高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

走滑汇聚是华南广西运动的成因?

张杰 徐亚军

张杰, 徐亚军. 走滑汇聚是华南广西运动的成因?[J]. 沉积学报, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
引用本文: 张杰, 徐亚军. 走滑汇聚是华南广西运动的成因?[J]. 沉积学报, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
ZHANG Jie, XU YaJun. Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China?[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
Citation: ZHANG Jie, XU YaJun. Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China?[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122

走滑汇聚是华南广西运动的成因?

doi: 10.14027/j.issn.1000-0550.2023.122
基金项目: 

国家自然科学基金项目 42172126

国家自然科学基金项目 41772106

详细信息

Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China?

Funds: 

National Natural Science Foundation of China 42172126

National Natural Science Foundation of China 41772106

  • 摘要: 目的 华南东南部在早古生代发生了大规模的褶皱造山运动——广西运动。该期造山运动的属性仍然存在较大争议。为了确定华南广西运动的动力学机制,尝试利用碎屑多矿物U-Pb年代学恢复早古生代扬子地块和华夏地块的古地理位置以及相对位移。 方法 重新评估了扬子地块和华夏地块下古生界碎屑锆石/独居石U-Pb年代学和Hf同位素数据,并与潜在源区进行对比。 结果 (1)扬子西缘寒武系—奥陶系碎屑锆石具有850~750 Ma 和550~500 Ma两期主要的特征年龄峰,以及1 000~900 Ma、1 900~1 800 Ma和2 550~2 400 Ma三个次要年龄峰。扬子西缘550~500 Ma碎屑锆石的εHf(t)值多为正值,指示岩浆源区中大量新生地壳物质的参与,其源区可能为伊朗—土耳其Cadomian岩浆弧。新元古代碎屑锆石主要来自于扬子西缘岩浆岩和下伏新元古界沉积岩的再循环;(2)华夏地块寒武系—奥陶系碎屑锆石/独居石具有1 000~900 Ma和550~500 Ma两期主要的年龄峰,前者对应于印度东北部的East Ghats造山带和东南极洲板块的Rayner造山带,而后者对应于印度东北缘的Kuunga造山带;(3)扬子东南缘志留系碎屑锆石460~410 Ma的年龄峰与华夏地区过铝质花岗岩浆活动的年龄相吻合,大于440 Ma峰值年龄的碎屑锆石则具有与该地区前志留纪样品相似的年龄峰。 结论 物源分析结果表明寒武纪至奥陶纪期间华夏地块和扬子地块分别位于印度东北缘和伊朗东北缘,两者的古地理位置沿冈瓦纳大陆北缘斜列分布。晚奥陶世(~460 Ma)响应于冈瓦纳大陆的最终聚合发生斜向走滑汇聚,形成武夷—云开陆内造山带(460~420 Ma)。
  • 图  1  华南地质简图

    Figure  1.  Simplified geological map of South China

    图  2  汇编数据集中碎屑锆石、独居石样品位置

    Figure  2.  Locations of detrital zircon and monazite samples in the compilation dataset

    图  3  锆石/独居石U⁃Pb年龄图谱

    (a) age spectra of Cambrian⁃Ordovician detrital zircon in western Yangtze and detrital/magmatic zircons of potential source provenance; (b) age spectra of Cambrian⁃Ordovician detrital zircon/monazite in southern Cathaysia and detrital/magmatic zircon of potential source provenance; (c) age spectra of detrital zircon in southeastern Yangtze

    Figure  3.  Spectra of the zircon/monazite U⁃Pb ages

    Fig.3

    图  4  扬子西缘寒武系—奥陶系碎屑锆石εHf(t)值与U⁃Pb年龄二元关系图(数据见附表4)

    Figure  4.  Plot of εHf(t) versus ages of Cambrian⁃Ordovician detrital zircons in western Yangtze

    图  5  华南早古生代构造演化示意图

    HN. Hainan; TST. Truong Son terrane; KT. Kontum massif

    Figure  5.  Schematic illustrations of the Early Paleozoic evolution of South China

    Fig.5

  • [1] Wilson J T. Static or mobile Earth: The current scientific revolution[J]. Proceedings of the American Philosophical Society, 1968, 112(5): 309-320.
    [2] Celaˆl Şengör A M. Plate tectonics and orogenic research after 25 years: A tethyan perspective[J]. Earth-Science Reviews, 1990, 27(1/2): 1-201.
    [3] Cawood P A, Zhao G C, Yao J L, et al. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 2018, 186: 173-194.
    [4] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286.
    [5] Ting V K. The orogenic movements in China[J]. Bulletin of the Geological Society of China, 1929, 8(2): 151-170.
    [6] 任纪舜. 论中国南部的大地构造[J]. 地质学报,1990,64(4):275-288.

    Ren Jishun. On the geotectonics of southern China[J]. Acta Geologica Sinica, 1990, 64(4): 275-288.
    [7] Faure M, Shu L S, Wang B, et al. Intracontinental subduction: A possible mechanism for the Early Palaeozoic orogen of SE China[J]. Terra Nova, 2009, 21(5): 360-368.
    [8] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the Early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 2010, 122(5/6): 772-793.
    [9] 彭松柏,刘松峰,林木森,等. 华夏早古生代俯冲作用(Ⅱ):大爽高镁—镁质安山岩新证据[J]. 地球科学,2016,41(6):931-947.

    Peng Songbai, Liu Songfeng, Lin Musen, et al. Early Paleozoic subduction in cathaysia (Ⅱ): New evidence from the Dashuang high magnesian-magnesian andesite[J]. Earth Science, 2016, 41(6): 931-947.
    [10] 彭松柏,刘松峰,林木森,等. 华夏早古生代俯冲作用(I):来自糯垌蛇绿岩的新证据[J]. 地球科学,2016,41(5):765-778.

    Peng Songbai, Liu Songfeng, Lin Musen, et al. Early Paleozoic subduction in cathaysia (I): New evidence from Nuodong ophiolite[J]. Earth Science, 2016, 41(5): 765-778.
    [11] 覃小锋,王宗起,王涛,等. 桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约[J]. 地球学报,2015,36(3):283-292.

    Qin Xiaofeng, Wang Zongqi, Wang Tao, et al. The reconfirmation of age and tectonic setting of the volcanic rocks of Yingyangguan Group in the eastern Guangxi: Constraints on the structural pattern of the southwestern segment of Qinzhou–Hangzhou joint belt[J]. Acta Geoscientica Sinica, 2015, 36(3): 283-292.
    [12] Zhang C L, Santosh M, Zhu Q B, et al. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block[J]. Gondwana Research, 2015, 28(3): 1137-1151.
    [13] Zhang C L, Zhu Q B, Chen X Y, et al. Ordovician arc-related mafic intrusions in South China: Implications for plate subduction along the southeastern margin of South China in the Early Paleozoic[J]. The Journal of Geology, 2016, 124(6): 743-767.
    [14] Chen Q, Zhao G C, Sun M. Protracted northward drifting of South China during the assembly of Gondwana: Constraints from the spatial-temporal provenance comparison of Neoproterozoic-Cambrian strata[J]. GSA Bulletin, 2021, 133(9/10): 1947-1963.
    [15] Xu Y J, Cawood P A, Du Y S, et al. Linking South China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 2013, 32(6): 1547-1558.
    [16] Xu Y J, Liang X, Cawood P A, et al. Revisiting the paleogeographic position of South China in Gondwana by geochemistry and U-Pb ages of detrital monazite grains from Cambrian sedimentary rocks[J]. Lithos, 2022, 430-431: 106879.
    [17] Yao W H, Li Z X, Li W X, et al. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 2014, 314(1): 278-313.
    [18] Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220.
    [19] Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589.
    [20] Sundell K E, Saylor J E. Unmixing detrital geochronology age distributions[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(8): 2872-2886.
    [21] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
    [22] Vermeesch P. Dissimilarity measures in detrital geochronology[J]. Earth-Science Reviews, 2018, 178: 310-321.
    [23] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
    [24] Gibson T M, Faehnrich K, Busch J F, et al. A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America[J]. Geology, 2021, 49(5): 545-550.
    [25] Yao J L, Cawood P A, Shu L S, et al. Jiangnan orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 2019, 196: 102872.
    [26] Zhao G C. Jiangnan orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27(3): 1173-1180.
    [27] Zhao J H, Zhou M F, Yan D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
    [28] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160(1/2): 179-210.
    [29] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122(1/2/3/4): 85-109.
    [30] Wang Y J, Zhang F F, Fan W M, et al. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 2010, 29(6): TC6020.
    [31] 陈旭,戎嘉余, Rowley D B,等. 对华南早古生代板溪洋的质疑[J]. 地质论评,1995,41(5):389-400.

    Chen Xu, Rong Jiayu, Rowley D B, et al. Is the Early Paleozoic Banxi ocean in South China necessary?[J]. Geological Review, 1995, 41(5): 389-400.
    [32] Rong J Y, Zhan R B, Xu H G, et al. Expansion of the Cathaysian oldland through the Ordovician-Silurian transition: Emerging evidence and possible dynamics[J]. Science China (Seri.D): Earth Sciences, 2010, 53(1): 1-17.
    [33] 舒良树,陈祥云,楼法生. 华南前侏罗纪构造[J]. 地质学报,2020,94(2):333-360.

    Shu Liangshu, Chen Xiangyun, Lou Fasheng. Pre-Jurassic tectonics of the South China[J]. Acta Geologica Sinica, 2020, 94(2): 333-360.
    [34] Xu X B, Lin S F, Tang S, et al. Transformation from Neoproterozoic sinistral to Early Paleozoic dextral shearing for the Jingdezhen ductile shear zone in the Jiangnan orogen, South China[J]. Journal of Earth Science, 2018, 29(2): 376-390.
    [35] Xu X B, Li Y, Tang S, et al. Neoproterozoic to Early Paleozoic polyorogenic deformation in the southeastern margin of the Yangtze Block: Constraints from structural analysis and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2015, 98: 141-151.
    [36] Chu Y, Lin W. Phanerozoic polyorogenic deformation in southern Jiuling massif, northern South China Block: Constraints from structural analysis and geochronology[J]. Journal of Asian Earth Sciences, 2014, 86: 117-130.
    [37] Li J H, Dong S W, Zhang Y Q, et al. New insights into Phanerozoic tectonics of South China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan orogen[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 3048-3080.
    [38] Xu Y J, Cawood P A, Du Y S. Intraplate orogenesis in response to gondwana assembly: Kwangsian orogeny, South China[J]. American Journal of Science, 2016, 316(4): 329-362.
    [39] Song M J, Shu L S, Santosh M, et al. Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South China Craton: Geochronological and geochemical evidence[J]. Lithos, 2015, 232: 360-374.
    [40] Wang Y J, Fan W M, Zhao G C, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 2007, 12(4): 404-416.
    [41] Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains[J]. Lithos, 2011, 127(1/2): 239-260.
    [42] Zhang F F, Wang Y J, Zhang A M, et al. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block[J]. Lithos, 2012, 150: 188-208.
    [43] Dang Y, Chen M H, Mao J W, et al. Weakly fractionated I-type granitoids and their relationship to tungsten mineralization: A case study from the Early Paleozoic Shangmushui deposit, Dayaoshan area, South China[J]. Ore Geology Reviews, 2020, 117: 103281.
    [44] Guan Y L, Yuan C, Sun M, et al. I-type granitoids in the eastern Yangtze Block: Implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 2014, 206-207: 34-51.
    [45] Huang X L, Yu Y, Li J, et al. Geochronology and petrogenesis of the Early Paleozoic I-type granite in the Taishan area, South China: Middle-lower crustal melting during orogenic collapse[J]. Lithos, 2013, 177: 268-284.
    [46] Xia Y, Xu X S, Zou H B, et al. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184-187: 416-435.
    [47] Yu Y, Huang X L, He P L, et al. I-type granitoids associated with the Early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China[J]. Lithos, 2016, 248-251: 353-365.
    [48] Tang Y L, Shi Y, Hu X M, et al. Petrogenesis of Early Paleozoic I-type granitoids in the Wuyi-Yunkai orogen, South China: Implications for the tectono-magmatic evolution of the Cathaysia Block[J]. Journal of Asian Earth Sciences, 2021, 220: 104906.
    [49] 覃小锋,王宗起,宫江华,等. 云开地块北缘加里东期中—基性火山岩的厘定:钦—杭结合带南西段早古生代古洋盆存在的证据[J]. 岩石学报,2017,33(3):791-809.

    Qin Xiaofeng, Wang Zongqi, Gong Jianghua, et al. The confirmation of Caledonian intermediate-mafic volcanic rocks in northern margin of Yunkai Block: Evidence for Early Paleozoic paleo-ocean basin in southwestern segment of Qinzhou-Hangzhou joint belt[J]. Acta Petrologica Sinica, 2017, 33(3): 791-809.
    [50] Xin Y J, Li J H, Ratschbacher L, et al. Early Devonian (415-400 Ma) A-type granitoids and diabases in the Wuyishan, eastern Cathaysia: A signal of crustal extension coeval with the separation of South China from Gondwana[J]. GSA Bulletin, 2020, 132(11/12): 2295-2317.
    [51] Xu Y J, Cawood P A, Du Y S, et al. Aulacogen formation in response to opening the Ailaoshan Ocean: Origin of the Qin-Fang trough, South China[J]. The Journal of Geology, 2017, 125(5): 531-550.
    [52] 张岳桥,徐先兵,贾东,等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘,2009,16(1):234-247.

    Zhang Yueqiao, Xu Xianbing, Jia Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2009, 16(1): 234-247.
    [53] Chu Y, Faure M, Lin W, et al. Early Mesozoic tectonics of the South China Block: Insights from the Xuefengshan intracontinental orogen[J]. Journal of Asian Earth Sciences, 2012, 61: 199-220.
    [54] Wang Y J, Wang Y, Zhang Y Z, et al. Triassic two-stage intra-continental orogensis of the South China Block, driven by paleotethyan closure and interactions with adjoining blocks[J]. Journal of Asian Earth Sciences, 2021, 206: 104648.
    [55] Xia Y, Xu X S. The epilogue of paleo-tethyan tectonics in the South China Block: Insights from the Triassic aluminous A-type granitic and bimodal magmatism[J]. Journal of Asian Earth Sciences, 2020, 190: 104129.
    [56] Song M J, Shu L S, Santosh M. Early Mesozoic intracontinental orogeny and stress transmission in South China: Evidence from Triassic peraluminous granites[J]. Journal of the Geological Society, 2017, 174(3): 591-607.
    [57] Wang Y J, Fan W M, Sun M, et al. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan province[J]. Lithos, 2007, 96(3/4): 475-502.
    [58] Lin W, Wang Q C, Chen K. Phanerozoic tectonics of South China Block: New insights from the polyphase deformation in the Yunkai massif[J]. Tectonics, 2008, 27(6): TC6004.
    [59] Yan D P, Zhou M F, Song H L, et al. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)[J]. Tectonophysics, 2003, 361(3/4): 239-254.
    [60] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4): 269-287.
    [61] Li X H. Cretaceous magmatism and lithospheric extension in southeast China[J]. Journal of Asian Earth Sciences, 2000, 18(3): 293-305.
    [62] Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29(1): 26-33.
    [63] Li J H, Ma Z L, Zhang Y Q, et al. Tectonic evolution of Cretaceous extensional basins in Zhejiang province, eastern South China: Structural and geochronological constraints[J]. International Geology Review, 2014, 56(13): 1602-1629.
    [64] Li J H, Zhang Y Q, Dong S W, et al. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
    [65] Shu L S, Yao J L, Wang B, et al. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 2021, 216: 103596.
    [66] Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05007.
    [67] Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270.
    [68] Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
    [69] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Hoboken: Wiley-Blackwell, 2011: 45-62.
    [70] Puetz S J, Spencer C J, Ganade C E. Analyses from a validated global U-Pb detrital zircon database: Enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates[J]. Earth-Science Reviews, 2021, 220: 103745.
    [71] Compston W, Zhang Z, Cooper J A, et al. Further SHRIMP geochronology on the early Cambrian of South China[J]. American Journal of Science, 2008, 308(4): 399-420.
    [72] Zhu R X, Li X H, Hou X G, et al. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian-Cambrian boundary[J]. Science in China (Seri. D): Earth Sciences, 2009, 52(9): 1385-1392.
    [73] Yang C, Li X H, Zhu M Y, et al. Geochronological constraint on the Cambrian Chengjiang biota, South China[J]. Journal of the Geological Society, 2018, 175(4): 659-666.
    [74] Dong M L, Dong G C, Mo X X, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granites in the Baoshan Block, western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin[J]. Lithos, 2013, 179: 36-47.
    [75] Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc along the Gondwana proto-tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77: 91-107.
    [76] Hu P Y, Zhai Q G, Wang J, et al. Ediacaran magmatism in the north Lhasa terrane, Tibet and its tectonic implications[J]. Precambrian Research, 2018, 307: 137-154.
    [77] Horton B K, Hassanzadeh J, Stockli D F, et al. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics[J]. Tectonophysics, 2008, 451(1/2/3/4): 97-122.
    [78] Moghadam H S, Li X H, Griffin W L, et al. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology[J]. Lithos, 2017, 268-271: 87-101.
    [79] Moghadam H S, Li X H, Santos J F, et al. Neoproterozoic magmatic flare-up along the N. margin of Gondwana: The Taknar complex, NE Iran[J]. Earth and Planetary Science Letters, 2017, 474: 83-96.
    [80] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994.

    Liu Baojun, Xu Xiaosong. Atlas of lithofacies and paleogeography of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994.
    [81] Hu J, Liu X C, Chen L Y, et al. A ~2.5 Ga magmatic event at the northern margin of the Yangtze Craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(28/29): 3564-3579.
    [82] Chen Q, Sun M, Zhao G C, et al. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 2019, 326-327: 1-18.
    [83] Wu Y B, Gao S, Zhang H F, et al. Geochemistry and zircon U–Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012, 200-203: 26-37.
    [84] 李怀坤,张传林,相振群,等. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报,2013,29(2):673-697.

    Li Huaikun, Zhang Chuanlin, Xiang Zhenqun, et al. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 2013, 29(2): 673-697.
    [85] 李怀坤,田辉,周红英,等. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMP U-Pb年龄及Hf同位素证据[J]. 地学前缘,2016,23(6):186-201.

    Li Huaikun, Tian Hui, Zhou Hongying, et al. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze Craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics[J]. Earth Science Frontiers, 2016, 23(6): 186-201.
    [86] Shu L S, Jahn B M, Charvet J, et al. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 2014, 314(1): 154-186.
    [87] Xue E K, Wang W, Zhou M F, et al. Late Neoproterozoic–Early Paleozoic basin evolution in the Cathaysia Block, South China: Implications of spatio-temporal provenance changes on the paleogeographic reconstructions in supercontinent cycles[J]. GSA Bulletin, 2020, 133(3/4): 717-739.
    [88] Grew E S, Carson C J, Christy A G, et al. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, east Antarctica[J]. Precambrian Research, 2012, 206-207: 87-108.
    [89] Halpin J A, Daczko N R, Clarke G L, et al. Basin analysis in polymetamorphic terranes: An example from east Antarctica[J]. Precambrian Research, 2013, 231: 78-97.
    [90] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
    [91] Mulder J A, Cawood P A. Evaluating preservation bias in the continental growth record against the monazite archive[J]. Geology, 2022, 50(2): 243-247.
    [92] Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082.
    [93] Morrissey L J, Hand M, Kelsey D E. Multi-stage metamorphism in the Rayner-eastern Ghats terrane: P-T-t constraints from the northern Prince Charles Mountains, east Antarctica[J]. Precambrian Research, 2015, 267: 137-163.
    [94] Morrissey L J, Hand M, Kelsey D E, et al. Cambrian high-temperature reworking of the Rayner-eastern Ghats terrane: Constraints from the northern Prince Charles Mountains region, east Antarctica[J]. Journal of Petrology, 2016, 57(1): 53-92.
    [95] Bose S, Ghosh G, Kawaguchi K, et al. Zircon and monazite geochronology from the Rengali-eastern Ghats province: Implications for the tectonic evolution of the eastern Indian terrane[J]. Precambrian Research, 2021, 355: 106080.
    [96] Ganguly P, Das K, Bose S, et al. U-Pb zircon and U-Th-total Pb monazite ages from the Phulbani domain of the eastern Ghats Belt, India: Time constraints on high-grade metamorphism and magmatism in the lower crust[J]. Precambrian Research, 2018, 316: 1-23.
    [97] Korhonen F J, Clark C, Brown M, et al. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the eastern Ghats orogenic belt, India[J]. Precambrian Research, 2013, 234: 322-350.
    [98] Li L M, Lin S F, Xing G F, et al. First direct evidence of Pan-African orogeny associated with Gondwana assembly in the Cathaysia Block of southern China[J]. Scientific Reports, 2017, 7: 794.
    [99] Lin S F, Xing G F, Davis D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4): 319-322.
    [100] Lin S F, Wang L J, Xiao W J, et al. The Early Paleozoic Wuyi–Yunkai orogeny in South China: A collisional orogeny with a major lag in time between onset of collision and peak metamorphism in subducted continental crust[J]. Geological Society, London, Special Publications, 2023, 542(1): SP542-2023-2026.
    [101] Xu Y J, Du Y S, Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267-268: 63-72.
    [102] Yu W C, Du Y S, Cawood P A, et al. Detrital zircon evidence for the reactivation of an Early Paleozoic syn-orogenic basin along the north Gondwana margin in South China[J]. Gondwana Research, 2015, 28(2): 769-780.
    [103] 李三忠,李玺瑶,赵淑娟,等. 全球早古生代造山带(Ⅲ):华南陆内造山[J]. 吉林大学学报(地球科学版),2016,46(4):1005-1025.

    Li Sanzhong, Li Xiyao, Zhao Shujuan, et al. Global Early Paleozoic orogens (Ⅲ): Intracontinental orogen in South China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025.
    [104] 陈旭,樊隽轩,陈清,等. 论广西运动的阶段性[J]. 中国科学:地球科学,2014,44(5):842-850.

    Chen Xu, Fan Juanxuan, Chen Qing, et al. Toward a stepwise Kwangsian orogeny[J]. Science China: Earth Sciences, 2014, 44(5): 842-850.
    [105] 陈旭,张元动,樊隽轩,等. 广西运动的进程:来自生物相和岩相带的证据[J]. 中国科学:地球科学,2012,42(11):1617-1626.

    Chen Xu, Zhang Yuandong, Fan Juanxuan, et al. Onset of the Kwangsian orogeny as evidenced by biofacies and lithofacies[J]. Science China: Earth Sciences, 2012, 42(11): 1617-1626.
    [106] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学:地球科学,2013,43(10):1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 2013, 43(10): 1553-1582.
    [107] Yao W H, Li Z X. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua Foreland Basin in South China[J]. Tectonophysics, 2016, 674: 31-51.
    [108] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
    [109] Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic implications[J]. Geology, 2003, 31(10): 917-920.
    [110] Wang W, Cawood P A, Pandit M K, et al. Fragmentation of South China from greater India during the Rodinia-Gondwana transition[J]. Geology, 2021, 49(2): 228-232.
    [111] Xu Y J, Cawood P A, Du Y S, et al. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island[J]. Tectonics, 2014, 33(12): 2490-2504.
    [112] Yu J H, O’Reilly S Y, Wang L J, et al. Where was South China in the Rodinia supercontinent?[J]. Precambrian Research, 2008, 164(1/2): 1-15.
    [113] Gehrels G E, DeCelles P G, Ojha T P, et al. Geologic and U–Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 28(4/5/6): 385-408.
    [114] Roberts E A, Houseman G A. Geodynamics of central Australia during the intraplate Alice Springs orogeny: Thin viscous sheet models[J]. Geological Society, London, Special Publications, 2001, 184(1): 139-164.
    [115] Raimondo T, Hand M, Collins W J. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth-Science Reviews, 2014, 130: 128-153.
    [116] Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia[J]. Tectonics, 1997, 16(4): 571-584.
    [117] Wang L J, Zhang K X, Lin S F, et al. Origin and age of the Shenshan tectonic mélange in the Jiangshan-Shaoxing-Pingxiang fault and late Early Paleozoic juxtaposition of the Yangtze Block and the West Cathaysia terrane, South China[J]. GSA Bulletin, 2021, 134(1/2): 113-129.
    [118] Holdsworth R E, Stewart M, Imber J, et al. The structure and rheological evolution of reactivated continental fault zones: A review and case study[J]. Geological Society, London, Special Publications, 2001, 184(1): 115-137.
    [119] Tikoff B, Teyssier C. Strain modeling of displacement-field partitioning in transpressional orogens[J]. Journal of Structural Geology, 1994, 16(11): 1575-1588.
    [120] Sun H S, Li J H, Zhang Y Q, et al. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China[J]. Journal of Structural Geology, 2018, 110: 116-130.
    [121] Li J H, Zhang Y Q, Zhao G C, et al. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia[J]. Tectonics, 2017, 36(5): 819-853.
    [122] 舒良树,卢华复,贾东,等. 华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究[J]. 南京大学学报(自然科学版),1999,35(6):26-32.

    Shu Liangshu, Lu Huafu, Jia Dong, et al. Study of the 40Ar/39Ar isotopic age for the Early Paleozoic tectonothermal event in the Wuyishan region, South China[J]. Journal of Nanjing University (Natural Sciences), 1999, 35(6): 26-32.
    [123] Shu L S, Faure M, Wang B, et al. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia[J]. Comptes Rendus Geoscience, 2008, 340(2/3): 151-165.
    [124] Shu L S, Wang B, Cawood P A, et al. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600-1621.
    [125] Charvet J, Shu L S, Faure M, et al. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 2010, 39(4): 309-330.
    [126] Aitken A R A. Did the growth of Tibetan topography control the locus and evolution of Tien Shan mountain building?[J]. Geology, 2011, 39(5): 459-462.
    [127] Zhang H C, Xu Y J, Cawood P A, et al. Linking the Paleozoic evolution of Hainan Island to Indochina and Australia: Implication for the paleogeography of the eastern tethys ocean[J]. Tectonophysics, 2023, 858: 229882.
    [128] 王岳军,卢向红,钱鑫,等. 滇西—东南亚原特提斯南支的造山作用[J]. 中国科学:地球科学,2022,52(11):2077-2104.

    Wang Yuejun, Lu Xianghong, Qian Xin. Prototethyan orogenesis in southwest Yunnan and Southeast Asia[J]. Science China : Earth Sciences, 2022, 52(11): 2077-2104.
    [129] Wang Y J, Zhang Y Z, Qian X, et al. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: Constraints from igneous and sedimentary rocks[J]. Lithos, 2021, 382-383: 105921.
    [130] Zhang H C, Xu Y J, Cawood P A, et al. Ordovician amphibolite-facies metamorphism in Hainan Island: A record of Early Paleozoic accretionary orogenesis along the northern margin of East Gondwana?[J]. Journal of Asian Earth Sciences, 2022, 229: 105161.
    [131] Roger F, Maluski H, Leyreloup A, et al. U-Pb dating of high temperature metamorphic episodes in the Kon Tum massif (Vietnam)[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 565-572.
    [132] Faure M, Chen Y, Feng Z H, et al. Tectonics and geodynamics of South China: An introductory note[J]. Journal of Asian Earth Sciences, 2017, 141: 1-6.
  • [1] 王昌勇, 常玖, 李楠, 洪海涛, 李雅楠, 王小娟, 李胡蝶.  四川盆地东部地区早侏罗世湖泊古水深恢复 . 沉积学报, 2024, 42(1): 158-170. doi: 10.14027/j.issn.1000-0550.2022.036
    [2] 江勇卫, 杨文博.  扬子北缘白田坝组含锂细碎屑岩物源与沉积环境分析 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.069
    [3] 朱雪清, 刘圣乾, 朱青, 刘彬, 曾治平, 李松涛, 高杨骏.  东道海子凹陷下侏罗统物源分析—来自岩石学、元素地球化学及碎屑锆石年代学的证据 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.104
    [4] 李姣莉, 王建强, 彭恒, 李科亮, 丰孝林, 张东东.  鄂尔多斯盆地南部下白垩统宜君组碎屑锆石U⁃Pb年龄及物源意义 . 沉积学报, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022
    [5] 张治波, 徐颖, 苗艳菊, 王文锋, 赵迪斐, 陈丹玲.  昌都盆地古近系贡觉组物源及其沉积环境 . 沉积学报, 2022, 40(6): 1561-1581. doi: 10.14027/j.issn.1000-0550.2022.094
    [6] 马艺萍, 王荣华, 戴霜, 马晓军.  北祁连北大河沉积物碎屑组成及物源正演分析 . 沉积学报, 2022, 40(6): 1525-1541. doi: 10.14027/j.issn.1000-0550.2022.086
    [7] 李姝睿, 孙高远, 茅昌平, 饶文波.  江苏沿岸辐射沙脊物源分析——来自碎屑重矿物与锆石年代学的证据 . 沉积学报, 2022, 40(4): 931-943. doi: 10.14027/j.issn.1000-0550.2022.023
    [8] 李红, 李飞, 龚峤林, 曾楷, 邓嘉婷, 王浩铮, 苏成鹏.  混积岩中重矿物形貌学特征及物源意义 . 沉积学报, 2021, 39(3): 525-539. doi: 10.14027/j.issn.1000-0550.2020.073
    [9] 黄鑫, 简星, 张巍, 洪东铭, 关平, 杜瑾雪, 张鹏飞.  碎屑石榴石地球化学物源分析与解释:粒度的影响 . 沉积学报, 2019, 37(3): 511-518. doi: 10.14027/j.issn.1000-0550.2018.161
    [10] 雷开宇, 刘池洋, 张龙, 吴柏林, 寸小妮, 孙莉.  鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复 . 沉积学报, 2017, 35(3): 621-636. doi: 10.14027/j.cnki.cjxb.2017.03.019
    [11] 郭佩, 刘池洋, 王建强, 李长志.  碎屑锆石年代学在沉积物源研究中的应用及存在问题 . 沉积学报, 2017, 35(1): 46-56. doi: 10.14027/j.cnki.cjxb.2017.01.005
    [12] 魏震, 郭瑞清, 孙敏佳, 吕彪, 金建斌, 王海培, 王明阳.  新疆库鲁克塔格南华系砂岩碎屑组成对其物源及盆地演化的指示 . 沉积学报, 2017, 35(2): 264-278. doi: 10.14027/j.cnki.cjxb.2017.02.006
    [13] 黄晓宏, 张海军, 王训练, 王勋, 沈智军, 黄宇飞.  东昆仑花石峡北部上二叠统格曲组源区特征:来自碎屑组成和岩石地球化学的证据 . 沉积学报, 2016, 34(6): 1133-1146. doi: 10.14027/j.cnki.cjxb.2016.06.011
    [14] 李俊武, 代廷勇, 李凤杰, 杨承锦, 杨豫川.  柴达木盆地鄂博梁地区古近系沉积物源方向分析 . 沉积学报, 2015, 33(4): 649-658. doi: 10.14027/j.cnki.cjxb.2015.04.003
    [15] 华南新元古代盆地开启年龄及沉积演化特征——以赣东北江南次级盆地为例 . 沉积学报, 2013, 31(05): 834-844.
    [16] 贵州安顺新民二叠系—三叠系界线剖面磁化率变化及古气候环境意义 . 沉积学报, 2012, 30(5): 817-824.
    [17] 王伟涛.  黑龙江省绥滨坳陷下白垩统碎屑岩源区分析及其构造意义 . 沉积学报, 2007, 25(2): 201-206.
    [18] 陈洪德, 王成善, 刘文均, 覃建雄.  华南二叠纪层序地层与盆地演化 . 沉积学报, 1999, 17(4): 528-535.
    [19] 程守田, 黄焱球, 付雪洪.  早中侏罗世大鄂尔多斯古地理重建与内陆拗陷的发育演化 . 沉积学报, 1997, 15(4): 43-49.
    [20] 闵茂中, 张祖还.  论华南含铀沉积建造 . 沉积学报, 1993, 11(4): 1-7.
  • 张杰-沉积学报数据.docx
    附表3 扬子东南缘碎屑锆石.xlsx
    附表2 华夏寒武系—奥陶系碎屑锆石、南部寒武系碎屑独居石与潜在源区.xlsx
    附表1 扬子西缘寒武系—奥陶系碎屑锆石与潜在源区.xlsx
    张杰-沉积学报数据+.docx
    附表4 Hf同位素.xlsx
  • 加载中
图(5)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  51
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-11-23
  • 录用日期:  2023-12-14
  • 网络出版日期:  2023-12-14
  • 刊出日期:  2024-12-10

目录

    走滑汇聚是华南广西运动的成因?

    doi: 10.14027/j.issn.1000-0550.2023.122
      基金项目:

      国家自然科学基金项目 42172126

      国家自然科学基金项目 41772106

      作者简介:

      张杰,男,2000年出生,硕士研究生,沉积大地构造学,E-mail: zhangjie089015@163.com

      通讯作者: 徐亚军,男,教授,E-mail: xuyajun19@163.com

    摘要: 目的 华南东南部在早古生代发生了大规模的褶皱造山运动——广西运动。该期造山运动的属性仍然存在较大争议。为了确定华南广西运动的动力学机制,尝试利用碎屑多矿物U-Pb年代学恢复早古生代扬子地块和华夏地块的古地理位置以及相对位移。 方法 重新评估了扬子地块和华夏地块下古生界碎屑锆石/独居石U-Pb年代学和Hf同位素数据,并与潜在源区进行对比。 结果 (1)扬子西缘寒武系—奥陶系碎屑锆石具有850~750 Ma 和550~500 Ma两期主要的特征年龄峰,以及1 000~900 Ma、1 900~1 800 Ma和2 550~2 400 Ma三个次要年龄峰。扬子西缘550~500 Ma碎屑锆石的εHf(t)值多为正值,指示岩浆源区中大量新生地壳物质的参与,其源区可能为伊朗—土耳其Cadomian岩浆弧。新元古代碎屑锆石主要来自于扬子西缘岩浆岩和下伏新元古界沉积岩的再循环;(2)华夏地块寒武系—奥陶系碎屑锆石/独居石具有1 000~900 Ma和550~500 Ma两期主要的年龄峰,前者对应于印度东北部的East Ghats造山带和东南极洲板块的Rayner造山带,而后者对应于印度东北缘的Kuunga造山带;(3)扬子东南缘志留系碎屑锆石460~410 Ma的年龄峰与华夏地区过铝质花岗岩浆活动的年龄相吻合,大于440 Ma峰值年龄的碎屑锆石则具有与该地区前志留纪样品相似的年龄峰。 结论 物源分析结果表明寒武纪至奥陶纪期间华夏地块和扬子地块分别位于印度东北缘和伊朗东北缘,两者的古地理位置沿冈瓦纳大陆北缘斜列分布。晚奥陶世(~460 Ma)响应于冈瓦纳大陆的最终聚合发生斜向走滑汇聚,形成武夷—云开陆内造山带(460~420 Ma)。

    English Abstract

    张杰, 徐亚军. 走滑汇聚是华南广西运动的成因?[J]. 沉积学报, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
    引用本文: 张杰, 徐亚军. 走滑汇聚是华南广西运动的成因?[J]. 沉积学报, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
    ZHANG Jie, XU YaJun. Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China?[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
    Citation: ZHANG Jie, XU YaJun. Is the Strike-Slip Convergence the Cause of the Kwangsian Orogeny in South China?[J]. Acta Sedimentologica Sinica, 2024, 42(6): 1903-1917. doi: 10.14027/j.issn.1000-0550.2023.122
      • 造山运动是相邻的岩石圈板块在地球表面发生相对位移,产生水平方向上的挤压力,导致岩石急剧变形而大规模隆起形成山脉的运动[1]。这种相对位移是岩石圈板块在地球表面的古地理位置发生改变而产生绝对位移的结果。因此,恢复造山期之前相关板块的古地理位置有助于判断板块相对位移的方式:垂直于造山带方向上的挤压缩短或者平行于造山带方向上的走滑汇聚[2]。这是揭示造山运动过程以及动力学机制的重要依据。

        组成东亚、东南亚的诸多块体都起源于冈瓦纳北缘,并随着古—新特提斯洋的开合最终增生到亚洲大陆上,恢复这些块体在早古生代冈瓦纳大陆汇聚时的绝对位置和相对位置对于理解冈瓦纳大陆边缘的地质演化过程至关重要[34]。华南板块是东亚最重要的亲冈瓦纳板块之一。该板块的东南部在早古生代(460~420 Ma)经历了强烈的造山运动。该期造山运动最早被命名为“广西运动”[5],形成的造山带先后被称为“华南加里东褶皱带”[6]、“华南早古生代造山带”[7]或者“武夷—云开造山带”[8]。该期造山事件的动力学机制存在较大的争议,争论的核心在于造山作用的性质是陆内造山还是板缘碰撞造山。虽然这两种造山运动模型争论的焦点是围绕扬子地块和华夏地块之间[911]或者华夏以东地区在早古生代是否存在洋盆[1213],但两者均强调造山运动是扬子地块和华夏地块之间垂直于造山带的相对位移引起。然而,扬子地块和华夏地块在冈瓦纳北缘的绝对位置并没有得到很好的限定[1417],这将直接影响两者相对位移方向以及造山作用运动学和动力学机制的确定。

        近年来,定量化的数据评估[1822]和大样本分析技术的发展[23]使得碎屑多矿物U-Pb年代学成为研究沉积源—汇系统和限定板块古地理位置的重要工具[24]。基于此,汇编了华南板块寒武系—志留系碎屑锆石、碎屑独居石U-Pb年代学和Hf同位素数据,利用大样本分析技术重新评估了这些碎屑沉积物的源区,分别恢复了扬子地块和华夏地块在早古生代不同时期的古地理位置,通过古地理位置的变化来判断两者相对位移与造山带走向之间的关系,并结合已有的区域地质资料,讨论华南广西运动的运动学特征,提出一种全新的动力学模型。

      • 华南板块由扬子和华夏两个块体组成。华南板块北部以秦岭—大别造山带与华北板块相连,西北和松潘—甘孜地体以龙门山断裂为界,西南界限为哀牢山—松马缝合带,东部与太平洋相连。扬子地块和华夏地块在新元古代发生碰撞[2527](ca. 820 Ma),形成江南造山带。在此之后,伴随着全球范围内Rodinia超大陆的裂解,华南板块进入陆内裂谷演化阶段[2829](ca. 815~680 Ma),成为超大陆解体形成的全球裂谷系统的重要部分。

        寒武纪—奥陶纪扬子地块和华夏地块均处于台地—浅海沉积环境[3031],扬子地块广泛发育碳酸盐台地沉积,形成了巨厚的碳酸盐岩沉积序列夹硅质岩、碳质页岩组合;华夏地块则主要接受陆源碎屑沉积,发育浅海斜坡相沙泥质岩,向西北方向碳酸盐岩含量逐渐增多。这种稳定的沉积格局一直持续到晚奥陶世[32]。之后,华夏地块和江南地区(扬子地块东南缘)发生了一次大规模的造山运动——广西运动(图1)。这次造山运动导致华夏地区缺失志留系,前志留纪岩石发生强烈的变形和变质作用。武夷和云开穹隆区变质级别达麻粒岩相[33]。江南地区变质—变形作用不如华夏地区强烈,主要沿大断裂带发生走滑作用,形成沿断裂带分布的糜棱岩带[3437]。变质作用研究显示,麻粒岩相变质作用的时间介于440~430 Ma,韧性剪切变形冷却时间介于440~410 Ma[38]。广西运动使得地壳显著加厚,发生部分熔融进而产生强烈的花岗岩浆活动,影响范围波及整个华夏和江南地区。岩浆活动的时代集中在460~400 Ma[38]。花岗岩浆活动以过铝质S型花岗岩为主,岩浆锆石较负的εHf(t)值和太古宙—中元古宙的二阶段模式年龄表明其来自古老地壳的部分熔融[3942]。I型和A型花岗岩分布较为局限[4347]。一些岩石学的研究[48]已经证实古老的岩石圈地幔对I型花岗岩的形成有重要贡献。前人在武夷—云开一带报道了少量中基性岩浆活动[911,49],时代集中在420~400 Ma[38],大部分与A型花岗岩同期,共同指示加厚地壳的后造山伸展[50]

        图  1  华南地质简图

        Figure 1.  Simplified geological map of South China

        广西运动在志留纪晚期结束[51]。泥盆系滨浅海相石英砂岩不整合覆盖在华南板块主体之上,标志着新一轮海侵的开始。石炭纪—二叠纪华南板块进入相对稳定发展阶段,华夏区、江南区和扬子区被相似的浅海相碳酸盐岩、硅质岩和少量的碎屑岩覆盖,标志着一个真正统一的南方古地理格局开始出现。早—中三叠世,受古特提斯洋关闭的影响,华南板块北部和南部分别受到华北板块和东南亚诸板块南北向挤压。华南地区发生了广泛的陆内变形[5254]和花岗岩浆作用(245~205 Ma)[5557],上三叠统—下侏罗统陆相砂砾岩呈角度不整合覆盖在早期岩石之上。晚侏罗世—早白垩世,受古太平洋板块向东亚大陆岩石圈之下消减的影响,华南中东部被NE—SW向构造叠加[5859],发育了大量的140~100 Ma的侵入岩和火山岩[6062]以及多个NE—SW向的裂谷盆地[58,6364]。数千米的上白垩统—古近系红色碎屑岩夹碱性玄武岩充填在裂谷盆地之中,并被100~70 Ma的碱性花岗岩侵入[65]

      • 在过去的二十年里,不断改进的同位素测年技术在地球科学领域的快速传播有力地促进了碎屑矿物年代学的发展,发表U-Th-Pb年代学数据的出版物呈指数级增长。然而,不同样本的分析颗粒数目的差异[21],取样和矿物分选的偏差[66]以及具有相同年龄模式的不同潜在物源[67]均导致利用小样本数据集进行源—汇分析时存在重要缺陷,极大地影响了碎屑矿物U-Pb年代学作为精确的古地理重建指标的应用。

        碎屑矿物U-Pb年代学本质上是一种基于统计学的抽样调查,其能否代表所属地层的真实物源,在很大程度上取决于碎屑矿物的测试数量。在利用LA-ICP-MS进行物源分析的碎屑锆石测试时,测试数量一般被设置为60~120颗[21,68],以保证检测失败率(p,即某一年龄组分无法被检测到的概率)小于5%。对于年龄组成更为复杂的碎屑岩,则需要更多的样本量以确保占比较低的年龄组分被检测到。统计发现,碎屑锆石的测试数量满足n≥300时,才能使得比例小于2%的年龄组分的检测失败率降至1%以下[67]。大样本数据集(一般指测试数据n>1 000)在识别出占比较低的年龄组分的同时,还可以在进行年龄相似性统计指标的计算时大幅度地提升各年龄组分估计的准确度[18]

        在对碎屑矿物U-Pb年代学数据进行解释之前,需要进行数据评估以得到最终的单颗粒年龄,包括选取最佳临界年龄和不谐和度的筛选两个过程。Gibson et al.[24]利用U-Pb年代学常用的相似性量化指标计算了应用不同临界年龄的同一样本的相似性,以验证不同样本容量对于最佳临界年龄选取的影响。结果表明,样本容量越高,最佳临界年龄的选择对利用大样本数据集进行年龄对比和样本相似性统计指标的计算的影响越小。

        在碎屑矿物的U-Pb年龄测试中,三组同位素比值对应年龄间的差异用不谐和度来表示。在实际的筛选过程中,不谐和度并非直接观测,而是通过不同同位素年龄的比值或绝对值的差异等来计算[6970]。由于同位素年龄存在误差,不谐和度受其影响也含有误差。

        将不谐和度定义为:

        disc=1-t206Pb238Ut207Pb206Pb (1)

        式中:t206Pb238Ut207Pb206Pb分别为206Pb/238U年龄和207Pb/206Pb年龄。利用误差传播方程:

        σx2=σu2xu2+σv2xv2+2σuv2xuxv (2)

        得到不谐和度的误差:

        σdisc2=σt682(-1t76)2+σt762(t68(t76)2)2 (3)

        式中:t68t76分别代表206Pb/238U年龄和207Pb/206Pb年龄。

        基于Gibson et al.[24]提出的原则对汇编数据进行不谐和度的筛选:排除不谐和度大于10%或小于-5%的分析,即disc-σdisc2>10%或disc+σdisc2<-5%。所有符合上述筛选标准的数据都按照地层年龄进行分类,样品分布如图2所示。

        图  2  汇编数据集中碎屑锆石、独居石样品位置

        Figure 2.  Locations of detrital zircon and monazite samples in the compilation dataset

      • 550~500 Ma的年龄峰是扬子西缘的一个特征年龄峰(图3a-1),同时期华南内部没有规模性的岩浆事件,仅在云南报道有少量的埃迪卡拉纪—寒武纪(555~525 Ma)的凝灰岩夹层[7173]。扬子西缘这一时期的碎屑锆石具有自形程度较高,年龄图谱表现为结晶年龄与沉积年龄一致的特点[14],显示出近距离搬运的特征。Hf同位素数据显示扬子西缘550~500 Ma碎屑锆石的εHf(t)值介于-8.2~10.05,大多落在了球粒陨石均一储库和亏损地幔演化线之间(图4a),表明其岩浆源区以新生地壳物质为主,并有部分古老地壳物质的再循环。上述特点指示扬子西缘550~500 Ma的碎屑锆石可能的来源为近源的活动的大陆岛弧源区,与扬子地块邻近的一些源自冈瓦纳大陆的东亚块体的岩浆事件年龄[7476]和扬子西缘这一时期的碎屑锆石年龄不一致。拉萨地体的岩浆活动(568~488 Ma)记录在时间上与扬子西缘这一时期的碎屑锆石U-Pb年龄接近,但是其广泛分布的、显示出以较负的εHf(t)值为主的强过铝质花岗岩与扬子西缘同时期的碎屑锆石记录并不一致。Chen et al.[14]认为可能的源区为靠近扬子地块西缘的伊朗—土耳其Cadomian岩浆弧而非东冈瓦纳埃迪卡拉纪—寒武纪的同造山碎屑。沿伊朗—土耳其边缘展布的Cadomian岩浆弧在新元古代晚期至早古生代初期产出了大量的572~528 Ma钙碱性岩浆岩和550~500 Ma的火山碎屑[7779](图3a-2),与扬子西缘碎屑锆石U-Pb年龄和Hf同位素的对比结果(图4b)表现出较好的一致性。

        图  3  锆石/独居石U⁃Pb年龄图谱

        Figure 3.  Spectra of the zircon/monazite U⁃Pb ages

        图  4  扬子西缘寒武系—奥陶系碎屑锆石εHf(t)值与U⁃Pb年龄二元关系图(数据见附表4)

        Figure 4.  Plot of εHf(t) versus ages of Cambrian⁃Ordovician detrital zircons in western Yangtze

        扬子西缘寒武系—奥陶系碎屑沉积物中保存了大量年龄介于850~750 Ma的锆石(图3a-1),这一时期的碎屑锆石的εHf(t)值集中在-25.6~19.4。扬子西缘新元古代构造—岩浆活动十分强烈,于860~740 Ma形成了大量的侵入岩体(图3a-34c)。扬子西缘新元古代地层中也保存了大量的拉伸纪碎屑锆石,峰值年龄为807 Ma(图3a-4),εHf(t)值介于-10.02~15.06。这些新元古代岩石中的锆石U-Pb年龄和Hf同位素与扬子西缘寒武系—奥陶系中的同期碎屑锆石一致(图4a)。岩相古地理图[80]显示寒武纪—奥陶纪时期,扬子地块东南部为碳酸盐台地沉积,不可能接受来自印度西北缘(图3a-5)的碎屑供应。扬子西缘寒武系—奥陶系中也保存了少量1 000~900 Ma的碎屑锆石,并产生了946 Ma的峰值年龄(图3a-1),εHf(t)值介于-6.9~7.41,大多数为负值。这一时期扬子西缘没有规模性的岩浆事件,而下伏新元古界中保存的1 000~900 Ma的碎屑锆石产生了917 Ma的峰值年龄(图3a-4)。综上,扬子西缘寒武系—奥陶系中保存的新元古代锆石的主要来源为扬子西缘新元古代岩浆岩和沉积岩的再循环。

        图  5  华南早古生代构造演化示意图

        Figure 5.  Schematic illustrations of the Early Paleozoic evolution of South China

        扬子西缘寒武系—奥陶系中太古代—中元古代的碎屑锆石含量较低,与下伏新元古界沉积岩中的锆石年龄特征一致。除此之外,扬子西缘、北缘也都报道有这一时期的岩浆记录。例如,代表扬子基底的陡岭杂岩[81](~2.5 Ga)、鱼洞子杂岩[82](2.7~2.5 Ga);古元古代中期的南秦岭后河片麻岩[83](~2 080 Ma);中元古代的扬子北缘神农架群凝灰岩[8485](~1.2 Ga)等。上述基性—中酸性岩体主要出露在扬子北缘,然而寒武纪至奥陶纪期间,扬子地块的主要隆起区分布在西部和西南边缘,因此认为这些太古代—中古元古代的碎屑锆石同样来自于下伏新元古代地层。

        上述对扬子西缘寒武系—奥陶系碎屑锆石U-Pb年龄和Hf同位素数据的分析表明扬子西缘在这一时期同时接受了扬子地块西缘基底和外部伊朗Cadomian岩浆弧两个源区的物源供应。

      • 华夏地块寒武系—奥陶系碎屑锆石具有1 000~900 Ma 和600~500 Ma两期主要的特征年龄峰(图3b-1)。而华夏地区仅局部发育997~755 Ma的岩浆岩,没有600~500 Ma左右的热事件记录。区域岩相古地理分析显示,华夏地块在寒武纪—奥陶纪处于海相环境,而扬子地块东南部以台地相—斜坡相的碳酸盐岩夹深水相细碎屑岩为主(图5a,b),所以新元古代—寒武纪(1 000~500 Ma)的碎屑锆石只能源自华夏东南缘以外的其他源区。这也与华夏地块下古生界古流向资料一致[30,86]。这两期岩浆事件在东冈瓦纳北缘广泛发育,分别代表Rodinia超大陆聚合的Grenville期和Gondwana大陆聚合的泛非期热事件。对比经过汇编处理后的大数据年龄谱,华夏地块寒武系—奥陶系的碎屑锆石年龄谱特征与同期印度东北缘的碎屑锆石年龄谱相似(图3b-1,b-2)。Hf同位素组成也同样支持这一结论。华夏地块寒武系—奥陶系中1 000~900 Ma碎屑锆石的εHf(t)值变化范围极大,大多为负值[15,87],这与特提斯—喜马拉雅和东南极洲碎屑锆石的Hf同位素特征一致[8890]。因此,华夏地块寒武系—奥陶系沉积序列中高比例的Grenville期和泛非期的碎屑锆石可能源自印度北缘。

        独居石是过铝质花岗岩和贫Ca的变质岩中的一种副矿物,其产出的源岩类型和形成条件要远高于锆石[80,91]。因此,碎屑独居石可以作为碎屑锆石物源分析的有效补充[92]。多种碎屑矿物组合分析可以更可靠地限定源区。Xu et al.[16]将华夏地块南部碎屑独居石与潜在源区火成岩和高级变质岩中独居石进行了对比(图3b)。采集自华夏地块西南部广西大明山地区的碎屑独居石显示出550~500 Ma、1 000~900 Ma的年龄峰(图3b-2),尽管1 000~900 Ma的年龄峰值在印度西北缘(图3b-3)以及印度东北East Ghats造山带和南极洲板块的Rayner造山带中(图3b-2)都存在相应的独居石记录[9397],但是550~500 Ma的特征峰在印度西北缘的沉积记录中是缺乏的(图3b-4)。Rayner-East Ghats造山带与华夏南部寒武系碎屑独居石U-Pb年龄图谱显著的一致性,不仅建立了华夏地块与印度北缘的源—汇关系,更明确地将寒武纪华夏地块的古地理位置置于印度东北缘。

      • 扬子东南缘志留系碎屑锆石年龄谱显示的460~410 Ma的年龄峰(图3c-1)与广西运动形成的S型花岗岩的年龄相吻合,扬子东南缘和华夏地区的志留系古水流数据[30,86]也指示向西和西北方向的碎屑输送,较老(大于440 Ma峰值)的碎屑锆石则具有与该地区前志留纪样品相似的年龄峰(图3c-2)。因此,结合华夏地块广泛缺失志留系(图5c),扬子东南缘志留系的碎屑来源主要是华夏地块早古生代同造山花岗岩以及寒武系—奥陶系沉积岩的再循环。

      • 长期以来,对于广西运动的性质存在两种不同的认识。一种观点是广西运动是典型的洋壳俯冲—碰撞型造山运动。一些学者[913,49]依据武夷—云开一带出露的具有蛇绿岩—岛弧岩浆岩特征的中基性岩浆岩(450~430 Ma)以及沿政和—大埔断裂分布的基性—超基性岩和火山熔岩,提出早古生代华南发生了洋壳关闭之后的碰撞造山作用,消减带位于扬子与华夏之间[913,49]或是沿着现今华南东南缘[98100]。另外一种观点认为广西运动具有典型的陆内造山的特点。主要证据包括:华夏地块缺乏碰撞造山带发育的岛弧岩浆岩、蛇绿岩和高压低温变质岩,广泛发育古老地壳重熔形成的S型花岗岩,以及缺乏新生幔源岩浆的输入。近年来的研究进一步确定了广西运动属于陆内造山体制。例如,过去报道的岑溪县糯峒蛇绿岩[10]缺少地幔橄榄岩,零星出露的辉绿玢岩可能为三叠世浅成基性岩墙,而非早古生代蛇绿岩[33]。华夏西缘在成冰纪出现了源自印度北缘和扬子地块的物源交互现象[30,101102]。郴州—临武断裂带两侧寒武系—奥陶系也具有指状交互沉积的特点[103]。这些证据表明,在早古生代造山作用之前扬子地块和华夏地块之间并不存在洋盆。

        尽管多数证据[104106]支持华南广西运动属于陆内造山作用,但是陆内造山的动力学机制一直是未解之谜。Faure et al.[7]认为华夏地块在晚奥陶世沿江山—绍兴断裂向北俯冲,响应于南北向的挤压收缩,基底与盖层之间发生韧性滑脱,发育黑云母—石榴石—蓝晶石的高温变质相矿物组合,上覆前志留纪地层则形成向南的逆冲褶皱。然而上述角闪岩相—麻粒岩相变质作用仅在远离江绍断裂的武夷和云开穹窿区发育,沿江绍断裂广泛发育绿片岩相低级变质作用。Li et al.[8]根据南华裂谷的沉积序列演替提出了前陆盆地模型。他们认为华南板块与印度北缘在埃迪卡拉纪—寒武纪早期发生碰撞[107],导致华夏地块向NW方向仰冲至扬子东南缘,华南内部发生板内变形。但是,新元古代晚期—早古生代华夏地块与印度北缘之间的连接已经被两者之间建立的源—汇系统证明[15,108112]。加之,印度北缘已报道的岩浆活动的年龄不晚于470 Ma[113]。因此,很难将华南早古生代陆内造山运动同印度北缘的造山作用联系起来。Shu et al.[86]依据华夏地块武夷山地区早古生代构造变形的扇形逆冲特点,提出南华盆地在晚奥陶世—泥盆纪沿武夷—云开一线发生上隆,随后剥露的同造山花岗岩同时为造山带两侧提供物源。古水流证据也表明这一时期造山带两侧存在沉积物的双向搬运[101102]。Shu et al.[86]的准对称式正花状上隆模型将华南早古生代造山作用归因于可能的南海地块向华夏地块之下的俯冲,然而南海地块的存在和驱动南海地块发生俯冲的动力来源均缺乏明确的地质证据。

        学界普遍认为陆内造山运动是板块边缘构造活动的远程响应[114116]。然而,更早时期的陆内造山事件由于之后的板块重组导致该时期的板块边缘消失,从而无法评估陆内造山作用的动力来源。因此,解释古老陆内造山运动的动力学机制的前提在于恢复同期的板块边缘及其构造活动。具体地说,要确定板块在全球构造格局中的位置[115],厘清板缘构造活动与陆内变形的时间顺序,从而建立二者的时空联系。

        过去的研究[1415,17]通常依据碎屑锆石的特征年龄峰(例如1 300~1 000 Ma或1 000~900 Ma)将早古生代华南的古地理位置同澳大利亚或印度北缘联系起来。汇编的数据显示,寒武纪—奥陶纪扬子西缘接收了来自伊朗Cadomian岩浆弧的外部物源,而同一时期华夏地块接收了来自印度东北缘碎屑的输入。物源分析结果表明,寒武纪—奥陶纪时期扬子地块和华夏地块分别位于伊朗东北缘和印度东北缘(图5a)。这种沿着冈瓦纳北缘斜列分布的古地理格局一直持续到晚奥陶世。志留纪期间,扬子东南缘碎屑锆石年龄图谱和古水流数据记录了来自武夷—云开造山带S型花岗岩的岩浆锆石输入。这表明扬子地块和华夏地块在志留纪重新合并形成统一的华南大陆(图5c)。扬子与华夏地块在寒武纪—奥陶纪和志留纪两个时期古地理位置上的相对位移与广西运动的时空耦合表明,广西运动是发生在冈瓦纳大陆北缘的一种平行/斜交造山带走向的走滑汇聚(图5b),而非垂直于造山带走向的挤压收缩作用。

        需要指出的是,本文提出早古生代扬子地块和华夏地块通过陆内走滑的方式并置,从而导致广西运动的发生。这种汇聚方式类似于Wang et al.[117]提出的模型,但是由于对扬子地块和华夏地块在冈瓦纳北缘古地理位置重建结果的差异,认为扬子地块与华夏地块的拼贴是通过右行走滑完成的,而非Wang et al. [117]研究认为的左行走滑。

        在地壳变形过程中,先存构造边界(通常是一些大型断裂),往往作为后期造山过程的“构造软弱带”和“应变集中带”存在[118119]。江山—绍兴断裂的早古生代构造变形[120]表现为分布广泛的NE—SW走向的陡倾糜棱面理和低角度的矿物拉伸线理,后者指示剪切过程中的高走滑位移分量。运动学指向以NE—SW向的走滑变形为主,并伴随有SE向NW方向的逆冲作用,形成NE—SW向的斜向剪切作用。Li et al.[121]研究证实在451~420 Ma期间,陈蔡地区和武夷山东段发生了NE—SW向的斜向剪切作用,并伴随角闪岩相变质作用。这表明江山—绍兴断裂在早古生代造山阶段发生构造活化,从新元古代扬子地块与华夏地块的碰撞边界转变为一条以强烈韧性剪切变形和角闪岩相变质作用为特征的高应变挤压走滑带[120121]。在江山—绍兴断裂带两侧的华夏和江南地区,早古生代韧性剪切构造的观测结果和年代学资料进一步证实了这一观点。在江南造山带的九岭地区,Chu et al.[36]和Li et al.[37]识别出多条E—W走向和NE—SW走向的韧性剪切带:前者多为右行走滑变形,后者则以SE向NW方向的逆冲变形为主。韧性剪切变形的时代为460~420 Ma,变质程度达高绿片岩相。Xu et al.[3435]在江南造山带东段的江湾剪切带和景德镇剪切带中,识别出NE—SW走向的右行走滑剪切带,并结合云母39Ar-40Ar定年结果,确定剪切变形时代分别为~449 Ma和~447 Ma。在华夏地区,Shu et al.[123-124]研究发现武夷山地区在458~421 Ma发生强烈的构造变形作用,表现为北部向北西,南部向南东的扇形逆冲,同时伴有走滑韧性剪切。武夷山北缘韧性剪切带内的独居石U-Th-Pb定年结果[7,125]进一步确认了武夷山北缘于453~433 Ma发生明显的NW—SE向挤压缩短变形。

        陆内造山的驱动力通常来自大陆边缘的板块俯冲或陆—陆碰撞作用[114115,126],且陆内变形的发生时间通常晚于板缘构造事件。碎屑物源分析结果[127]表明寒武纪—奥陶纪期间,原特提斯洋分支洋盆三岐—福山洋分割了长山—华南—印度联合板块和昆嵩—海南—澳大利亚联合板块(图5b)。三岐—福山洋在早奥陶世(~485 Ma)发生初始洋陆俯冲[128129]。随着洋壳的持续消减,俯冲带在早—中奥陶世逐渐演变为双向俯冲体系[128]。沉积与变质记录[127128]显示洋盆在晚奥陶世—早志留世逐渐闭合。海南岛与昆嵩两地保存的 468~450 Ma的高级变质岩[130132]记录了两个联合板块之间的陆—陆碰撞造山作用,几乎同步于广西运动的启动时间(~460 Ma)。此外,三岐—福山洋盆的关闭代表了冈瓦纳大陆的最终聚合[111,127]。基于上述碰撞造山作用与陆内变形的时空关系,可以推断华南广西运动的驱动力可能源自昆嵩—海南—澳大利亚联合板块与长山—华南—印度联合板块的陆—陆碰撞作用,碰撞应力向周缘板块的传播以及周缘板块响应于冈瓦纳大陆最终聚合之后的古地理位置调整可能导致了扬子地块沿着江山—绍兴断裂向华夏地块的走滑汇聚,最终导致了广西运动的发生。

      • 华南板块大数据碎屑多矿物U-Pb年代学及Hf同位素对比结果显示,扬子西缘寒武系—奥陶系碎屑锆石具有850~750 Ma 和550~500 Ma两期主要的特征年龄峰,以及1 000~900 Ma、1 900~1 800 Ma和2 550~2 400 Ma三个次要年龄峰,εHf(t)值的对比结果表明扬子西缘主要接收了伊朗Cadomian岩浆弧和扬子西缘基底的碎屑输入。华夏地块寒武系—奥陶系碎屑锆石/独居石具有1 000~900 Ma和550~500 Ma两期主要的年龄峰,分别对应于印度东北部的East Ghats-Rayner造山带和Kuunga造山带。扬子东南缘志留系碎屑锆石年龄谱显示的460~410 Ma的年龄峰与华夏地区过铝质花岗岩浆活动的年龄相吻合,大于440 Ma峰值的碎屑锆石则具有与该地区前志留纪样品相似的年龄峰。

        物源分析结果表明,寒武纪—奥陶纪时期,华夏地块和扬子地块分别位于印度东北缘和伊朗东北缘,沿着冈瓦纳北缘斜列分布。志留纪时期扬子地块和华夏地块重新合并形成统一的华南大陆。扬子地块与华夏地块在寒武纪—奥陶纪和志留纪两个时期古地理位置上的相对位移与广西运动的时空耦合,表明广西运动是发生在冈瓦纳大陆北缘的一种平行/斜交造山带走向的陆内走滑汇聚作用,而非垂直于造山带走向的挤压收缩作用。这种走滑汇聚可能是响应于冈瓦纳最终聚合之后的周缘板块调整。

    参考文献 (132)
    补充材料:
    张杰-沉积学报数据.docx
    附表3 扬子东南缘碎屑锆石.xlsx
    附表2 华夏寒武系—奥陶系碎屑锆石、南部寒武系碎屑独居石与潜在源区.xlsx
    附表1 扬子西缘寒武系—奥陶系碎屑锆石与潜在源区.xlsx
    张杰-沉积学报数据+.docx
    附表4 Hf同位素.xlsx

    目录

      /

      返回文章
      返回