-
研究区太原组下段煤系泥页岩的有机碳变化范围较大(表1),碳含量介于0.41%~4.93%,平均为2.32%。样品硫含量介于0.02%~1.68%,平均为0.42%,且分布具有明显的两段性:低硫段0.02%~0.41%和高硫段1.21%~1.68%。研究区大部分样品(15个)属于低硫区域(硫含量0.02%~0.41%),只有3个样品硫含量较高(1.21%~1.68%)。
表 1 临兴地区太原组下段煤系泥页岩中主量元素测试分析数据(%)
样品编号 TOC S P2O5 Fe2O3 SiO2 Al2O3 MgO CaO Na2O K2O CaO/(MgO+Al2O3) V1-1 0.41 0.40 0.13 1.72 63.13 24.71 0.14 0.10 0.21 5.63 0.03 V1-2 1.12 0.37 0.16 5.41 60.48 20.93 0.86 0.77 0.30 3.50 0.04 V1-3 1.48 1.68 0.13 13.28 58.98 16.34 0.35 0.42 0.24 1.78 0.07 V4-1 2.42 0.32 0.14 1.97 58.49 26.87 0.23 0.20 0.13 2.00 0.03 V5-3 3.61 0.12 0.12 1.61 62.69 20.42 0.39 0.37 0.20 4.07 0.05 V10-1 3.05 0.07 0.06 0.99 61.21 21.54 0.17 0.14 0.13 2.00 0.04 V16-2 1.85 1.21 0.09 5.07 61.47 22.83 0.31 0.11 0.28 2.76 0.02 V17-1 1.55 1.20 0.11 9.07 61.86 20.96 0.83 0.88 0.36 3.17 0.05 V20-1 4.00 0.29 0.05 2.60 59.80 24.09 0.42 0.47 0.53 5.14 0.05 V20-2 4.93 0.19 0.12 1.55 61.41 20.49 0.33 0.34 0.16 3.39 0.05 V20-22 1.81 0.02 0.03 0.61 62.84 17.57 0.24 0.11 0.24 1.89 0.03 V21-1 0.61 0.39 0.17 1.70 61.53 20.14 0.20 0.34 0.11 3.52 0.08 V22-1 1.82 0.31 0.06 2.00 63.08 15.90 0.29 0.12 0.18 1.60 0.03 V27-1 1.03 0.20 0.16 2.41 63.48 21.87 0.46 0.39 0.29 5.10 0.04 V28-2 4.07 0.05 0.04 0.86 57.84 28.96 0.13 0.11 0.18 5.48 0.01 V33-1 2.60 0.38 0.10 3.53 58.90 26.59 0.79 0.19 0.15 5.30 0.01 V36-1 2.39 0.35 0.13 6.49 59.14 20.77 0.82 0.79 0.21 3.12 0.05 V36-11 3.08 0.03 0.04 1.17 62.19 23.05 0.18 0.14 0.13 2.02 0.03 -
微量元素分析结果显示(表2),研究区太原组下段煤系泥页岩的Li、Co和Cu元素含量波动最大,其含量最大值和最小值相差40倍以上;其次为Ni、Zn、Mo和Cd,最大值与最小值相差10~40倍;再次是Cs和Hf,最大值与最小值相差5~10倍;Be、V、Cr、Ga、Ge、Rb、Sr、Zr、Nb、Sn、Ba、Tl、W、Ta、Pb、Bi和U含量较稳定,最大值与最小值相差1~5倍。
表 2 临兴地区太原组下段煤系泥页岩中微量元素测试分析数据(μg/g)
样品编号 Li V Cr Co Ni Ga Sr Zr Sr/Ba δU V/(V+Ni) Sr/Cu V/Cr Ni/Co Th-Hf Th/U V1-1 45.81 67.45 44.21 0.85 5.45 25.80 153.06 184.92 0.79 0.86 0.93 85.22 1.53 6.43 3.97 4.46 V1-2 16.62 108.08 57.53 17.99 22.44 23.62 512.87 369.30 1.08 0.81 0.83 41.62 1.88 1.25 8.99 4.91 V1-3 26.33 95.35 55.86 22.00 30.01 22.89 258.38 328.59 0.66 0.90 0.76 12.51 1.71 1.36 1.75 4.10 V4-1 52.50 147.33 79.87 16.79 62.84 26.66 169.32 231.52 0.32 0.79 0.70 16.12 1.84 3.74 6.69 5.11 V5-3 49.72 116.79 53.77 18.54 33.52 23.98 154.35 183.80 0.34 0.81 0.78 4.92 2.17 1.81 9.98 4.94 V10-1 55.18 127.33 66.01 11.86 45.80 23.36 233.89 257.36 1.13 0.89 0.74 20.78 1.93 3.86 3.72 4.19 V16-2 47.38 108.73 60.85 21.57 31.39 25.06 153.21 276.82 0.40 0.85 0.78 6.31 1.79 1.46 7.12 4.52 V17-1 39.51 138.82 73.87 28.32 38.68 24.86 190.76 269.31 0.36 0.85 0.78 15.75 1.88 1.37 6.46 4.47 V20-1 51.17 94.47 49.45 16.30 33.75 24.48 99.35 173.53 0.28 0.89 0.74 2.51 1.91 2.07 4.56 4.16 V20-2 50.53 90.89 43.68 13.90 29.05 24.33 101.46 194.35 0.27 0.85 0.76 3.51 2.08 2.09 9.46 4.52 V20-22 42.41 152.52 82.98 19.38 64.02 23.03 175.30 172.67 0.49 0.86 0.70 13.13 1.84 3.30 6.87 4.39 V21-1 20.15 82.28 33.66 6.73 25.01 21.92 807.03 78.34 2.14 1.06 0.77 89.11 2.44 3.72 3.77 2.96 V22-1 88.52 100.92 67.41 12.22 23.69 20.55 82.17 290.71 0.26 0.91 0.81 3.15 1.50 1.94 5.35 3.96 V27-1 21.85 72.64 39.79 3.81 7.91 23.23 132.23 240.58 0.32 0.84 0.90 6.30 1.83 2.08 19.19 4.65 V28-2 41.88 59.64 34.44 5.82 16.31 26.40 201.45 95.38 0.90 0.88 0.79 9.44 1.73 2.80 10.48 4.26 V33-1 117.16 97.57 66.60 8.64 28.37 27.16 63.28 457.44 0.17 0.82 0.77 5.82 1.46 3.28 7.11 4.83 V36-1 36.12 128.93 54.11 9.27 26.46 23.51 139.72 168.96 0.36 0.86 0.83 4.14 2.38 2.85 14.49 4.38 V36-11 45.88 132.30 76.31 11.65 18.28 22.31 122.40 367.88 0.37 0.92 0.88 4.51 1.73 1.57 8.12 3.88 将研究区太原组下段煤系泥页岩的微量元素与平均页岩[25]进行对比,得到研究区太原组下段煤系泥页岩的微量元素富集特征。结果显示,研究区太原组下段煤系泥页岩中Ga、Hf、Bi、Zr、Pb和Th富集;Cr、Co、Cu、Zn、Rb、Sr、Mo、Sn、Ba、Ta、Ni和Cd亏损明显。其他元素接近平均页岩元素丰度。
-
研究区太原组下段煤系泥页岩中的稀土总量(ΣREE)分布在97.10~535.27 μg/g之间,平均值为277.42 μg/g,是大陆上地壳[26]稀土平均含量(ΣREE=146.4 μg/g)的1.9倍,是平均页岩[25]的1.4倍,表现出REE富集特征。轻重稀土元素之比LREE/HREE(L/H)为9.56~33.68,平均值为16.09,比上地壳L/H比值(9.5)大,LaN/LuN为1.80~3.27,均大于1。δCe介于0.88~1.13,平均值为0.98;δEu介于0.62~1.11,平均值为0.89(表3)。
表 3 临兴地区太原组下段煤系泥页岩中稀土元素测试分析数据(μg/g)
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y V1-1 23.89 44.20 4.55 14.12 2.21 0.35 1.79 0.31 2.02 0.41 1.31 0.22 1.49 0.23 10.71 V1-2 136.91 266.37 24.13 79.32 10.91 2.20 6.91 0.77 3.48 0.59 1.66 0.25 1.55 0.24 13.86 V1-3 47.89 95.20 10.70 39.69 6.50 1.32 5.23 0.72 4.10 0.76 2.20 0.34 2.22 0.34 19.20 V4-1 55.40 119.62 11.90 40.71 6.34 1.00 4.56 0.72 4.15 0.79 2.44 0.41 2.64 0.40 19.25 V5-3 70.62 138.86 15.25 50.16 8.82 1.46 6.74 1.05 6.00 1.08 3.15 0.49 3.11 0.46 26.37 V10-1 51.54 104.13 11.87 39.54 7.34 1.28 5.97 0.94 5.30 0.98 2.91 0.47 3.09 0.47 24.21 V16-2 78.46 157.20 16.37 57.44 8.73 1.70 6.46 0.91 5.20 0.97 2.77 0.42 2.66 0.41 24.37 V17-1 61.82 125.26 13.35 47.38 7.93 1.70 6.92 0.99 5.63 1.04 3.00 0.46 3.03 0.47 27.27 V20-1 48.36 93.99 10.52 37.76 6.23 1.21 5.04 0.75 4.42 0.84 2.42 0.37 2.45 0.37 20.97 V20-2 60.40 122.90 13.16 46.54 7.78 1.46 6.19 0.89 5.01 0.91 2.61 0.39 2.48 0.38 23.80 V20-22 48.88 101.78 10.19 33.21 5.07 0.95 3.87 0.59 3.65 0.73 2.24 0.36 2.40 0.37 18.75 V21-1 34.83 69.26 7.37 24.34 4.18 0.74 3.02 0.47 2.60 0.48 1.42 0.22 1.37 0.20 12.18 V22-1 52.10 100.82 11.98 40.49 7.50 1.18 5.91 0.97 5.77 1.11 3.47 0.60 3.97 0.60 25.34 V27-1 70.62 177.94 18.01 63.02 11.37 1.35 7.95 1.17 5.94 1.00 2.79 0.44 2.64 0.37 22.30 V28-2 69.25 148.63 15.13 54.54 8.89 1.70 6.23 0.78 3.90 0.68 1.91 0.28 1.80 0.29 17.11 V33-1 59.10 101.94 10.36 32.27 5.29 0.76 4.36 0.76 4.64 0.88 2.61 0.41 2.60 0.40 21.69 V36-1 91.87 152.60 14.05 44.91 6.10 1.25 4.56 0.64 3.72 0.70 2.05 0.31 1.90 0.28 16.38 V36-11 79.99 178.95 15.80 51.17 8.31 1.42 5.95 0.86 4.59 0.83 2.37 0.36 2.19 0.32 19.21
Enrichment Characteristics and Genetic Analysis of the Strategic Metal Element Gallium in Coal-measure Shale, Lower Taiyuan Formation, Linxing Area
-
摘要: 鄂尔多斯盆地东缘临兴地区太原组下段煤系泥页岩中镓富集,镓含量平均为24.7 μg/g。泥页岩中镓含量在平面上表现为研究区北部、西南部靠近紫金山岩体,镓含量降低。研究区太原组下段煤系泥页岩中镓主要以类质同象取代铝的形式赋存于高岭石中,碎屑中的碱性长石是镓的另一种重要赋存矿物。通过元素地球化学分析,认为阴山造山带花岗岩系是富镓泥页岩的主要物源。加里东期华北克拉通长期缓慢稳定隆升,为源岩风化形成富镓物源提供了有利的构造环境。风化和沉积条件是泥页岩中镓富集的控制性因素,包括温暖湿润、间歇性干热的气候,淡水为主、缺氧还原的沉积环境。成岩期,煤系有机质热演化释放出大量有机酸,溶蚀碱性长石碎屑并将其中的镓释放,致使镓元素进一步富集。由于煤系中煤层—泥页岩—砂岩组合体系的开放性较差,镓在成岩期的富集不能持续进行。研究区泥页岩中镓的富集过程以陆源富集型为主。成岩改造作用在一定程度上促进镓元素进一步富集。岩体侵位导致了低熔点的镓在温度作用下发生迁移,导致靠近紫金山岩体的镓含量降低。Abstract: Gallium is enriched in the coal-measure shale of the lower Taiyuan Formation in the Linxing area of the Ordos Basin, with an average content of 24.7 μg/g, but is lower in the northern and southwestern regions of the study area adjacent to the Zijinshan rock mass. The gallium in the coal-measure shale in the study area mainly occurs in kaolinite in the form of isomorphic replacement of aluminum. Alkaline feldspar in the clasts is another significant source of gallium. Elemental geochemical analysis indicates that the granite series of the Yinshan orogenic belt was the main source of gallium-rich shale. The Caledonian North China Craton uplifted slowly and steadily over a long period of time, providing a favorable environment for weathered source rocks to develop gallium-rich provenances. Weathering and depositional conditions are the main conditions for gallium enrichment in shale: a warm, humid climate with intermittent periods of dry, hot climate, together with a predominantly freshwater anoxic reducing sedimentary environment. During diagenesis, the thermal evolution of organic matter in the coal measures released a large amount of organic acid, which dissolved the alkaline feldspar debris and released the gallium contained in it, thus further increasing the gallium content. The tightness of the coal-shale-sandstone system in the coal measures did not allow diagenetic-type enrichment of gallium to continue. The enrichment of gallium in the mud shale in the study area is predominantly terrigenous. Diagenesis and re-formation promoted further gallium enrichment to some extent. The heat generated during emplacement of the rock mass stimulated migration of the low-melting-point gallium, resulting in lower gallium content near the Zijinshan rock mass.
-
Key words:
- Linxing area /
- coal-measure shale /
- lower Taiyuan Formation /
- gallium /
- enrichment properties /
- genetic analysis
-
表 1 临兴地区太原组下段煤系泥页岩中主量元素测试分析数据(%)
样品编号 TOC S P2O5 Fe2O3 SiO2 Al2O3 MgO CaO Na2O K2O CaO/(MgO+Al2O3) V1-1 0.41 0.40 0.13 1.72 63.13 24.71 0.14 0.10 0.21 5.63 0.03 V1-2 1.12 0.37 0.16 5.41 60.48 20.93 0.86 0.77 0.30 3.50 0.04 V1-3 1.48 1.68 0.13 13.28 58.98 16.34 0.35 0.42 0.24 1.78 0.07 V4-1 2.42 0.32 0.14 1.97 58.49 26.87 0.23 0.20 0.13 2.00 0.03 V5-3 3.61 0.12 0.12 1.61 62.69 20.42 0.39 0.37 0.20 4.07 0.05 V10-1 3.05 0.07 0.06 0.99 61.21 21.54 0.17 0.14 0.13 2.00 0.04 V16-2 1.85 1.21 0.09 5.07 61.47 22.83 0.31 0.11 0.28 2.76 0.02 V17-1 1.55 1.20 0.11 9.07 61.86 20.96 0.83 0.88 0.36 3.17 0.05 V20-1 4.00 0.29 0.05 2.60 59.80 24.09 0.42 0.47 0.53 5.14 0.05 V20-2 4.93 0.19 0.12 1.55 61.41 20.49 0.33 0.34 0.16 3.39 0.05 V20-22 1.81 0.02 0.03 0.61 62.84 17.57 0.24 0.11 0.24 1.89 0.03 V21-1 0.61 0.39 0.17 1.70 61.53 20.14 0.20 0.34 0.11 3.52 0.08 V22-1 1.82 0.31 0.06 2.00 63.08 15.90 0.29 0.12 0.18 1.60 0.03 V27-1 1.03 0.20 0.16 2.41 63.48 21.87 0.46 0.39 0.29 5.10 0.04 V28-2 4.07 0.05 0.04 0.86 57.84 28.96 0.13 0.11 0.18 5.48 0.01 V33-1 2.60 0.38 0.10 3.53 58.90 26.59 0.79 0.19 0.15 5.30 0.01 V36-1 2.39 0.35 0.13 6.49 59.14 20.77 0.82 0.79 0.21 3.12 0.05 V36-11 3.08 0.03 0.04 1.17 62.19 23.05 0.18 0.14 0.13 2.02 0.03 表 2 临兴地区太原组下段煤系泥页岩中微量元素测试分析数据(μg/g)
样品编号 Li V Cr Co Ni Ga Sr Zr Sr/Ba δU V/(V+Ni) Sr/Cu V/Cr Ni/Co Th-Hf Th/U V1-1 45.81 67.45 44.21 0.85 5.45 25.80 153.06 184.92 0.79 0.86 0.93 85.22 1.53 6.43 3.97 4.46 V1-2 16.62 108.08 57.53 17.99 22.44 23.62 512.87 369.30 1.08 0.81 0.83 41.62 1.88 1.25 8.99 4.91 V1-3 26.33 95.35 55.86 22.00 30.01 22.89 258.38 328.59 0.66 0.90 0.76 12.51 1.71 1.36 1.75 4.10 V4-1 52.50 147.33 79.87 16.79 62.84 26.66 169.32 231.52 0.32 0.79 0.70 16.12 1.84 3.74 6.69 5.11 V5-3 49.72 116.79 53.77 18.54 33.52 23.98 154.35 183.80 0.34 0.81 0.78 4.92 2.17 1.81 9.98 4.94 V10-1 55.18 127.33 66.01 11.86 45.80 23.36 233.89 257.36 1.13 0.89 0.74 20.78 1.93 3.86 3.72 4.19 V16-2 47.38 108.73 60.85 21.57 31.39 25.06 153.21 276.82 0.40 0.85 0.78 6.31 1.79 1.46 7.12 4.52 V17-1 39.51 138.82 73.87 28.32 38.68 24.86 190.76 269.31 0.36 0.85 0.78 15.75 1.88 1.37 6.46 4.47 V20-1 51.17 94.47 49.45 16.30 33.75 24.48 99.35 173.53 0.28 0.89 0.74 2.51 1.91 2.07 4.56 4.16 V20-2 50.53 90.89 43.68 13.90 29.05 24.33 101.46 194.35 0.27 0.85 0.76 3.51 2.08 2.09 9.46 4.52 V20-22 42.41 152.52 82.98 19.38 64.02 23.03 175.30 172.67 0.49 0.86 0.70 13.13 1.84 3.30 6.87 4.39 V21-1 20.15 82.28 33.66 6.73 25.01 21.92 807.03 78.34 2.14 1.06 0.77 89.11 2.44 3.72 3.77 2.96 V22-1 88.52 100.92 67.41 12.22 23.69 20.55 82.17 290.71 0.26 0.91 0.81 3.15 1.50 1.94 5.35 3.96 V27-1 21.85 72.64 39.79 3.81 7.91 23.23 132.23 240.58 0.32 0.84 0.90 6.30 1.83 2.08 19.19 4.65 V28-2 41.88 59.64 34.44 5.82 16.31 26.40 201.45 95.38 0.90 0.88 0.79 9.44 1.73 2.80 10.48 4.26 V33-1 117.16 97.57 66.60 8.64 28.37 27.16 63.28 457.44 0.17 0.82 0.77 5.82 1.46 3.28 7.11 4.83 V36-1 36.12 128.93 54.11 9.27 26.46 23.51 139.72 168.96 0.36 0.86 0.83 4.14 2.38 2.85 14.49 4.38 V36-11 45.88 132.30 76.31 11.65 18.28 22.31 122.40 367.88 0.37 0.92 0.88 4.51 1.73 1.57 8.12 3.88 表 3 临兴地区太原组下段煤系泥页岩中稀土元素测试分析数据(μg/g)
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y V1-1 23.89 44.20 4.55 14.12 2.21 0.35 1.79 0.31 2.02 0.41 1.31 0.22 1.49 0.23 10.71 V1-2 136.91 266.37 24.13 79.32 10.91 2.20 6.91 0.77 3.48 0.59 1.66 0.25 1.55 0.24 13.86 V1-3 47.89 95.20 10.70 39.69 6.50 1.32 5.23 0.72 4.10 0.76 2.20 0.34 2.22 0.34 19.20 V4-1 55.40 119.62 11.90 40.71 6.34 1.00 4.56 0.72 4.15 0.79 2.44 0.41 2.64 0.40 19.25 V5-3 70.62 138.86 15.25 50.16 8.82 1.46 6.74 1.05 6.00 1.08 3.15 0.49 3.11 0.46 26.37 V10-1 51.54 104.13 11.87 39.54 7.34 1.28 5.97 0.94 5.30 0.98 2.91 0.47 3.09 0.47 24.21 V16-2 78.46 157.20 16.37 57.44 8.73 1.70 6.46 0.91 5.20 0.97 2.77 0.42 2.66 0.41 24.37 V17-1 61.82 125.26 13.35 47.38 7.93 1.70 6.92 0.99 5.63 1.04 3.00 0.46 3.03 0.47 27.27 V20-1 48.36 93.99 10.52 37.76 6.23 1.21 5.04 0.75 4.42 0.84 2.42 0.37 2.45 0.37 20.97 V20-2 60.40 122.90 13.16 46.54 7.78 1.46 6.19 0.89 5.01 0.91 2.61 0.39 2.48 0.38 23.80 V20-22 48.88 101.78 10.19 33.21 5.07 0.95 3.87 0.59 3.65 0.73 2.24 0.36 2.40 0.37 18.75 V21-1 34.83 69.26 7.37 24.34 4.18 0.74 3.02 0.47 2.60 0.48 1.42 0.22 1.37 0.20 12.18 V22-1 52.10 100.82 11.98 40.49 7.50 1.18 5.91 0.97 5.77 1.11 3.47 0.60 3.97 0.60 25.34 V27-1 70.62 177.94 18.01 63.02 11.37 1.35 7.95 1.17 5.94 1.00 2.79 0.44 2.64 0.37 22.30 V28-2 69.25 148.63 15.13 54.54 8.89 1.70 6.23 0.78 3.90 0.68 1.91 0.28 1.80 0.29 17.11 V33-1 59.10 101.94 10.36 32.27 5.29 0.76 4.36 0.76 4.64 0.88 2.61 0.41 2.60 0.40 21.69 V36-1 91.87 152.60 14.05 44.91 6.10 1.25 4.56 0.64 3.72 0.70 2.05 0.31 1.90 0.28 16.38 V36-11 79.99 178.95 15.80 51.17 8.31 1.42 5.95 0.86 4.59 0.83 2.37 0.36 2.19 0.32 19.21 -
[1] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106-111. Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111. [2] 代世峰,刘池洋,赵蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743-1749. Dai Shifeng, Liu Chiyang, Zhao Lei, et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society, 2022, 47(5): 1743-1749. [3] 廖家隆,张福强,韦梦蝶,等. 广西晚二叠世典型聚煤盆地中锂、镓丰度及富集因素[J]. 煤田地质与勘探,2020,48(1):77-84. Liao Jialong, Zhang Fuqiang, Wei Mengdie, et al. Lithium and gallium abundance and enrichment factors in typical Late Permian coal-accumulating basin in Guangxi[J]. Coal Geology & Exploration, 2020, 48(1): 77-84. [4] 易同生,秦勇,吴艳艳,等. 黔东凯里梁山组煤层及其底板中镓的富集与地质成因[J]. 中国矿业大学学报,2007,36(3):330-334. Yi Tongsheng, Qin Yong, Wu Yanyan, et al. Gallium accumulation and geological controls in coal seam and its floor from Liangshan Formation, Kaili, eastern Guizhou, China[J]. Journal of China University of Mining & Technology, 2007, 36(3): 330-334. [5] 陈磊,邵培,熊武候,等. 新疆准东煤田中侏罗统煤系镓元素的分布特征及赋存机理探讨[J]. 地学前缘,2018,25(4):76-85. Chen Lei, Shao Pei, Xiong Wuhou, et al. Discussion on distribution and occurrence mechanism of gallium in the Middle Jurassic coal-bearing strata of the eastern Junggar coalfield, Xinjiang[J]. Earth Science Frontiers, 2018, 25(4): 76-85. [6] 刘帮军,林明月,褚光琛. 山西平朔矿区4#煤中镓的分布规律与富集机理?[J]. 中国煤炭,2014,40(11):25-29. Liu Bangjun, Lin Mingyue, Chu Guangchen. Distribution law and enrichment mechanism of Ga in 4# coal seam in Pingshuo mining area in Shanxi province[J]. China Coal, 2014, 40(11): 25-29. [7] 王钧漪,王文峰,李健,等. 元素锗镓铀在大同煤田北部煤中的赋存特征[J]. 煤炭科学技术,2010,38(2):117-121,85. Wang Junyi, Wang Wenfeng, Li Jian, et al. Deposit features of Ge, Ga and U elements in northern part of Datong coalfield[J]. Coal Science and Technology, 2010, 38(2): 117-121, 85. [8] 代世峰, 任德贻, 李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报,2006,51(2):177-185. Dai Shifeng, Ren Deyi, Li Shengsheng. Discovery of the superlarge gallium ore deposit in Jungar, Inner Mongolia, North China[J]. Chinese Science Bulletin, 2006, 51(2): 177-185. [9] 代世峰,任德贻,李生盛,等. 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现[J]. 地质学报,2006,80(2):294-300. Dai Shifeng, Ren Deyi, Li Shengsheng, et al. A discovery of extremely-enriched boehmite from coal in the Junger coalfield, the northeastern Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(2): 294-300. [10] 张复新,王立社. 内蒙古准格尔黑岱沟超大型煤型镓矿床的形成与物质来源[J]. 中国地质,2009,36(2):417-423. Zhang Fuxin, Wang Lishe. The formation and material sources of the superlarge Hada Gol Ga-bearing coal deposit in Jungar Banner, Inner Mongolia[J]. Geology in China, 2009, 36(2): 417-423. [11] 王文峰,秦勇,刘新花,等. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]. 中国科学(D辑):地球科学,2011,41(2):181-196. Wang Wenfeng, Qin Yong, Liu Xinhua, et al. Distribution, occurrence and enrichment causes of gallium in coals from the Jungar coalfield, Inner Mongolia[J]. Science China (Seri. D): Earth Sciences, 2011, 41(2): 181-196. [12] 吴国代,王文峰,秦勇,等. 准格尔煤中镓的分布特征和富集机理分析[J]. 煤炭科学技术,2009,37(4):117-120. Wu Guodai, Wang Wenfeng, Qin Yong, et al. Analysis on distribution characteristic and enrichment mechanism of elements Ga in Junger coalfield[J]. Coal Science and Technology, 2009, 37(4): 117-120. [13] 秦勇,王文峰,程爱国,等. 首批煤炭国家规划矿区煤中镓的成矿前景[J]. 中国煤炭地质,2009,21(1):17-21,26. Qin Yong, Wang Wenfeng, Cheng Aiguo, et al. Study of ore-forming potential of gallium in coal for the first group of state programmed mining districts[J]. Coal Geology of China, 2009, 21(1): 17-21, 26. [14] 张勇,秦身钧,杨晶晶,等. 煤中镓的地球化学研究进展[J]. 地质科技情报,2014,33(5):166-169,175. Zhang Yong, Qin Shenjun, Yang Jingjing, et al. Progress in geochemistry of gallium in coal[J]. Geological Science and Technology Information, 2014, 33(5): 166-169, 175. [15] 刘建婧,姚素玲,朱本康,等. 煤中镓元素富集规律特性研究[J]. 中国矿业,2020,29(1):150-156. Liu Jianjing, Yao Suling, Zhu Benkang, et al. Study on enrichment characteristics of Gallium in coal[J]. China Mining Magazine, 2020, 29(1): 150-156. [16] 袁亮,张通,赵毅鑫,等. 煤与共伴生资源精准协调开采:以鄂尔多斯盆地煤与伴生特种稀有金属精准协调开采为例[J]. 中国矿业大学学报,2017,46(3):449-459. Yuan Liang, Zhang Tong, Zhao Yixin, et al. Precise coordinated mining of coal and associated resources: A case of environmental coordinated mining of coal and associated rare metal in Ordos Basin[J]. Journal of China University of Mining & Technology, 2017, 46(3): 449-459. [17] 师晶,黄文辉,吕晨航,等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报,2018,39(8):876-889. Shi Jing, Huang Wenhui, Chenhang Lü, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889. [18] 屈晓荣,李俊,孙彩蓉,等. 鄂尔多斯盆地东缘柳林地区煤系泥页岩稀土元素地球化学特征[J]. 煤炭学报,2018,43(4):1083-1093. Qu Xiaorong, Li Jun, Sun Cairong, et al. Geochemistry characteristics of rare earth elements in the Late Paleozoic black shale from eastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(4): 1083-1093. [19] 孙彩蓉,唐书恒,张松航,等. 鄂尔多斯盆地东缘隰县地区煤层顶底板元素地球化学特征[J]. 煤炭学报,2016,41(增刊2):502-509. Sun Cairong, Tang Shuheng, Zhang Songhang, et al. Geochemical characteristics of coal seam roof and floor elements in Xixian region of eastern Ordos Basin[J]. Journal of China Coal Society, 2016, 41(Suppl.2): 502-509. [20] 李增学,韩美莲,魏久传,等. 鄂尔多斯盆地上古生界高分辨率层序划分与煤聚积规律分析[J]. 中国石油大学学报(自然科学版),2008,32(1):5-12. Li Zengxue, Han Meilian, Wei Jiuchuan, et al. Analysis of high-resolution sequence stratigraphy and coal accumulation law of Upper Paleozoic Erathem Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(1): 5-12. [21] 鲁静,邵龙义,孙斌,等. 鄂尔多斯盆地东缘石炭—二叠纪煤系层序—古地理与聚煤作用[J]. 煤炭学报,2012,37(5):747-754. Lu Jing, Shao Longyi, Sun Bin, et al. Sequence-paleogeography and coal accumulation of Carboniferous-Permian coal measures in the eastern Ordos Basin[J]. Journal of China Coal Society, 2012, 37(5): 747-754. [22] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544-552. Wang Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China, 2011, 30(4): 544-552. [23] 郭英海,刘焕杰,陈孟晋. 鄂尔多斯地区晚古生代沉积演化[M]. 徐州:中国矿业大学出版社,2004. Guo Yinghai, Liu Huanjie, Chen Mengjin. Late Paleozoic sedimentary evolution in Ordos area[M]. Xuzhou: China University of mining and Technology Press, 2004. [24] 吴鹏,高计县,郭俊超,等. 鄂尔多斯盆地东缘临兴地区太原组桥头砂岩层序地层及沉积特征[J]. 石油与天然气地质,2018,39(1):66-76. Wu Peng, Gao Jixian, Guo Junchao, et al. Sequence stratigraphy and sedimentary characteristic analysis of Qiaotou sandstone of Tayuan Fm in Linxing area, eastern margin of Ordos Basin[J]. Oil & Gas Geology, 2018, 39(1): 66-76. [25] Wedepohl K H. Environmental influences on the chemical composition of shales and clays[M]//Ahrens L H, Press F, Runcorn S K, et al. Physics and chemistry of the earth. Oxford: Pergamon, 1971: 307-331. [26] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984:378-386. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental geochemistry[M]. Beijing: Science Press, 1984: 378-386. [27] 孙志国,姚德,梁宏峰,等. 多金属结核微层中元素的富集系数特征及其成因[J]. 海洋地质与第四纪地质,1996,16(2):65-74. Sun Zhiguo, Yao De, Liang Hongfeng, et al. Characteristics of element concentration coeficient in microlauers of polymetallic nodules[J]. Marine Geology & Quaternary Geology, 1996, 16(2): 65-74. [28] Ross D J K, Bustin R M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, western Canadian Sedimentary Basin[J]. Chemical Geology, 2009, 260(1/2): 1-19. [29] 吴泓辰,何金先,张晓丽,等. 鄂尔多斯盆地临兴地区太原组页岩孔隙结构及分形特征[J]. 新疆石油地质,2018,39(5):549-554. Wu Hongchen, He Jinxian, Zhang Xiaoli, et al. Pore structure and its fractal features of the shale in Taiyuan Formation of Linxing area, Ordos Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 549-554. [30] 王国茹. 鄂尔多斯盆地北部上古生界物源及层序岩相古地理研究[D]. 成都:成都理工大学,2011. Wang Guoru. The study of sources and senquence-lithofaces palaeogeography of Upper Palaeozoic, Basin[D]. Chengdu: Chengdu University of Technology, 2011. [31] 薛纯琦,吴建光,钟建华,等. 海陆交互相沉积泥页岩发育特征研究:以鄂尔多斯盆地临兴地区太原组为例[J]. 中国矿业大学学报,2019,48(4):870-881. Xue Chunqi, Wu Jianguang, Zhong Jianhua, et al. Characteristics of the marine-terrigenous interdepositional shale: A case study of Taiyuan Formation in Linxing area of Ordos Basin[J]. Journal of China University of Mining & Technology, 2019, 48(4): 870-881. [32] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. [33] Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90. [34] 任江波,邓希光,邓义楠,等. 中国富钴结壳合同区海水的稀土元素特征及其意义[J]. 地球科学,2019,44(10):3529-3540. Ren Jiangbo, Deng Xiguang, Deng Yinan, et al. Rare earth element characteristics and its geological implications for seawater from cobalt-rich ferromanganese crust exploration contract area of China[J]. Earth Science, 2019, 44(10): 3529-3540. [35] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Ahrens L H. Origin and distribution of the elements. Amsterdam: Elsevier, 1968: 889-912. [36] 王中刚,于学元,赵振华. 稀土元素地球化学[M]. 北京:科学出版社,1989. Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. Geochemistry of rare earth elements[M]. Beijing: Science Press, 1989. [37] Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25. [38] 郭英海,刘焕杰,权彪,等. 鄂尔多斯地区晚古生代沉积体系及古地理演化[J]. 沉积学报,1998,16(3):44-51. Guo Yinghai, Liu Huanjie, Quan Biao, et al. Late Paleozoic sedimentary system and paleogeographic evolution of Ordos area[J]. Acta Sedimentologica Sinica, 1998, 16(3): 44-51. [39] 邓军,王庆飞,黄定华,等. 鄂尔多斯盆地基底演化及其对盖层控制作用[J]. 地学前缘,2005,12(3):91-99. Deng Jun, Wang Qingfei, Huang Dinghua, et al. Basement evolution of the Ordos Basin and its constraint on cap rock[J]. Earth Science Frontiers, 2005, 12(3): 91-99. [40] 陈全红,李文厚,刘昊伟,等. 鄂尔多斯盆地上石炭统—中二叠统砂岩物源分析[J]. 古地理学报,2009,11(6):629-640. Chen Quanhong, Li Wenhou, Liu Haowei, et al. Provenance analysis of sandstone of the Upper Carboniferous to Middle Permian in Ordos Basin[J]. Journal of Palaeogeography, 2009, 11(6): 629-640. [41] 陈全红,李文厚,郭艳琴,等. 鄂尔多斯盆地早二叠世聚煤环境与成煤模式分析[J]. 沉积学报,2009,27(1):70-76. Chen Quanhong, Li Wenhou, Guo Yanqin, et al. The analysis of coal accumulating environment and coal forming models in Early Permian, Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(1): 70-76. [42] 郭艳琴,李文厚,郭彬程,等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报,2019,21(2):293-320. Guo Yanqin, Li Wenhou, Guo Bincheng, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320. [43] 陈全红,李文厚,胡孝林,等. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J]. 地质学报,2012,86(7):1150-1162. Chen Quanhong, Li Wenhou, Hu Xiaolin, et al. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012, 86(7): 1150-1162. [44] 马收先,孟庆任,武国利,等. 内蒙古隆起晚古生代构造隆升的沉积记录[J]. 地质学报,2014,88(10):1771-1789. Ma Shouxian, Meng Qingren, Wu Guoli, et al. Late Paleozoic exhumation of the Inner Mongolia paleo-uplift: Evidences from sedimentary records[J]. Acta Geologica Sinica, 2014, 88(10): 1771-1789. [45] 贾浪波,钟大康,孙海涛,等. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义[J]. 沉积学报,2019,37(5):1087-1103. Jia Langbo, Zhong Dakang, Sun Haitao, et al. Sediment provenance analysis and tectonic implication of the Benxi Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1087-1103. [46] 何登发,包洪平,开百泽,等. 鄂尔多斯盆地及其邻区关键构造变革期次及其特征[J]. 石油学报,2021,42(10):1255-1269. He Dengfa, Bao Hongping, Baize Kai, et al. Critical tectonic modification periods and its geologic features of Ordos Basin and adjacent area[J]. Acta Petrolei Sinica, 2021, 42(10): 1255-1269. [47] 郭艳琴,赵灵生,郭彬程,等. 鄂尔多斯盆地及周缘地区下二叠统沉积特征[J]. 古地理学报,2021,23(1):65-80. Guo Yanqin, Zhao Lingsheng, Guo Bincheng, et al. Sedimentary characteristics of the Lower Permian in Ordos Basin and its adjacent areas[J]. Journal of Palaeogeography, 2021, 23(1): 65-80. [48] 翟咏荷,何登发,开百泽. 鄂尔多斯盆地及邻区早二叠世构造—沉积环境与原型盆地演化[J/OL]. 地学前缘,doi:10.13745/j.esf.sf.2022.2.70 . Zhai Yonghe, He Dengfa, Baize Kai. Tectonic-depositional environment and prototype basin evolution of the Ordos Basin during the Early Permian[J]. Earth Science Frontiers, doi:10.13745/j.esf.sf.2022.2.70 . [49] 褚光琛. 准格尔煤田煤中稀有金属富集机理的实验模拟[D]. 邯郸:河北工程大学,2015. Chu Guangchen. Simulated experiment on enrichment mechanism of rare mental in coal of Jungar coalfield[D]. Handan: Hebei University of Engineering, 2015. [50] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. [51] Gernon T M, Hincks T K, Merdith A S, et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic[J]. Nature Geoscience, 2021, 14(9): 690-696. [52] 尹锦涛,俞雨溪,姜呈馥,等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报,2017,42(6):1544-1556. Yin Jintao, Yu Yuxi, Jiang Chengfu, et al. Relationship between element geochemical characteristic and organic matter enrichment in Zhangjiatan shale of Yanchang Formation, Ordos Basin[J]. Journal of China Coal Society, 2017, 42(6): 1544-1556. [53] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. New York: Geological Society of America, 1993: 21-40. [54] 宋朔,刘招君,孙平昌,等. 红色泥岩层系地球化学特征及物源分析:以松辽盆地东南隆起区上白垩统姚家组为例[J]. 世界地质,2015,34(3):774-785. Song Shuo, Liu Zhaojun, Sun Pingchang, et al. Geochemical characteristics and sediment provenance analysis of red mudstone formation: A case study of Upper Cretaceous Yaojia Formation of southeastern uplift area in Songliao Basin[J]. World Geology, 2015, 34(3): 774-785. [55] Taylor S R, McClennan S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific, 1985. [56] 刘英俊. 华南某些花岗岩类气成—热液蚀变中镓的地球化学[J]. 南京大学学报(自然科学版),1965,9(2):236-248. Liu Yingjun. Geochemistry of gallium in some granitoids of South China[J]. Journal of Nanjing University (Natural Science), 1965, 9(2): 236-248. [57] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [58] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [59] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515-522. Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 2018, 20(3): 515-522. [60] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472. Zhang Tianfu, Sun Lixin, Zhang Yun, et al. Geochemical characteristics of the Jurassic Yan’an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472. [61] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:95-104. Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 95-104. [62] 范玉海,屈红军,王辉,等. 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382-389. Fan Yuhai, Qu Hongjun, Wang Hui, et al. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China, 2012, 39(2): 382-389. [63] 梁文君,肖传桃,肖凯,等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质,2015,42(4):1079-1091. Liang Wenjun, Xiao Chuantao, Xiao Kai, et al. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo country of northern Tibet[J]. Geology in China, 2015, 42(4): 1079-1091. [64] 李广之,胡斌,邓天龙,等. 微量元素V和Ni的油气地质意义[J]. 天然气地球科学,2008,19(1):13-17. Li Guangzhi, Hu Bin, Deng Tianlong, et al. Petroleum geological significance of microelements V and Ni[J]. Natural Gas Geoscience, 2008, 19(1): 13-17. [65] Dill H. Metallogenesis of Early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany)[J]. Economic Geology, 1986, 81(4): 889-903. [66] Dill H, Teschner M, Wehner H. Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”)-Federal Republic of Germany: Constraints to their paleogeography and assessment of their source rock potential[J]. Chemical Geology, 1988, 67(3/4): 307-325. [67] Patterson J H, Ramsden A R, Dale L S, et al. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia[J]. Chemical Geology, 1986, 55(1/2): 1-16. [68] 金明,李妩巍. 乌兰花地区下白垩统、上新统岩石地球化学特征及其古气候演变[J]. 铀矿地质,2003,19(6):349-354. Jin Ming, Li Wuwei. Petrogeochemical characteristics of Lower Cretaceous and Pliocene rocks and paleoclimate evolution in Wulanhua region[J]. Uranium Geology, 2003, 19(6): 349-354. [69] 田景春,张翔. 沉积地球化学[M]. 北京:地质出版社,2016:63-77. Tian Jingchun, Zhang Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016: 63-77. [70] 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120. Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J]. Mineralogy and Petrology, 2008, 28(1): 114-120. [71] 王敏芳,焦养泉,王正海,等. 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,2005,26(6):719-722. Wang Minfang, Jiao Yangquan, Wang Zhenghai, et al. Recovery paleosalinity in sedimentary environment: An example of mudstone in Shuixigou Group, southwestern margin of Turpan-Hami Basin[J]. Xinjiang Petroleum Geology, 2005, 26(6): 719-722. [72] 许璟,蒲仁海,杨林,等. 塔里木盆地石炭系泥岩沉积时的古盐度分析[J]. 沉积学报,2010,28(3):509-517. Xu Jing, Pu Renhai, Yang Lin, et al. The palaeosalinity analysis of Carboniferous mudstone, Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 509-517. [73] 钱利军,陈洪德,林良彪,等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报,2012,30(6):1061-1071. Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071. [74] 王益友,吴萍. 江浙海岸带沉积物的地球化学标志[J]. 同济大学学报,1983(4):79-87. Wang Yiyou, Wu Ping. Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejang provinces[J]. Journal of Tongji University, 1983(4): 79-87.