主要与以下极端环境事件有关:(1)与海洋缺氧事件的联系。元坝地区飞二段鲕粒虽形成于台地边缘浅水环境,但普遍缺氧,这多与早三叠世深部海水频繁上涌有关[2123]图10a)。早三叠世深层海水具有缺氧、碳酸盐饱和、高碱度和低SO42-浓度的特征,且富含HCO3-、CO32-和HS-。深部海水频繁上涌势必造成浅层海水缺氧,缺氧的海水有利于硫酸还原菌大量繁殖,微生物硫化还原作用可消耗大量SO42-并诱导碳酸盐沉淀,可提高浅层海水的碱度、CaCO3饱和度和降低SO42-浓度[60]。与此同时,深层海水上涌也可以通过HCO3-和CO32-的大量输入提高浅层海水碳酸盐饱和,并通过HS-+H2O→H2S+HO-化学反应机制提高海水的碱度,从而促进鲕粒形成[6162]。(2)与温度异常的联系。前人研究认为,早三叠世全球低纬度地区气温和海水温度明显升高。本次研究发现鲕粒平均钠浓度为243 μg/g,超过高盐环境阈值(230 μg/g)[22],这可能与当时超高的CO2分压导致的气候变暖有关,海水温度升高会提高碳酸钙饱和度,促进鲕粒的形成[63]。(3)与陆源风化增强的联系。鲕粒87Sr/86Sr平均值为0.707 29,高于晚二叠长兴组末期海水(0.707 11)[62],指示早三叠世陆源风化加强,而陆源风化增强可维持海水富营养化和碳酸盐饱和。(4)与微生物爆发的联系。由于深部海水上涌和陆源风化增强可维持浅层海水富营养化,这导致了早三叠世微生物爆发。微生物广泛参与鲕粒的形成,特别是暗色纹层的形成[19]

        图  10  早三叠世鲕粒和巨鲕成因模式

        Figure 10.  Genetic model of Early Triassic ooids and giant ooids

        综合分析认为,早三叠世鲕粒的大规模形成并非受单一因素的控制,而是受强水动力、大规模海洋缺氧、气候变暖和微生物等因素共同作用。由于元坝地区早三叠世飞仙关组的鲕粒主要分布在飞二段台地(大陆架)边缘,而台地边缘频繁受深部海水上涌的影响(图10a),所以强水动力和深部海水上涌是控制早三叠世鲕粒形成的关键因素。深部海水上涌造成浅层海水缺氧可能是制约早三叠系海洋生态系统复苏的重要原因。

      • 基于巨鲕岩相和地球化学分析,认为元坝地区早三叠世飞二段巨鲕形成于间歇性强水动力(多为风暴作用)、弱氧化和碳酸盐饱和的“方解石海”中(图10b)。本次研究选取的鲕粒和巨鲕样品均来自同一地区(元坝地区)和同一层位(飞二段中上部),甚至同一米级旋回(图6),鲕粒和巨鲕原始矿物的差异指示早三叠世海水化学性质在短时间内频繁发生变化。由于鲕粒和巨鲕形成的大背景(如深部海水频繁上涌、超高的CO2分压、陆源风化增强等)是相似的,所以间歇性强水动力是造成巨鲕和鲕粒差异成因的关键因素(图10)。前人研究认为,全球早三叠世的风暴作用极为频繁[1519],是引起早三叠世间歇性强水动力的主要原因。因此,风暴作用不仅是诱导早三叠世巨鲕形成的重要因素,也可能是维持早三叠世浅层海水化学性质频繁变化的重要原因。

        早三叠世风暴作用导致浅海化学性质发生变化的原因主要是大气氧含量增加和陆源风化增强的特殊背景[64]。元坝地区早三叠世巨鲕沉积时海水环境盐度较低、87Sr/86Sr值较高(巨鲕平均87Sr/86Sr为0.707 36,鲕粒87Sr/86Sr平均值为0.707 29),指示与风暴作用有关的强降水可增加陆源地表水(河水)输入浅层海水。由于早三叠世大气氧含量逐渐增加,地表水普遍氧化,大量氧化地表水输入海洋,增加了浅层海水的氧含量。与此同时,风暴作用引起的巨大波浪增加了海水与空气的接触面积,进一步造成浅层海水氧化。在风暴作用的影响下,早三叠世海水开始出现氧化还原分层的特征,即表层海水氧化、大陆架海水硫化和深层海水缺氧[27,60]。巨鲕形成于浅水环境,因此其具有弱氧化特征。另外,大陆风化作用的加剧可溶蚀大量暴露在地表的碳酸盐矿物,使地表水中的Ca2+增加[63]。风暴作用引起的强降水可使大量富Ca2+的陆源地表水输入浅层海水,造成浅层海水的Mg/Ca比值降低。由于分层海水的存在,浅层氧化、低Mg/Ca海水和深层缺氧、高Mg/Ca海水的物质交换并不顺畅,可在浅层海水中形成短暂的弱氧化“方解石海”(图10b)。

        虽然风暴作用引起的强降水会造成浅层海水碱度和碳酸盐饱和度一定程度的降低,但这种影响在深部海水频繁上涌的大背景下是微弱的。Li et al.[23]利用巨鲕形成的物理和化学模型分析认为早三叠世巨鲕形成的海水碳酸盐饱和度仍是现今海水的7倍以上。此外,深部海水上涌和陆源风化为浅层海水提供了大量的营养物质,维持了当时海水的富营养化[19]。海水富营养化促使浅层海水蓝细菌大规模爆发,其新陈代谢活动和相关胞外聚合物(EPS)降解可提高微环境碱度和碳酸盐饱和度[6,14]。不少学者在巨鲕中发现大量蓝细菌和EPS,表明蓝细菌可能大规模参与巨鲕形成[1214,6567],该推断被巨鲕中的链状蓝细菌证实(图3g)。

        地质历史时期,巨鲕常形成于缺氧、高碱性和碳酸盐饱和的强水动力浅水环境,它的形成常与风暴作用和深部缺氧海水上涌有关,往往代表了海洋环境恶化[26]。然而本次研究发现,在飞二段大气逐渐氧化、大陆风化作用加剧的背景下,风暴作用不仅诱发了巨鲕形成,还促进了海洋环境改善。造成这种差异的主要原因是巨鲕形成的背景不同,如果巨鲕形成时期大气氧含量低和大陆风化作用较弱,风暴对海洋环境则无明显改善作用,而具备大气氧含量高和大陆风化作用强的条件时(如早三叠世),风暴作用则会对海洋环境起到明显改善作用。

      • (1) 元坝地区早三叠世飞二段鲕粒和巨鲕类型以同心鲕为主,发育亮晶胶结。鲕粒主要分布在向上变浅米级旋回的中上部,而巨鲕的分布不受沉积旋回控制,在米级旋回的任何部位均有分布。鲕粒灰岩发育大量铸模孔和重结晶,而巨鲕灰岩欠发育,指示鲕粒的原始矿物较巨鲕更不稳定。

        (2) 元坝地区早三叠世飞二段鲕粒形成于强水动力(台缘)、缺氧和碳酸盐饱和的“文石海”。鲕粒的形成与深部海水上涌、气候变暖、陆源风化加强和微生物爆发等极端环境事件有关,其中深部海水频繁上涌和强水动力是控制鲕粒形成的关键因素。

        (3) 早三叠世巨鲕与鲕粒的形成环境呈现一定差异。巨鲕形成于间歇性强水动力(如风暴作用)、弱氧化和碳酸盐饱和的“方解石海”。巨鲕的形成不仅与深部海水上涌、气候变暖、陆源风化加强和微生物爆发等环境事件有关,还与极端风暴气候有关。

        (4) 在大气氧化、大陆风化作用加剧的背景下,风暴作用引起的强降水增加了氧化、富Ca2+陆源地表水向海水的输入,使得表层海水逐渐氧化、并降低了Ma/Ca值,这可能是早三叠世缺氧“文石海”和弱氧化“方解石海”频繁变化,以及早三叠世海水环境逐渐改善的重要原因。

    参考文献 (67)

    目录

      /

      返回文章
      返回