Discussion on the Dynamic Factors Controlling HydrocarbonMigration from Depression to West Slope Zone of the Songliao Basin, Northeast China
-
摘要: 松辽盆地西部斜坡带自生伊利石钾氩测年反映本区油气成藏事件在时间上表现出集中性,在空间上具有广泛性,表现出油气成藏事件的幕式性。时间上的集中性表现在油气成藏时间主要分为三期60Ma、58Ma、45Ma;空间上的广泛性表现在位于油气运移路径上相距极远(35km直线距离)的两点具有相同的油气成藏时间,据此限定的油气运移最小速率为4.5km/Ma,该油气运移速率不能由传统的油气运移动力——水动力、浮力解释,两者所造成的油气最大运移速率约为2km/Ma,远远小于研究区油气实际运移的最小速率,说明研究区的油气运移必须考虑构造作用的影响。中国东部古近纪近东西向的构造挤压作用对松辽盆地西部斜坡带的油气运移、聚集产生了全方位的影响。构造挤压作用强化了泥岩超压作用,并可导致油气从拉张作用所形成的泥岩裂缝中排出,因而有利于油气的初次运移。构造活动的幕式性导致了流体的幕式活动,而流体的幕式活动导致了油气的幕式运移与成藏,因此构造作用是本区油气波浪式运移、幕式成藏事件的主要动力来源。近东西向的构造挤压作用形成了本区主要的背斜型圈闭,同时导致本区NNE、NE向断层性质转为封闭,形成本区主要的断块型油气藏。Abstract: The oil recharge event defined by the K2Ar dating of the authigenic illite proved to be episodic indicated by the following two factors. First, the recharge time is clustered in the following four periods, 60Ma, 58Ma, 45Ma、and 45-32Ma. Second, the first 3 stages of oil recharge are widely sp read in the whole west slope zone of the Songliao basin. The oil-recharge event happened in two different places far away from each other (35km linearly) linked by the hydrocarbon migration pathway systems. According to the oil recharge time, the minimum hydrocarbon migration velocity is estimated to be greater than 4. 5km /Ma, which cannot be exp lained bywater dynamics and density difference between formation water and hydrocarbon. The velocity driven by the late two factors are estimated to be less than 2km /Ma, far less than the actual hydrocarbon migration velocity. Thismeans that there exist other factors that driven the hydrocarbon to migrate westward. It is suggested here that the hydrocarbon migration and concentration wasmainly controlled by the tectonic comp ression during the Paleogene. First, tectonic comp ression has p romoted the initialmigration of the hydrocarbon by strengthening the overp ressure generated in the mudrock and driven the hydrocarbon out of the microfissures generated during the basin extension. Second, the ep isodic movement of the tectonic comp ression will result in the ep isodic movement of the formation fluid, which will drive the hydrocarbon migration and concentration ep isodically. This is whatwe found in the west slope zone of the Songliao basin. Finally, tectonic compression in an E-W direction has generated many anticlines in the basin, which is the most important trap in the Songliao basin.Tectonic compression has changed the characters of the faults that striking NNE,NE,which resulted in the forming of many fault-sealed oil reservoirs in the study area.
-
[1] 1 Ferket H,Leuven K U,Roure F,Swennen R,Ortuno S. Fluid migration placed into the deformation history of fold-and-thrust belts: an example from the Veracruz basin (Mexico)[J].Journal of Geochemical Exploration,2000.275-279.
2 Trave A,Claver F,Sans M. Fluid history related to the Alpine compression at the margin of the south-Pyrenean Forland basin: the El Guix anticline[J].Tectonophysics,2000.73-102.
3 Tan C,Jin Z,Zhang M. An approach to the present-day three-dimensional (3D) stress field and its application in hydrocarbon migration and accumulation in the Zhangqiang depression,Liaohe field,China[J].Marine and Petroleum Geology,2001,(9):983-994.
4 Verweij J M,Simmelink H J. Geodynamic and hydrodynamic evolution of the Broad Fourteens Basin( The Netherlands) in relation to its petroleum systems[J].Marine and Petroleum Geology,2002,(3):339-359.
5 Stanislavsky E,Garven G. A theoretical model for reverse water-level fluctuations induced by transient permeability in thrust fault zones[J].Earth and Planetary Sciences Letters,2003,(3-4):579-586.
6 魏忠文,熊保贤,葛云龙. 南堡凹陷北部东营末期构造应力场与油气运移关系的探讨[J].现代地质,2000,(04):435-439.
7 杨万里,高瑞祺,郭庆福. 松辽盆地陆相油气生成、运移和聚集[M].哈尔滨:黑龙江科学技术出版社,1985.200-208.
8 Zhou Y S,Littke R. Numerical simulation of the thermal maturation,oil generation and migration in the Songliao Basin,Northeastern China[J].Marine and Petroleum Geology,1999.771-792.
9 白国平. 伊利石K-Ar测年在确定油气成藏期中的应用[J].石油大学学报(自然科学版),2000,(04):100-105.
10 Lee M,Aronson J L,Savin S M. K-Ar dating of time of gas emplacement in Rotliegendes sandstone,Netherlands[J].AAPG Bulletin,1985.1381-1835.
11 向才富,夏斌,解习农. 松辽盆地西部斜坡带油气运移主输导通道分析[J].石油与天然气地质,2004,(02):204-208.
12 郝芳,李思田,龚再升,杨甲明. 莺歌海盆地底辟发育机理与流体幕式充注[J].中国科学D辑,2001,(06):471-476.
13 Bethke C M. A numerical model of compaction driven groundwater flow and heat transfer and its application to the paleohydrology of in-tracratonic sedimentary basin[J].Journal of Geophysical Research,1985,(B8):6817-6828.
14 Deming D. Regional permeability estimates from investigations of coupled heat and groundwater flow,north slop of Alaska[J].Journal of Geophysical Research,1993.16271-16286.
15 Bethke C M,Reed J D,Oltz D F. Long-range petroleum migration in the Illinois basin[J].AAPG Bulletin,1991,(05):925-945.
16 万天丰,朱鸿. 中国大陆及邻区中生代-新生代大地构造与环境变迁[J].现代地质,2002,(02):107-120.
17 Wood R M. Earthquakes,strain-cycling and the mobilization of fluids[A].Published by the Geological Society,London,1994.85-98.
18 Balen R V,Cloetingh S. Tectonic control of the sedimentary record and stress-induced fluid flow: constraints from basin modeling[A].published by the geological society,London,1994.5-26.
19 华保钦. 构造应力场、地震泵和油气运移[J].沉积学报,1995,(02):77-86.
计量
- 文章访问数: 436
- HTML全文浏览量: 1
- PDF下载量: 769
- 被引次数: 0