高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析

孙旭光 陈建平 王延斌

孙旭光, 陈建平, 王延斌. 吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析[J]. 沉积学报, 2002, 20(4): 721-726.
引用本文: 孙旭光, 陈建平, 王延斌. 吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析[J]. 沉积学报, 2002, 20(4): 721-726.
SUN Xu guang, CHEN Jian pin, WANG Yan bi. Micro-FTIR Spectroscopy of Maceral from Jurassic Coals in Tu-ha Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 721-726.
Citation: SUN Xu guang, CHEN Jian pin, WANG Yan bi. Micro-FTIR Spectroscopy of Maceral from Jurassic Coals in Tu-ha Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 721-726.

吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析

基金项目: 国家自然科学基金项目(批准号:42102014)
详细信息
    作者简介:

    孙旭光 男 1966年出生 博士 副教授 有机地化

  • 中图分类号: P618.11;P593

Micro-FTIR Spectroscopy of Maceral from Jurassic Coals in Tu-ha Basin

  • 摘要: 在高纯度煤岩显微组分分离富集的基础上,应用透射式显微傅里叶红外光谱技术 (Micro FTIR),对吐哈盆地侏罗纪煤中的主要组分—镜质体、丝质体、角质体、藻类体的结构组成进行了测定。结果表明 :藻类体主要由长链脂族结构组成,芳香结构含量相对较少;角质体和基质镜质体中含有较丰富的芳香结构以及长链脂族结构;而丝质体则主要由芳香结构组成,脂族结构含量很少。显微组分的这种结构特征决定了藻类体具有很高的生烃潜力、角质体和镜质体的生烃潜力中等、而丝质体的生烃潜力则很低。对于吐哈盆地煤成油来说,由于藻类体主要由长链脂族结构组成,并且生烃潜力也高,因此其具有高的液态烃产率、丝质体的产油率最小、角质体和镜质体的液态烃产率中等。由于镜质体是本区煤中含量最高的组分。因此,对于吐哈盆地所形成的具有工业规模的油田来说,镜质体应该是主要的贡献组分之一。但对于富含藻类体的厚层状烛藻煤,由于它类型好,品质高、生烃潜力大、以中长链脂族结构为主,是煤成油最理想的源岩。
  • [1] Murchison D G, Jones J M. Infrared spectra of resinite and their carbonized and oxidized products[J]. Fuel, 1966, 27: 141~158
    [2] Millais R and Murchison D G. Properties of the coal macerals: infrared spectra of alginites[J]. Fuel, 1969, 48 (2): 247~258
    [3] Dyrkacz R, Bloomquist C A, Solomon P R. Fourier transform infrared study of high-purity macerals types[J]. Fuel, 1984, 63: 536~542
    [4] Kister J.Characterization of chemical structure, degree of maturation and oil potential of torbanites by quantitative FTIR spectroscopy[J]. Fuel, 1900, 69 (11): 1 356~1 361
    [5] Michaelian K H, Friesen W I. Photoacoustic FTIR spectra of separated western Canadian coal macerals[J]. Fuel, 1990, 69: 1 271~1 275
    [6] Rochid A, Landais P. Transmission micro-infrared spectroscopy, an efficient tool for microscale characterization of coal[J]. Fuel, 1991, 70: 364~371
    [7] Pradier B, Landais P, Rochdi A, Davis A. Chemical basis of fluorescence alteration of crude oils and kerogens-II, Fluorescence and infrared micro-spectrometric analysis of vitrinite and liptinite[J]. Org.,Geochem, 1992, 18: 241~248
    [8] Lin R, Ritz P. Studying individual macerals using IR microspectroscopy, and implication on oil versus gas/condense proneness and ‘low-rank' generation[J]. Org. Geochem., 1993, 20: 695~706
    [9] Mastalerz M, Bustin R M. Electron microprobe and micro-FTIR analyses applied to maceral chemistry[J]. Inter. J. Coal Geol., 1993, 24: 333~345
    [10] Mastalerz M, Bustin R M. Application of reflectance microFourier transform infrared spectrometry in studying coal macerals: Comparison with other Fourier transform infrared techniques[J]. Fuel, 1995, 74: 536~542
    [11] Ibarra J V, Moliner R, Bonet A J. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73: 918~924
    [12] Ibarra J V, Munoz E, Moliner R. FT-IR study of the evolution of coal structure during the coalification process[J].Org. Geochem., 1996, 24: 725~735
    [13] Guo Y T, Bustin R M. Micro-FTIR spectroscopy of liptinite macerals in coal[J]. Inter. J. Coal Geol., 1998, 36: 259~275
    [14] Ganz H, Kalkreuth W. Application of infrared spectroscopy to the classification of kerogen-types and the evolution of source rock and oil-shale potentials[J]. Fuel, 1987, 66: 708~711
    [15] Christy A A. Multi-variate calibration of diffuse reflectance infrared spectra of coals as an alternative to rank determination by vitrinite reflectance[J]. Chemometrics Intell. Lab. Systems, 1987, 2 (2): 199~207
    [16] Thomas B M. Land-plant source rocks for oil and their significance in Australian basin[J]. APEA J, 1982, 22 (1): 164~178
    [17] Smith G C, Cook A C. Petroleum occurrence in Gippsland basin and its relationship to rank and organic matter type[J]. APEA J, 1984, 24 (1): 196~216
    [18] Cook A C, Struckmeyer H. The role of coal as a source rock for oil[A]. In: Glennie R C, ed. Second South-Eastern Australia Oil Exploration Symposium[C]. Melbourne: Petroleum Exploration Society of Australia, 1986. 410~432
    [19] Snowdon L R, Powell T G. Immature oil and condensate-Modification of hydrocarbon generation model for terrestrial organic matter[J]. AAPG Bull, 1982, 66: 775~788
    [20] Snowdon L R. Oil from type Ⅲ organic matter: Resinite revisited[J]. Org. Geochem., 1991, 17 (6): 743~747
    [21] 赵师庆,吴观茂. 论富氢镜质组型腐殖煤--生油煤的一种新类型[J]. 中国煤田地质,1995.77~81[Zhao Shiqing,Wu Guanmao.On the humic coal of hydrogen-rich vitrinite type--a new type of oil prone coals[J].Coal Geology of China,1995,7(1),77~81]
    [22] 赵长毅,程克明,向忠华等. 吐哈盆地煤中基质镜质体生烃潜力与特征[J]. 科学通报,1994,39(21):1 989~1 991[Zhao Changyi,Cheng Keming,Xiang Zhonghua.The hydrocarbon generation of desmocollinite from Jurassic coal in the Turpan-Hami basin[J]. Chinese Science Bulletin,1994,39(21):1 989~1 991]
    [23] 赵长毅,程克明. 吐哈盆地煤显微组分生烃模式[J]. 科学通报,1994,42(19):2 102~2 105[Zhao Changyi,Cheng Keming.The Hydrocarbon-generating Mode of Macerals from Jurassic coal in the Turpan-Hami basin,Northwest China[J].Chinese Science Bulletin,1994,42(19):2 102~2 105]
    [24] 赵长毅, 程克明, 王飞宇. 吐哈盆地煤成烃主要贡献组分剖析[J]. 沉积学报, 1997, 15(2): 95~99[Zhao Changyi,Cheng Keming,Wang Feiyu.Analyses on the macerals contributing mainly to hydrocarbons derived form coals of the Turpan-Hami basin[J].Acta Sedimentologica Sinica,1997,15(2):95~99]
    [25] 陈建平, 黄第藩, 李晋超, 秦勇. 吐哈盆地侏罗纪煤系油气主力源岩探讨[J]. 地质学报, 1999, 73(2): 140~152[Chen Jianping,Huang Difan,Li Jinchao,Qin Yong.Main Source Rocks of Petroleum from Jurassic Coal-bearing Strata in the Turpan-Hami,Northwest China[J].Acta Geologica Sinica,1999,73(2):140~152]
    [26] 柳益群, 袁明生, 周立发, 张世焕. 新疆吐-哈盆地前侏罗系烛藻煤的发现及其地质意义[J]. 沉积学报, 2000, 4:595~599[Liu Yiqun,Yuan Mingaheng,Zhou Lifa,Zhang Shihuan.Discovery of Pre-Jurassic Cannel-Boghead with its geological Significance in Turpan-Hami basin,Xinjiang[J].Acta Sedimentologica Sinica,2000,4:595~599]
    [27] 孙旭光, 李荣西, 杜美利. 煤岩显微组分分离富集[J]. 中国煤田地质, 1997, 9(3): 26~27[Sun Xuguang,Li Rongxi.Discussion on the Method of Coal Maceral Separation[J].Coal Geology of China,1997,9(3):26~27]
    [28] Marchessault R H. Application of infrared spectroscopy to cellulose and wood polysaccharides[A]. In: Wood Chemistry, Proceedings of the Wood Chemistry Symposium[C]. London: Butterworth, 1962. 107~129
    [29] Hergert L H. Infrared spectra[A]. In: Sarkanen K V, Ludwin C H eds.Lignins. New York:Wiley-Interscience, 1974. 267~297
    [30] Painter P C, Starsinic M, Coleman M M. Determination of functional groups in coal by Fourier transform interferometry[A]. In: Ferraro J R, Basile L J eds. Fourier Transform Infrared Spectroscopy[C]. Vol. 4.New York:Academic Press, 1985. 169~240
  • 加载中
计量
  • 文章访问数:  300
  • HTML全文浏览量:  20
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2001-09-25
  • 修回日期:  2002-02-26

目录

    吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析

      基金项目:  国家自然科学基金项目(批准号:42102014)
      作者简介:

      孙旭光 男 1966年出生 博士 副教授 有机地化

    • 中图分类号: P618.11;P593

    摘要: 在高纯度煤岩显微组分分离富集的基础上,应用透射式显微傅里叶红外光谱技术 (Micro FTIR),对吐哈盆地侏罗纪煤中的主要组分—镜质体、丝质体、角质体、藻类体的结构组成进行了测定。结果表明 :藻类体主要由长链脂族结构组成,芳香结构含量相对较少;角质体和基质镜质体中含有较丰富的芳香结构以及长链脂族结构;而丝质体则主要由芳香结构组成,脂族结构含量很少。显微组分的这种结构特征决定了藻类体具有很高的生烃潜力、角质体和镜质体的生烃潜力中等、而丝质体的生烃潜力则很低。对于吐哈盆地煤成油来说,由于藻类体主要由长链脂族结构组成,并且生烃潜力也高,因此其具有高的液态烃产率、丝质体的产油率最小、角质体和镜质体的液态烃产率中等。由于镜质体是本区煤中含量最高的组分。因此,对于吐哈盆地所形成的具有工业规模的油田来说,镜质体应该是主要的贡献组分之一。但对于富含藻类体的厚层状烛藻煤,由于它类型好,品质高、生烃潜力大、以中长链脂族结构为主,是煤成油最理想的源岩。

    English Abstract

    孙旭光, 陈建平, 王延斌. 吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析[J]. 沉积学报, 2002, 20(4): 721-726.
    引用本文: 孙旭光, 陈建平, 王延斌. 吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析[J]. 沉积学报, 2002, 20(4): 721-726.
    SUN Xu guang, CHEN Jian pin, WANG Yan bi. Micro-FTIR Spectroscopy of Maceral from Jurassic Coals in Tu-ha Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 721-726.
    Citation: SUN Xu guang, CHEN Jian pin, WANG Yan bi. Micro-FTIR Spectroscopy of Maceral from Jurassic Coals in Tu-ha Basin[J]. Acta Sedimentologica Sinica, 2002, 20(4): 721-726.
    参考文献 (30)

    目录

      /

      返回文章
      返回