高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网状河流的构型、流量—宽深比关系和能耗率

王随继

王随继. 网状河流的构型、流量—宽深比关系和能耗率[J]. 沉积学报, 2003, 21(4): 565-570.
引用本文: 王随继. 网状河流的构型、流量—宽深比关系和能耗率[J]. 沉积学报, 2003, 21(4): 565-570.
WANG Sui ji. Architectures, Relationships between Discharges and Width/depth Ratios of Stream Cross Profiles, and Stream Powers of Anastomosing Rrivers[J]. Acta Sedimentologica Sinica, 2003, 21(4): 565-570.
Citation: WANG Sui ji. Architectures, Relationships between Discharges and Width/depth Ratios of Stream Cross Profiles, and Stream Powers of Anastomosing Rrivers[J]. Acta Sedimentologica Sinica, 2003, 21(4): 565-570.

网状河流的构型、流量—宽深比关系和能耗率

基金项目: 国家自然科学基金项目(批准号:40101003)和中国科学院地理科学与资源研究所创新项目(CX10G-A02-02)资助
详细信息
    作者简介:

    王随继 男 1966年出生 博士 副研究员 沉积学、地貌学

  • 中图分类号: P343.1

Architectures, Relationships between Discharges and Width/depth Ratios of Stream Cross Profiles, and Stream Powers of Anastomosing Rrivers

  • 摘要: 网状河流作为一类新河型,已经受到研究者的关注,但对其研究还不充分.该研究基于目前已经报道过的资料及新近取得的研究成果,从河流构型、河道过水断面宽深比与流量关系及能耗率等方面对该河型展开论述,期望引起大家对该河型的兴趣.网状河流在许多方面表现出了独有的特色.从平面构型来看,它以相互连通的多河道围绕非常稳定的泛滥盆地为特征,其中泛滥盆地上植被发育、沼泽湖泊可见.从河道纵、横剖面来看,它具有非常小的河道比降和一般小于40的河道宽深比,总体上属于各类河型中最小的.从沉积体系的剖面构型来看,它以多个孤立的河道砂体"漂浮"在细粒泥质沉积物中为特征.在河道过水断面宽深比与流量的半对数图中可见,其宽深比随流量的增大而减小,并且其散点位于各类河流的最下部.由于其河道比降一般很小,多河道体系中的单个河道的流量相对于其决口前的老河道显然较小,从而其能耗率就相对很小.文中所讨论到的长江三口分流网状河道:东松滋河、西松滋河、虎渡河、藕池河、北藕池河和松澧合流,其能耗率分别为3.0 W/m2,5.5 W/m2,2.8 W/m2,6.4 W/m2,3.7 W/m2和2.7 W/m2,显然都小于10 W/m2,这与长江主河道在枝江附近的140 W/m2相比,差两个数量级.所有这些特征都预示着网状河流与以长江中下游为代表的分汊河流之间有着完全不同的特性,与其他河型更是大相径庭.
  • [1] Leopold L B, Wolman M G. River channel patterns, braided, meandering and straight. United States Geological Survey, Professional Paper. 282-B, 1957, 45~62
    [2] Schumm S A, Khan H R. Experimental study of channel patterns[J]. Geological Society of America Bulletin 1972, 83: 1755~1770
    [3] Schumm S A. River adjustment to altered hydrologic Regime-Murrumbidgee River and paleochannels, Australia, U. S. Geol. Survey, 1968, Prof. Paper No. 598
    [4] Chang Howard H. Minimum stream power and channel patterns[J]. Journal of Hydrology, 1979, 41: 303~327
    [5] Ferguson R I. Channel form and channel changes[A]. In: Lewin J ed. British River[C]. Longdon: Allen and Unwin, 1981. 90~211
    [6] Keller E A, Brookes A. Consideration of meandering in channelization projects: selected observations and judgements[A]. In: Elliot C M ed. River Meandering. Proceedings of the conference Rivers '83, New Orleans, Louisiana, October 24~26 1983. American Society of Civil Engineers, New York, 1984, 384~397
    [7] Brown A G. Holocene floodplain sedimentation and channel response of the lower River Severn. United Kingdom[J]. Zeitschrift fü Geomorphologie, 1987, 32(3): 293~310
    [8] Nanson G C, Croke J C. A genetic classification of floodplains[J]. Geomorphology, 1992, 4: 459~486
    [9] Van den Berg J H. Prediction of alluvial channel pattern of perennial rivers[J]. Geomorphology, 1995, 12: 259~279
    [10] Lecce S A. Spatial patterns of historical overbank sedimentation and floodplain evolution. Blue River, Wisconsin[J]. Geomorphology, 1997, 18: 265~277
    [11] Makaske B. Anastomosing river: forms, processes and sediments. Nederlandse Geografische Studies vol. 249. Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke Wetenschappen, Universiteit Utrecht, Utrecht. 1998, 1~287
    [12] Rust B R. A classification of alluvial channel systems[A]. In: Miall A D ed. Fluvial sedimentology[C]. Canadian Society of Petroleum Geologists Memoir 5, Calgary, 1978. 187~198
    [13] 王随继,任明达.根据河道形态和沉积物特征的河流新分类[J].沉积学报,1999,17(2): 240~246[Wang S, Ren M. A new classification of fluvial rivers according to channel planforms and sediment characteristics[J]. Acta Sedimentologica Snica, 1999, 17(2): 240~246]
    [14] Allen J R L. Henry Clifton Sorby and the sedimentary structures from the Lower Old Sandstone, Anglo-Welsh Basin[J]. Sedimentology, 1963, 3: 163~198
    [15] Bernard H A, Maror C J. Recent meander belt deposits of the Brazos River, an alluvial "sand" model (abs.)[J]. AAPG Bulletin, 1963, 47: 350
    [16] Miall A D. Analysis of fluvial depositional systems[J]. AAPG Booksore, 1982. 1~33
    [17] Miall A D. Architectural-element analysis:a new method of facies appied to fluvial deposits[J]. Earth Science. Review., 1985, 22: 261~308
    [18] Smith D G, Smith N D. Sedimentation in anastomosed river systems: examples from alluvial valleys near Banff, Alberta[J]. Journal of Sedimentary Petrology, 1980, 50: 157~164
    [19] Putnam P E, Oliver T A. Stratigraphic traps in channel sandstone in the Upper Mannville (Albian) of east-central Alberta[J]. Bulletin of Canadian Petroleum Geology, 1980, 28 (4): 489~508
    [20] Smith D G. Anastomosed fluvial deposits: modern examples from western Canada[A]. In: Collinson J D, Lewin J, eds. Modern and ancient fluvial systems[C]. Spec. Publs. Int. Ass. Sediments. Blackwell, London. 1983, 155~168
    [21] Schumm S A, Erskine W D, Tilleard J W. Morphology, hydrology, and evolution of the anastomosing Ovens and King Rivers, Victoria, Australia[J]. Geologocal Society of America Bulletin, 1996, 108:1212~1224
    [22] Smith D G. Anastomosing river deposits, sedimentation rates and basin subsidence, Magdalena River, northwestern Columbia, South America[J]. Sedimentary Geology, 1986, 46: 177~196
    [23] Nanson G C, East T J, Roberts R G. Quaternary stratigraphy, geochronogy and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia[J]. Sedimentary Geology, 1993, 83: 277~302
    [24] Riley S J, Taylor G. The geomorphology of the Upper Darling River System with special reference to the present fluvial system. Proceedings of the Royal Society of Victoria 90, Melbourne. 1978, 89~102
  • [1] 洪瑞峰, 唐明明, 彭晨阳, 熊思琛, 解容.  供源组分和流量对于曲流河形态变化的影响 ——基于水槽沉积模拟实验研究【水槽沉积模拟实验专辑】 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.076
    [2] 张元福, 张森, 黄云英, 孙世坦, 袁晓冬, 王敏, 张晓晗, 陈冬.  基于地球河流扇预测模型的火星地表水径流量预测 . 沉积学报, 2024, 42(1): 52-63. doi: 10.14027/j.issn.1000-0550.2022.050
    [3] 朱筱敏, 刘强虎, 谈明轩, 李顺利, 陈贺贺, 聂银兰.  深时源—汇系统综合研究和沙垒田实例分析 . 沉积学报, 2023, 41(6): 1781-1797. doi: 10.14027/j.issn.1000-0550.2023.104
    [4] 王之语, 原陇苗, 刘艳红, 马荣, 吴应琴.  高效耐盐碱石油烃降解菌筛选及降解特性研究 . 沉积学报, 2022, 40(3): 849-860. doi: 10.14027/j.issn.1000-0550.2022.003
    [5] 王爱军, 叶翔, 徐晓晖, 谢津剑, 陶舒琴, 赖志坤, 吴水兰, 杨雨欣.  亚热带中小型山溪性河流—宽陆架系统“源—汇”过程 . 沉积学报, 2022, 40(6): 1615-1634. doi: 10.14027/j.issn.1000-0550.2022.135
    [6] 高分辨率层序地层学在河流相油田开发中的应用 . 沉积学报, 2013, 31(04): 600-607.
    [7] 新疆伊犁晚全新世风成沙—古土壤序列磁化率特征及气候变化 . 沉积学报, 2012, 30(5): 928-936.
    [8] 殷志强.  中国北方部分地区黄土、沙漠沙、湖泊、河流细粒沉积物粒度多组分分布特征研究 . 沉积学报, 2009, 27(2): 343-351.
    [9] 李 阳.  河流相储层沉积学表征 . 沉积学报, 2007, 25(1): 48-52.
    [10] 冯建伟.  河流储层建筑结构要素的定量识别——以胜坨油田二区沙二段3砂层组为例 . 沉积学报, 2007, 25(2): 207-213.
    [11] 桂 峰.  洪湖流域自然农耕条件下营养盐沉积输移演化模拟研究 . 沉积学报, 2006, 24(3): 333-338.
    [12] 赵文智, 王兆云, 汪泽成, 王红军, 张水昌, 王云鹏, 赵长毅, 苗继军.  高效气源灶及其对形成高效气藏的作用 . 沉积学报, 2005, 23(4): 709-718.
    [13] 张昌民, 张尚锋, 李少华, 淡卫东, 侯路.  中国河流沉积学研究20年 . 沉积学报, 2004, 22(2): 183-192.
    [14] 尹太举, 张昌民, 李中超, 毛立华, 尹艳树, 邓宏文.  濮城油田沙三中6-10砂组高分辨率层序地层研究 . 沉积学报, 2003, 21(4): 663-669.
    [15] 谢庆宾, 朱筱敏, 管守锐, 王贵文, 刘少宾, 张周良, 陈方鸿, 薛培华, 韩德馨.  中国现代网状河流沉积特征和沉积模式 . 沉积学报, 2003, 21(2): 219-227.
    [16] 徐永昌, 沈平, 刘全有.  “西气东输”探明天然气的地球化学特征及资源潜势 . 沉积学报, 2002, 20(3): 447-455.
    [17] 刘星, 陆友明, 程守田, 胡光道.  垦西油田馆陶组河流沉积高分辨率层序地层研究 . 沉积学报, 2002, 20(1): 101-105,111.
    [18] 尹寿鹏, 谢庆宾, 管守锐.  网状河比较沉积学研究 . 沉积学报, 2000, 18(2): 221-226.
    [19] 张周良, 王芳华.  广东三水盆地第四纪网状河沉积特征 . 沉积学报, 1997, 15(4): 58-63.
    [20] 陈振岩, 李军生, 闫火, 张戈, 祝丽玲, 陈峰, 季东民.  河流深槽沉积体与油气的关系——以辽河坳陷大25井区为例 . 沉积学报, 1996, 14(3): 157-161.
  • 加载中
计量
  • 文章访问数:  513
  • HTML全文浏览量:  7
  • PDF下载量:  408
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-12-03
  • 刊出日期:  2003-12-10

目录

    网状河流的构型、流量—宽深比关系和能耗率

      基金项目:  国家自然科学基金项目(批准号:40101003)和中国科学院地理科学与资源研究所创新项目(CX10G-A02-02)资助
      作者简介:

      王随继 男 1966年出生 博士 副研究员 沉积学、地貌学

    • 中图分类号: P343.1

    摘要: 网状河流作为一类新河型,已经受到研究者的关注,但对其研究还不充分.该研究基于目前已经报道过的资料及新近取得的研究成果,从河流构型、河道过水断面宽深比与流量关系及能耗率等方面对该河型展开论述,期望引起大家对该河型的兴趣.网状河流在许多方面表现出了独有的特色.从平面构型来看,它以相互连通的多河道围绕非常稳定的泛滥盆地为特征,其中泛滥盆地上植被发育、沼泽湖泊可见.从河道纵、横剖面来看,它具有非常小的河道比降和一般小于40的河道宽深比,总体上属于各类河型中最小的.从沉积体系的剖面构型来看,它以多个孤立的河道砂体"漂浮"在细粒泥质沉积物中为特征.在河道过水断面宽深比与流量的半对数图中可见,其宽深比随流量的增大而减小,并且其散点位于各类河流的最下部.由于其河道比降一般很小,多河道体系中的单个河道的流量相对于其决口前的老河道显然较小,从而其能耗率就相对很小.文中所讨论到的长江三口分流网状河道:东松滋河、西松滋河、虎渡河、藕池河、北藕池河和松澧合流,其能耗率分别为3.0 W/m2,5.5 W/m2,2.8 W/m2,6.4 W/m2,3.7 W/m2和2.7 W/m2,显然都小于10 W/m2,这与长江主河道在枝江附近的140 W/m2相比,差两个数量级.所有这些特征都预示着网状河流与以长江中下游为代表的分汊河流之间有着完全不同的特性,与其他河型更是大相径庭.

    English Abstract

    王随继. 网状河流的构型、流量—宽深比关系和能耗率[J]. 沉积学报, 2003, 21(4): 565-570.
    引用本文: 王随继. 网状河流的构型、流量—宽深比关系和能耗率[J]. 沉积学报, 2003, 21(4): 565-570.
    WANG Sui ji. Architectures, Relationships between Discharges and Width/depth Ratios of Stream Cross Profiles, and Stream Powers of Anastomosing Rrivers[J]. Acta Sedimentologica Sinica, 2003, 21(4): 565-570.
    Citation: WANG Sui ji. Architectures, Relationships between Discharges and Width/depth Ratios of Stream Cross Profiles, and Stream Powers of Anastomosing Rrivers[J]. Acta Sedimentologica Sinica, 2003, 21(4): 565-570.
    参考文献 (24)

    目录

      /

      返回文章
      返回