-
如前所述,木梯寺粗砾岩在1∶20万陇西幅区域地质图中厘定为古近系[8],而在1∶25万岷县幅区域地质图中则厘定为下白垩统磨沟组[9],但多是根据区域地层对比,缺乏古生物化石和准确的年代学数据约束。为了限定木梯寺砾岩的时代,将木梯寺砾岩与西秦岭北缘漳县地区的韩家沟砾岩的分布、地貌、地质特征做了比较,发现:1)韩家沟砾岩与木梯寺砾岩同样分布在山顶之上,海拨高度相近(图2a、图12),产状都呈近水平;2)单调厚层砾岩侵蚀的地貌形态(图13a,b)与木梯寺砾岩地貌特征(图2b,d、图11c)相似;3)中砾岩—粗砾岩为主,扇砾岩(图13c)和扇上河道粗砾岩(图13d~f)互层与木梯寺砾岩基本相同;4)砾石成分以灰岩、砂岩为主,少量花岗闪长岩、花岗岩,其中灰岩和砂岩砾石含量呈互为消长关系[6]与木梯寺砾岩相同;5)扇上河道砾岩砾石叠瓦斜列指示的自南向北的古流向[6]与木梯寺砾岩相同。上述韩家沟砾岩与木梯寺砾岩基本地质特征的相同或相似性(表1),说明两者应该为同时代、同环境的沉积地层。漳县韩家沟砾岩角度不整合于渐新统—中新统河湖相沉积地层之上,其时代为上新世[5,10]。虽然木梯寺砾岩角度不整合于上白垩统红色砾岩和砂岩之上,但木梯寺砾岩的分布、地貌和岩石地层特征及沉积环境与韩家沟砾岩相同或相似性,认为木梯寺砾岩时代同样为上新世。
图 13 西秦岭北缘漳县地区上新统韩家沟砾岩特征图
Figure 13. Characteristics of the Pliocene Hanjiagou conglomerate in the Zhangxian area, northern margin of the West Qinling Mountains
表 1 西秦岭北缘武山县地区木梯寺砾岩与漳县地区韩家沟砾岩地质特征对比
砾岩地层地质特征 木梯寺砾岩 韩家沟砾岩 地貌特征 分布在山顶面 分布在山顶面 下伏地层与接触关系 下伏地层为上白垩统角度不整合 下伏地层为渐新统—中新统角度不整合 地层产状 近水平或倾缓 近水平或倾缓 岩石特征 岩性单调的厚层状粗砾岩,砾石大小混杂,分选差;磨圆度低,以次棱角—次圆状为主,砾石成分主要为各种石灰岩、各种砂岩,少量花岗闪长岩、花岗岩; 岩性单调的厚层状粗砾岩,砾石大小混杂,分选差;磨圆度低,以次棱角—次圆状为主,砾石成分主要为各种石灰岩、各种砂岩,少量花岗闪长岩、花岗岩; 古流向 砾石叠瓦排列仅发育扇上河道砾岩,总体指示自南向北的古流向 砾石叠瓦排列仅发育扇上河道砾岩,总体指示自南向北的古流向 沉积环境与沉积相 冲洪积扇粗砾岩,扇砾岩和扇上河道砾岩互层 冲洪积扇粗砾岩,扇砾岩和扇上河道砾岩互层 地层时代 上新世(类比确定) 上新世 -
如前所述,木梯寺砾岩具有厚度大、粒径粗且大小混杂、分选差、以次棱角—次圆状为主,颗粒支撑和基质支撑等特征,说明其具有山前快速堆积的洪积扇粗砾岩沉积的基本特征[22⁃23,25⁃26],并且古流向总体自南向北、砾石成分与其南部秦岭造山带泥盆系—石炭系—二叠系等各种砂岩、灰岩和区域出露的花岗闪长岩、花岗岩相对应。这与西秦岭北缘构造带漳县地区的上新统韩家沟砾岩沉积特征[6,20]具有惊人的相似性,指示其时代为上新世[10]。郭进京等[20]曾提出了上新统韩家沟砾岩代表了以西秦岭北缘断层为边界,西秦岭地块向北的逆冲隆升过程中类前陆盆地粗砾岩,并且认为是印度板块—欧亚板块汇聚碰撞的挤压动力学远程效应的地质记录。但木梯寺砾岩却分布在北缘断层之南,如果木梯寺砾岩与韩家沟砾岩都为上新世的类前陆粗砾岩沉积,那么,西秦岭北缘断层可能并不是西秦岭地块上新世以来向北逆冲隆升的构造边界。木梯寺砾岩和韩家沟砾岩为代表西秦岭北缘类前陆盆地的粗砾岩沉积的南边界到底在何处,从目前地质资料分析,西秦岭北缘的上新世磨拉石盆地边界就不是现在西秦岭北缘断裂系,从砾岩中砾石大小和砾石成分分析,其盆地南边界至少向南推移20~50 km,是否退至宕昌—岷县—临潭断层系是值得进一步研究的地质问题,这还有待于对西秦岭地块内类似沉积记录的寻找和对区域边界断层的追索研究。另外,无论是木梯寺砾岩还是韩家沟砾岩,都是扇根粗碎屑堆积,那么按照一般冲洪积扇应该发育扇根、扇中和扇缘三个地质单元[22⁃23,27],在西秦岭北缘以北广义的陇西盆地内是否保留了扇中和扇缘沉积记录也是值得今后进一步研究的问题。
-
青藏高原东北缘何时卷入印度—欧亚板块碰撞汇聚形成的青藏高原构造地貌系统,学者们一直存在不同认识。Tapponnier et al.[38]认为包括西秦岭在内的青藏高原东北缘仅是上新世高原;王成善等[39]认为青藏高原东北缘是8 Ma以后逐渐隆升成为青藏高原的组成部分;李吉均等[15,40⁃41]认为青藏高原的整体快速隆升始于3.6 Ma以来的青藏运动,而开始于1.1~1.6和0.15 Ma的昆仑—黄河运动及共和运动,则使高原最终达到现今高度,也就是说现今青藏高原东北缘隆升是上新世3.6 Ma以来的地质事件,以临夏盆地积石山砾岩出现为标志。郭进京等[20]曾讨论了西秦岭北缘漳县地区上新统韩家沟砾岩对青藏高原东北缘隆升的约束,认为青藏高原东北缘真正隆升成为现今青藏高原系统组成部分是上新世末期或第四纪以来的地质事件。西秦岭北缘漳县盆地的上新统韩家沟砾岩、临夏盆地的积石山砾岩[15,29]和循化—贵德盆地的甘家砾岩[18⁃19]代表上新世以来西秦岭一次重要的快速隆升事件,西秦岭的快速隆升以西秦岭北缘断层向北高角度逆冲和其北的具有类前陆盆地的粗砾岩出现为标志[20]。事实上,青藏高原周缘上新世以来的粗砾岩分布很广[42⁃43],如祁连山北缘河西走廊的疏勒河砾岩、玉门砾岩、酒泉砾岩[30,44⁃46]、阿尔金地区的石包城砾岩[47]、西昆仑北缘和天山南缘的西域砾岩[48]等,但关于这些粗砾岩到底是气候成因[42⁃43],还是与高原隆升有关的构造成因[15,18,44],或是构造隆升与气候的共同耦合作用[45,49⁃50],还存在不同认识。从所讨论西秦岭北缘上新世木梯寺砾岩和韩家沟砾岩具有的粗砾扇砾岩和扇上河道砾岩特征来看,粒度粗大、分选和磨圆差,砾石成分与西秦岭造山带出露的砂岩、灰岩和侵入岩相匹配,说明其为近源快速粗碎屑扇形堆积,这种砾岩形成虽然有气候因素(如干旱或寒冷气候下强烈物理风化造成丰富的碎屑来源),但粗大的砾石,特别是巨大的砾石存在,必然要有相应的高差巨大的地貌条件,而这种条件则需要构造隆升的背景,因此,我们认为木梯寺砾岩和韩家沟砾岩主要是构造成因,即西秦岭地块在印度—欧亚碰撞汇聚的动力学扩展到西秦岭,断层快速逆冲形成了高差巨大的地貌,才为砾岩堆积提供了必要条件。但木梯寺砾岩和韩家沟砾岩现今都分布在山顶之上,这就意味着砾岩堆积之后,西秦岭及北缘区域经历整体抬升和侵蚀夷平,现今地貌状态应该是第四纪以来地壳大规模不均匀隆升的结果。当然这种认识,还有待对整个青藏高原周缘上新世以来的粗砾岩进行详细对比研究来佐证。
Genesis of the Pliocene Muti Temple Conglomerates in the Northern Margin of West Qinling Mountains:Implication for the uplift of the northeastern margin of the Qinghai-Tibet Plateau
-
摘要: 青藏高原东北缘是何时卷入现今青藏高原动力学系统而隆升成为高原的组成部分一直存在争议。高原周缘上新世—第四纪广泛出现的粗砾岩多被认为是高原隆升的重要地质标志。西秦岭北缘构造带北侧出露的上新世积石山砾岩、甘家砾岩、韩家沟砾岩等都被认为是青藏高原东北缘快速隆升的地质依据,但这些砾岩由于第四纪以来隆升—侵蚀,多呈孤立块体分布在山顶。西秦岭北缘武山县新寺镇与高楼镇之间卧龙里—大坪一带山顶出露的一套粗砾岩(木梯寺砾岩)具有与漳县北出露的上新统砾岩相同或相似的特征,但却分布在西秦岭北缘断层之南,其研究对于西秦岭上新世隆升及构造边界确定具有重要的地质约束。通过对木梯寺砾岩的地貌特征、沉积旋回、岩性分段、砾石大小、分选性、磨圆度、砾石成分和古流向等较详细的研究,主要取得了如下认识:1)木梯寺砾岩是一套厚度约380 m,粒度粗且变化大、分选差、磨圆度低、旋回性清晰的洪积扇相和扇上季节性河道相互层的粗砾岩,高耸陡峭的山体地貌形态区别于下伏白垩系红色砂砾岩、砂岩的相对平坦地貌;2)扇上河道相砾岩中砾石叠瓦排列指示了自南向北的古流向,砾石成分以石灰岩、砂岩为主,含有少量花岗闪长岩、花岗岩砾石,指示了其物源区主要为西秦岭印支期造山带地层和侵入体;3)该套砾岩近水平的产状、特征性的地貌、典型的冲洪积扇组合,指示了其应该为山前近源、快速堆积体,这与漳县地区上新统韩家沟砾岩具有惊人的相似性,因此,认为这套砾岩与韩家沟砾岩是同时代、同成因的地层,即这套砾岩时代应该为上新世;4)木梯寺砾岩虽然与漳县上新统韩家沟砾岩相似,代表了西秦岭北缘上新世以来的挤压背景下的类前陆盆地沉积,指示了青藏高原东北缘(西秦岭地块)一次快速隆升,但其分布在西秦岭北缘断层之南,角度不整合在白垩系之上,那么上新世西秦岭向北逆冲和隆升的边界应该向南推移至少数十千米,但边界具体位置的确定还有待在西秦岭区域寻找类似砾岩的线索和对边界断层的识别研究。Abstract: It is controversial when the northeastern margin of the Qinghai-Tibet Plateau was involved in the present dynamic system of the present Qinghai-Tibet Plateau and uplifted into a part of the plateau. Pliocene-Quaternary coarse conglomerates are widely distributed around the plateau margins, which are considered as important geological indicators for the uplift of the plateau. The Pliocene Jishishan conglomerate, Ganjia conglomerate, and Hanjiagou conglomerate, outcropped on the north side of the northern margin of the West Qinling Mountains, are considered as the geological evidence for the rapid uplift of the northeastern margin of the Qinghai-Tibet Plateau. However, due to the uplift erosion that has occurred since the Quaternary, these conglomerates are mostly distributed in isolated blocks on the top of the mountain. In the Wolongli-Daping area between Xinsi town and Gaolou town, Wushan county, the northern margin of the West Qinling Mountains, a set of coarse conglomerates (Muti Temple conglomerates, abbreviated as MTC) outcropped on the top of the mountain have the same or similar characteristics with the Pliocene Hanjiagou conglomerates outcropped in northern Zhangxian county, but they are distributed south of the northern margin fault of the West Qinling Mountains. Based on the detailed study of the geomorphic features, sedimentary cycles, lithologic segmentation, gravel size, sorting, roundness, gravel composition, and paleocurrent direction of the MTC, the following understandings are obtained: (1) the MTC is a set of conglomerates with coarse grain size and large variation, poor sorting, bad roundness, and clear cyclicity; interbeded coarse conglomerates with alluvial fan facies, seasonal channel facies on the fan, and its high and steep mountain landform are different from the relatively flat landforms of the underlying Cretaceous red conglomerate, glutenite, and sandstone; (2) The gravel imbricate arrangement in the channel facies on the fan conglomerate indicates a paleocurrent direction from south to north, and the gravel composition is mainly composed of limestone and sandstone, with a small amount of granodiorite and granite gravel, which indicate that its provenance area is mainly the West Qinling Indosinian orogenic belt strata and intrusions to the south; (3) The nearly horizontal occurrence, characteristic landform, and typical alluvial-fluvial fan conglomerate assemblage shows that it is a near source and rapid accumulation body, which is strikingly similar to the Pliocene Hanjiagou conglomerate in the Zhangxian area. Therefore, it is suggested that the MTC and Hanjiagou conglomerate have the same age and origin, that is, the age of the MTC should be Pliocene; (4) The MTC is similar to the Pliocene Hanjiagou conglomerate with the attribute of foreland-like molasses in Zhangxian. Both should be part of the geological records of a rapid uplift of the northeastern margin of the Qinghai Tibet Plateau (West Qinling block). However, the MTC is distributed to the south of the northern margin fault of the West Qinling and covered the Cretaceous in unconformity. The north boundary of the thrusting and uplifting of the West Qinling during the Pliocene should be pulled back a few ten kilometers to the south. The exact location of the boundary still needs similar conglomerate preservation clues and identified boundary faults in the West Qinling area.
-
图 2 西秦岭北缘漳县—武山县地区地貌特征和木梯寺砾岩地质剖面图
(a)武山—漳县区域数字高程图(示木梯寺砾岩和韩家沟砾岩出露高程);(b)近水平的木梯寺砾岩地貌形态;(c)木梯寺砾岩下伏的上白垩统红色厚层河床相砾岩和沙漠相砂岩;(d)木梯寺砾岩与下伏上白垩统之间的角度不整合;(e)图1中的A—B剖面图
Figure 2. Geomorphologic features and geological profile of the Muti Temple conglomerate in the Zhangxian⁃Wushanxian area, northern margin of the West Qinling Mountains
(a) digital elevation map of the Zhangxian⁃Wushanxian area showing the exposed elevation of the Muti Temple and Hanjiagou conglomerate; (b) nearly horizontal Muti Temple conglomerate’s erosion topography; (c) Upper Cretaceous fluvial facies conglomerates and desert facies sandstones underlying the Muti Temple conglomerate; (d) unconformity between the Muti Temple conglomerate and Upper Cretaceous fluvial facies conglomerates and desert facies sandstones; (e) A⁃B Profile location seen in Fig.1
图 11 西秦岭北缘武山县地区木梯寺砾岩古水流方向统计图
(a,b)木梯寺砾岩中扇上河道砾岩中砾石叠瓦斜列照片指示的古流向;(c)木梯寺砾岩古流向统计图
Figure 11. Statistical chart of paleocurrents from the Muti Temple conglomerate in the Wushanxian area, northern margin of the West Qinling Mountains
(a,b) paleocurrent indicator of imbricated gravels of upper fan channel deposits in the Muti Temple conglomerate; (c) statistical chart of paleocurrent in the Muti Temple conglomerate
图 13 西秦岭北缘漳县地区上新统韩家沟砾岩特征图
(a,b)韩家沟砾岩丹霞地貌特征;(c)底部洪积砾岩层,分选、磨圆差,砂岩砾石为主;(d)河道砾岩层,砾石有一定磨圆,以灰岩砾石为主;(e)扇上河道砾岩层,含有巨大砾石,总体较细,递变层清晰;(f)典型扇上河道砾岩,含15~26 cm花岗岩砾石,砾石扁平面斜列较好,指示了自南向北的流向
Figure 13. Characteristics of the Pliocene Hanjiagou conglomerate in the Zhangxian area, northern margin of the West Qinling Mountains
(a, b) Danxia landform characteristics of the Hanjiagou conglomerate; (c) alluvial conglomerate layer with poorly sorted, lower roundness and major sandstone gravel at the bottom of the Hanjiagou conglomerate; (d) channel facies conglomerate with subround⁃rounded and major limestone gravels; (e) the upper⁃fan channel facies conglomerate layer with huge gravels, the overall finned grain size, and clear sedimentary cycle and crude normal gradded bedding; (f) typical upper⁃fan channel facies conglomerate layer with 15⁃26 cm granite gravels and well⁃imbricated gravels indicating the paleocurrent from south to north
表 1 西秦岭北缘武山县地区木梯寺砾岩与漳县地区韩家沟砾岩地质特征对比
砾岩地层地质特征 木梯寺砾岩 韩家沟砾岩 地貌特征 分布在山顶面 分布在山顶面 下伏地层与接触关系 下伏地层为上白垩统角度不整合 下伏地层为渐新统—中新统角度不整合 地层产状 近水平或倾缓 近水平或倾缓 岩石特征 岩性单调的厚层状粗砾岩,砾石大小混杂,分选差;磨圆度低,以次棱角—次圆状为主,砾石成分主要为各种石灰岩、各种砂岩,少量花岗闪长岩、花岗岩; 岩性单调的厚层状粗砾岩,砾石大小混杂,分选差;磨圆度低,以次棱角—次圆状为主,砾石成分主要为各种石灰岩、各种砂岩,少量花岗闪长岩、花岗岩; 古流向 砾石叠瓦排列仅发育扇上河道砾岩,总体指示自南向北的古流向 砾石叠瓦排列仅发育扇上河道砾岩,总体指示自南向北的古流向 沉积环境与沉积相 冲洪积扇粗砾岩,扇砾岩和扇上河道砾岩互层 冲洪积扇粗砾岩,扇砾岩和扇上河道砾岩互层 地层时代 上新世(类比确定) 上新世 -
[1] 甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京:地质出版社,1989:244-320. Bureau of Geology and Mineral Recourses of Gansu Province. Regional geology of Gansu province[M]. Beijing: Geological Publishing House, 1989: 244-320. [2] 王志才,张培震,张广良,等. 西秦岭北缘构造带的新生代构造活动:兼论对青藏高原东北缘形成过程的指示意义[J]. 地学前缘,2006,13(4):119-135. Wang Zhicai, Zhang Peizhen, Zhang Guangliang, et al. Tertiary tectonic activities of the north frontal fault zone of the west Qinling mountains: Implications for the growth of the northeastern margin of the Qinghai-Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4): 119-135. [3] 郭进京,韩文峰,李雪峰. 西秦岭新生代以来地质构造过程对青藏高原隆升和变形的约束[J]. 地学前缘,2009,16(6):215-225. Guo Jinjing, Han Wenfeng, Li Xuefeng. The Cenozoic tectonic evolution of the west Qinling: Constraints on the uplift and deformation of the Tibetan Plateau[J]. Earth Science Frontiers, 2009, 16(6): 215-225. [4] 郭进京,宫恩麟,赵海涛,等. 西秦岭北缘构造带新生代盆地南部边界断层带结构与构造变形演化[J]. 地质科学,2020,55(4):1073-1088. Guo Jinjing, Gong Enlin, Zhao Haitao, et al. The structural characteristics of the southern boundary fault zone of the Cenozoic basin and its tectonic deformation evolution in the northern margin of the western Qinling[J]. Chinese Journal of Geology, 2020, 55(4): 1073-1088. [5] 郭进京,赵海涛,刘重庆,等. 青藏高原东北缘何时卷入现今青藏高原构造系统?:来自西秦岭北缘漳县盆地新生代沉积记录的约束[J]. 地学前缘,2021,28(5):337-361. Guo Jinjing, Zhao Haitao, Liu Chongqing, et al. When the northeastern margin of the Qinghai-Tibet Plateau was involved in its present tectonic system: Constraints from the Cenozoic sedimentary sequence[J]. Earth Science Frontiers, 2021, 28(5): 337-361. [6] 许何弘昕,郭进京,刘重庆,等. 西秦岭北缘漳县地区上新统砾岩砾石特征及其地质意义[J]. 地质通报,2020,39(10):1561-1572. Xu Hehongxin, Guo Jinjing, Liu Chongqing, et al. The gravel characteristics of Pliocene conglomerates in Zhangxian area on the northern margin of the west Qinling and its geological significance[J]. Geological Bulletin of China, 2020, 39(10): 1561-1572. [7] 惠浪波,郭进京,韩文峰,等. 西秦岭北缘武山地区上白垩统沙漠相沉积特征[J]. 沉积学报,2017,35(4):649-663. Hui Langbo, Guo Jinjing, Han Wenfeng, et al. Sedimentary characteristics of the Cretaceous desert facies in the Wushan area, northern margin of the western Qinling mountains[J]. Acta Sedimentologica Sinica, 2017, 35(4): 649-663. [8] 陕西地质局区测队. 陇西(I-48-IX)幅1:200000地质图及说明书[R]. 1970. Geological Survey Team of Shanxi Province. Longxi(I-48- IX) Geological map and explanatory book (scale: 1: 200000)[R]. 1970. [9] 甘肃省地质调查院. 岷县幅1:250000区域地质调查报告[R]. 兰州:甘肃省地质调查院,2007. Institute of Geology Investigation of Gansu Province. Regional geological survey report of Minxian[R]. Lanzhou: Institute of Geology Investigation of Gansu Province, 2007. [10] 郭进京,韩文峰,赵海涛,等. 西秦岭北缘漳县中—新生代红层地层格架厘定及其地质意义[J]. 西北地质,2016,49(1):82-91. Guo Jinjing, Han Wenfeng, Zhao Haitao, et al. Stratigraphic framework of Mesozoic-Cenozoic red bed in Zhang county, northern margin of western Qinling and its geological significance[J]. Northwestern Geology, 2016, 49(1): 82-91. [11] 裴先治,丁仨平,李佐臣,等. 西秦岭北缘早古生代天水-武山构造带及其构造演化[J]. 地质学报,2009,83(11):1547-1564. Pei Xianzhi, Ding Sanping, Li Zuochen, et al. Early Paleozoic Tianshui-Wushan tectonic zone of the northern margin of west Qinling and its tectonic evolution[J]. Acta Geologica Sinica, 2009, 83(11): 1547-1564. [12] 郭进京,韩文峰,赵海涛,等. 西秦岭晚白垩世原型盆地:新生代青藏高原隆起的背景[J]. 地质科学,2015,50(2):364-376. Guo Jinjing, Han Wenfeng, Zhao Haitao, et al. Late Cretaceous proto-type basin in the western Qinling: Background of Cenozoic uplifting of Tibet Plateau[J]. Chinese Journal of Geology, 2015, 50(2): 364-376. [13] 郭进京,韩文峰,赵海涛,等. 西秦岭中—新生代红层的构造层划分及其构造意义[J]. 地质论评,2014,60(6):1231-1244. Guo Jinjing, Han Wenfeng, Zhao Haitao, et al. Tectonic layer division of Mesozoic-Cenozoic red bed basins in the western Qinling mountains and its tectonic significance[J]. Geological Review, 2014, 60(6): 1231-1244. [14] Wang Z C, Zhang P Z, Garzione N C, et al. Magnetostratigraphy and depositional history of the Miocene Wushan Basin on the NE Tibetan Plateau, China: Implications for Middle Miocene tectonics of the west Qinling fault zone[J]. Journal of Asian Earth Sciences, 2012, 44: 189-202. [15] 李吉均,方小敏,马海洲,等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑):地球科学,1996,26(4):316-322. Li Jijun, Fang Xiaomin, Ma Haizhou, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science China (Seri. D): Earth Sciences, 1996, 26(4): 316-322. [16] 方小敏,李吉均,朱俊杰,等. 甘肃临夏盆地新生代地层绝对年代测定与划分[J]. 科学通报,1997,42(14):1457-1471. Fang Xiaomin, Li Jijun, Zhu Junjie, et al. Absolute dating and division of Cenozoic strata in Linxia Basin, Gansu province[J]. Chinese Science Bulletin, 1997, 42(14): 1457-1471. [17] Fang X M, Garzione C, van Der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 545-560. [18] 方小敏,宋春晖,戴霜,等. 青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录[J]. 地学前缘,2007,14(1):230-242. Fang Xiaomin, Song Chunhui, Dai Shuang, et al. Cenozoic deformation and uplift of the NE Qinghai -Tibet Plateau: Evidence from high-resolution magnetostratigraphy and basin evolution[J]. Earth Science Frontiers, 2007, 14(1): 230-242. [19] Fang X M, Yan M D, van Der Voo R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai province, China[J]. GSA Bulletin, 2005, 117(9/10): 1208-1225. [20] 郭进京,吉夏,赵海涛,等. 西秦岭北缘漳县韩家沟砾岩对青藏高原东北缘地壳隆升的约束[J]. 地质科学,2017,52(4):1011-1025. Guo Jinjing, Ji Xia, Zhao Haitao, et al. The geological characteristics of Hanjiagou conglomerates in north margin of the west Qinling, and its geological constraint on uplift of the northeast margin of Qinghai-Tibet Plateau[J]. Chinese Journal of Geology, 2017, 52(4): 1011-1025. [21] 郭进京,韩文峰,胡晓隆,等. 西秦岭北缘漳县新生代伸展断陷盆地确定及其地质意义[J]. 地学前缘,2017,24(5):230-244. Guo Jinjing, Han Wenfeng, Hu Xiaolong, et al. Cenozoic extensional rift basin in the northern margin of western Qinling: Constraints on the remote tectonic responses to the India-Eurasia collision in the northeastern margin of Tibetan Plateau[J]. Earth Science Frontiers, 2017, 24(5): 230-244. [22] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:41-50. Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 41-50. [23] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008. [24] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944. Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944. [25] 张昌民,王绪龙,陈哲,等. 季节性河道与暂时性河道的沉积特征:以新疆白杨河冲积扇为例[J]. 沉积学报,2020,38(3):505-517. Zhang Changmin, Wang Xulong, Chen Zhe, et al. Sedimentary characteristics of ephemeral and intermittent channels: A case study of the Baiyanghe fan, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2020, 38(3): 505-517. [26] 印森林,刘忠保,陈燕辉,等. 冲积扇研究现状及沉积模拟实验:以碎屑流和辫状河共同控制的冲积扇为例[J]. 沉积学报,2017,35(1):10-23. Yin Senlin, Liu Zhongbao, Chen Yanhui, et al. Research progress and sedimentation experiment simulation about alluvial fan: A case study on alluvial fan controlled by debris flow and braided river[J]. Acta Sedimentologica Sinica, 2017, 35(1): 10-23. [27] Friedman G M, Sanders J E. Principles of sedimentology[M]. New York: Wiley, 1978: 1-792. [28] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:104-113. Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 104-113. [29] 郑德文,张培震,万景林,等. 构造、气候与砾岩:以积石山和临夏盆地为例[J]. 第四纪研究,2006,26(1):63-69. Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. Tectonic events, climate and conglomerate: Example from Jishishan Mountain and Linxia Basin[J]. Quaternary Sciences, 2006, 26(1): 63-69. [30] 刘栋梁,宋春晖,颜茂都,等. 初探玉门砾岩沉积速率时空变化对气候—构造相互作用的意义[J]. 大地构造与成矿学,2011,35(1):56-63. Liu Dongliang, Song Chunhui, Yan Maodu, et al. Preliminary study on the temporal and spatial variations of sedimentation rates of the Yumen conglomerate and its implications for climate-tectonics interaction[J]. Geotectonica et Metallogenia, 2011, 35(1): 56-63. [31] Chen L Q, Guo F S, Tang C. Evolution of the Late Cretaceous Yongfeng-Chongren Basin in Jiangxi province, southeast China: Insights from sedimentary facies analysis and pebble counting[J]. Journal of Mountain Science, 2016, 13(2): 342-351. [32] 高志勇,朱如凯,冯佳睿,等. 库车坳陷侏罗系-新近系砾岩特征变化及其对天山隆升的响应[J]. 石油与天然气地质,2015,36(4):534-544. Gao Zhiyong, Zhu Rukai, Feng Jiarui, et al. Jurassic-Neogene conglomerate characteristics in Kuqa Depression and their response to tectonic uplifting of Tianshan mountains[J]. Oil & Gas Geology, 2015, 36(4): 534-544. [33] 梁伟,陈留勤,郭福生,等. 江西抚崇盆地晚白垩世-古新世莲荷组砾石砾组分析[J]. 地质力学学报,2013,19(1):35-44. Liang Wei, Chen Liuqin, Guo Fusheng, et al. Analysis on gravel fabric of the Late Cretaceous to the Paleocene Lianhe Formation in Fuzhou-Chongren Basin, Jiangxi[J]. Journal of Geomechanics, 2013, 19(1): 35-44. [34] 陶金雨,张昌民,郭旭光,等. 磨圆度定量表征在扇三角洲沉积微相判别中的应用:以玛湖凹陷百口泉组砾岩为例[J]. 沉积学报,2020,38(5):956-965. Tao Jinyu, Zhang Changmin, Guo Xuguang, et al. Application of quantitative roundness characterization to identify sedimentary microfacies in fan delta deposits: A case study of conglomerates in the Baikouquan Formation, Mahu Sag[J]. Acta Sedimentologica Sinica, 2020, 38(5): 956-965. [35] 唐超,陈留勤,郭福生,等. 江西永丰—崇仁盆地上白垩统砾石岩性和磨圆度列联表分析及其对物源的指示[J]. 现代地质,2014,28(5):971-979. Tang Chao, Chen Liuqin, Guo Fusheng, et al. Contingency table analysis of pebble lithology and roundness and provenance implications for the Upper Cretaceous of Yongfeng-Chongren Basin, Jiangxi[J]. Geoscience, 2014, 28(5): 971-979. [36] 高志勇,石雨昕,冯佳睿,等. 砾石在分析盆地物源区迁移与湖岸线演化中的作用[J]. 古地理学报,2021,23(3):507-524. Gao Zhiyong, Shi Yuxin, Feng Jiarui, et al. Role of gravel in analysis on migration of source area and lake shorelines in lacustrine basin[J]. Journal of Palaeogeography, 2021, 23(3): 507-524. [37] 王建强,贾楠,刘池洋,等. 鄂尔多斯盆地西南部下白垩统宜君组砾岩砾组分析及其意义[J]. 沉积学报,2011,29(2):226-234. Wang Jianqiang, Jia Nan, Liu Chiyang, et al. Fabric analysis of Yijun gravels of Lower Cretaceous in the southwestern Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(2): 226-234. [38] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [39] 王成善,戴紧根,刘志飞,等. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,2009,16(3):1-30. Wang Chengshan, Dai Jingen, Liu Zhifei, et al. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3): 1-30. [40] 李吉均,方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报,1998,43(15):1569-1574. Li Jijun, Fang Xiaomin. Study on uplift and environmental change of Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574. [41] 李吉均,方小敏,潘保田,等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究,2001,21(5):381-391. Li Jijun, Fang Xiaomin, Pan Baotian, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391. [42] Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897. [43] Molnar P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 67-89. [44] 刘栋梁,宋春晖,方小敏,等. 榆木山地区玉门砾岩磁性地层及其对青藏高原东北部变形隆升意义[J]. 地质学报,2012,86(6):898-905. Liu Dongliang, Song Chunhui, Fang Xiaomin, et al. Magneteostratigraphy of Yumen conglomerate in the Yumushan region and its implication for deformation and uplift of the NE Tibetan Plateau[J]. Acta Geologica Sinica, 2012, 86(6): 898-905. [45] 赵志军,方小敏,李吉均,等. 酒泉砾石层的古地磁年代与青藏高原隆升[J]. 科学通报,2001,46(14):1208-1212. Zhao Zhijun, Fang Xiaomin, Li Jijun, et al. Paleomagnetic dating of the Jiuquan gravel in the hexi corridor: Implication on Mid-Pleistocene uplift of the Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2001, 46(14): 1208-1212. [46] 陈杰, Wyrwoll K H,卢演俦,等. 祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J]. 第四纪研究,2006,26(1):20-31. Chen Jie, Wyrwoll K H, Lu Yanchou, et al. Magnetochronology of the Yumen conglomerates and multi-pulsed folding and thrusting in the northern Qilianshan[J]. Quaternary Sciences, 2006, 26(1): 20-31. [47] 冯志硕,张志诚,李建锋,等. 甘肃石包城盆地新生代沉积特征及与阿尔金断裂的关系研究[J]. 地质科学,2010,45(1):181-193. Feng Zhishuo, Zhang Zhicheng, Li Jianfeng, et al. Cenozoic tectonics and sedimentation of Shibaocheng Basin, Gansu province and its relationship with Altyn Tagh Fault[J]. Chinese Journal of Geology, 2010, 45(1): 181-193. [48] Zheng H B, Powell C M, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28(8): 715-718. [49] 傅开道,方小敏,高军平,等. 青藏高原北部砾石粒径变化对气候和构造演化的响应[J]. 中国科学(D辑):地球科学,2006,36(8):733-742. Fu Kaidao, Fang Xiaomin, Gao Junping, et al. Response of grain size of Quaternary gravels to climate and tectonics in the northern Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2006, 36(8): 733-742. [50] Jones S J, Arzani N, Allen M B. Tectonic and climatic controls on fan systems: The Kohrud mountain belt, Central Iran[J]. Sedimentary Geology, 2014, 302: 29-43.