[1] 马锋,杨柳明,顾家裕,等. 世界白云岩油气田勘探综述[J]. 沉积学报,2011,29(5):1010-1021.

Ma Feng, Yang Liuming, Gu Jiayu, et al. The summary on exploration of the dolomite oilfields in the world[J]. Acta Sedimentologica Sinica, 2011, 29(5): 1010-1021.
[2] 赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:地球科学,2014,44(9):1925-1939.

Zhao Wenzhi, Shen Anjiang, Zheng Jianfeng, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos Basins and its implication to reservoir prediction[J]. Science China: Earth Sciences, 2014, 44(9): 1925-1939.
[3] 徐春春,沈平,杨跃明,等. 四川盆地川中古隆起震旦系—下古生界天然气勘探新认识及勘探潜力[J]. 天然气工业,2020,40(7):1-9.

Xu Chunchun, Shen Ping, Yang Yueming, et al. New understandings and potential of Sinian-Lower Paleozoic natural gas exploration in the central Sichuan paleo-uplift of the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(7): 1-9.
[4] Sun S Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, 79(2): 186-204.
[5] 朱东亚,张殿伟,张荣强,等. 中国南方地区灯影组白云岩储层流体溶蚀改造机制[J]. 石油学报,2015,36(10):1188-1198.

Zhu Dongya, Zhang Dianwei, Zhang Rongqiang, et al. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China[J]. Acta Petrolei Sinica, 2015, 36(10): 1188-1198.
[6] Choquette P W, Pray L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.
[7] 陈学时,易万霞,卢文忠. 中国油气田古岩溶与油气储层[J]. 沉积学报,2004,22(2):244-253.

Chen Xueshi, Yi Wanxia, Lu Wenzhong. The paleokarst reservoirs of oil/gas fields in China[J]. Acta Sedimentologica Sinica, 2004, 22(2): 244-253.
[8] 赵文智,沈安江,潘文庆,等. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义:以塔里木盆地岩溶储层为例[J]. 岩石学报,2013,29(9):3213-3222.

Zhao Wenzhi, Shen Anjiang, Pan Wenqing, et al. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: Cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9): 3213-3222.
[9] 李忠,黄思静,刘嘉庆,等. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造—热流体作用及其有效性[J]. 沉积学报,2010,28(5):969-979.

Li Zhong, Huang Sijing, Liu Jiaqing, et al. Buried diagenesis, structurally controlled thermal-fluid process and their effect on Ordovician carbonate reservoirs in Tahe, Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(5): 969-979.
[10] Ehrenberg S N, Walderhaug O, Bjørlykke K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
[11] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214.
[12] Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. Special Publication, 1986, 38: 123-128.
[13] Ong A, Pironon J, Robert P, et al. In situ decarboxylation of acetic and formic acids in aqueous inclusions as a possible way to produce excess CH4[J]. Geofluids, 2013, 13(3): 298-304.
[14] 刘全有,金之钧,刘文汇,等. 鄂尔多斯盆地海相层系中有机酸盐存在以及对低丰度高演化烃源岩生烃潜力评价的影响[J]. 中国科学:地球科学,2013,43(12):1975-1983.

Liu Quanyou, Jin Zhijun, Liu Wenhui, et al. The existence of organic salts in marine strata in Ordos Basin and its influence on the evaluation of hydrocarbon generation potential of source rocks with low abundance and high evolution[J]. Science China: Earth Sciences, 2013, 43(12): 1975-1983.
[15] 丁茜,何治亮,王静彬,等. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验[J]. 石油与天然气地质,2020,41(1):223-234.

Ding Qian, He Zhiliang, Wang Jingbin, et al. Simulation experiment of carbonate reservoir modification by source rock-derived acidic fluids[J]. Oil & Gas Geology, 2020, 41(1): 223-234.
[16] 沈安江,乔占峰,佘敏,等. 基于溶蚀模拟实验的碳酸盐岩埋藏溶蚀孔洞预测方法:以四川盆地龙王庙组储层为例[J]. 石油与天然气地质,2021,42(3):690-701.

Shen Anjiang, Qiao Zhanfeng, She Min, et al. Prediction of burial dissolved vugs in carbonates based on dissolution simulation: A case study of the Longwangmiao Formation dolostone reservoirs, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3): 690-701.
[17] Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
[18] Feng M Y, Wu P C, Qiang Z T, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 82: 206-219.
[19] Su A, Chen H H, Feng Y X, et al. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events[J]. Precambrian Research, 2022, 368: 106481.
[20] 罗冰,周刚,罗文军,等. 川中古隆起下古生界—震旦系勘探发现与天然气富集规律[J]. 中国石油勘探,2015,20(2):18-29.

Luo Bing, Zhou Gang, Luo Wenjun, et al. Discovery from exploration of Lower Paleozoic-Sinian system in central Sichuan palaeo-uplift and its natural gas abundance law[J]. China Petroleum Exploration, 2015, 20(2): 18-29.
[21] 王文之,杨跃明,张玺华,等. 四川盆地震旦系灯影组储层特征及成因[J]. 东北石油大学学报,2016,40(2):1-10.

Wang Wenzhi, Yang Yueming, Zhang Xihua, et al. Reservoir characte-ristics and genesis of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Northeast Petroleum University, 2016, 40(2): 1-10.
[22] 李勇,王兴志,冯明友,等. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发,2019,46(1):52-64.

Li Yong, Wang Xingzhi, Feng Mingyou, et al. Reservoir characteristics and genetic differences between the Second and Fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 2019, 46(1): 52-64.
[23] 王良军. 川北地区灯影组四段优质储层特征及控制因素[J]. 岩性油气藏,2019,31(2):35-45.

Wang Liangjun. Characteristics and controlling factors of high-quality reservoirs of the Fourth member of Dengying Formation in northern Sichuan Basin[J]. Lithologic Reservoirs, 2019, 31(2): 35-45.
[24] 郭旭升,胡东风,黄仁春,等. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义[J]. 石油与天然气地质,2020,41(4):673-683.

Guo Xusheng, Hu Dongfeng, Huang Renchun, et al. Feature of paleo-oil pools in the Sinian Dengying Formation, northeastern Sichuan Basin, and its significance to exploration[J]. Oil & Gas Geology, 2020, 41(4): 673-683.
[25] 杨瑞青,杨风丽,周晓峰,等. 汉南—川东北灯影组古地理演化:晚震旦世扬子西北缘拉张背景的沉积学证据[J]. 沉积学报,2019,37(1):189-199.

Yang Ruiqing, Yang Fengli, Zhou Xiaofeng, et al. Paleogeographic evolution of the Dengying Formation in Hannan-northeastern Sichuan Basin: Sedimentary evidence of the extensional tectonic setting for the northwest margin of the Yangtze Block in the Late Sinian[J]. Acta Sedimentologica Sinica, 2019, 37(1): 189-199.
[26] 徐哲航,兰才俊,马肖琳,等. 四川盆地震旦系灯影组丘滩体储层沉积模式与物性特征[J]. 地球科学,2020,45(4):1281-1294.

Xu Zhehang, Lan Caijun, Ma Xiaolin, et al. Sedimentary models and physical properties of mound-shoal complex reservoirs in Sinian Dengying Formation, Sichuan Basin[J]. Earth Science, 2020, 45(4): 1281-1294.
[27] 赵文智,王小芳,王鑫,等. 四川盆地震旦系灯影组地层厘定与岩相古地理特征[J]. 古地理学报,2022,24(5):852-870.

Zhao Wenzhi, Wang Xiaofang, Wang Xin, et al. Stratigraphic sequence re-determination and lithofacies palaeogeographical characteristics of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Palaeogeography (Chinese Edition), 2022, 24(5): 852-870.
[28] 金民东,谭秀成,李毕松,等. 四川盆地震旦系灯影组白云岩成因[J]. 沉积学报,2019,37(3):443-454.

Jin Mindong, Tan Xiucheng, Li Bisong, et al. Genesis of dolomite in the Sinian Dengying Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(3): 443-454.
[29] 强深涛,沈平,张健,等. 四川盆地川中地区震旦系灯影组碳酸盐沉积物成岩作用与孔隙流体演化[J]. 沉积学报,2017,35(4):797-811.

Qiang Shentao, Shen Ping, Zhang Jian, et al. The evolution of carbonate sediment diagenesis and pore fluid in Dengying Formation, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2017, 35(4): 797-811.
[30] Liu S G, Yang Y, Deng B, et al. Tectonic evolution of the Sichuan Basin, southwest China[J]. Earth-Science Reviews, 2021, 213: 103470.
[31] 罗志立. 地裂运动与中国油气分布[M]. 北京:石油工业出版社,1991:1-142.

Luo Zhili. Taphrpgenesis with distribution of petroleum deposite in China[M]. Beijing: Petroleum Industry Press, 1991: 1-142.
[32] 文龙,罗冰,钟原,等. 四川盆地灯影期沉积特征及槽—台体系成因模式[J]. 成都理工大学学报(自然科学版),2021,48(5):513-524,590.

Wen Long, Luo Bing, Zhong Yuan, et al. Sedimentary characteristics and genetic model of trough-platform system during the Dengying period in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 513-524, 590.
[33] 马奎,文龙,张本健,等. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发,2022,49(2):274-284.

Ma Kui, Wen Long, Zhang Benjian, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284.
[34] 刘树根,李泽奇,邓宾,等. 四川盆地震旦系灯影组深层碳酸盐岩储层沥青赋存形态及其油气藏示踪作用[J]. 天然气工业,2021,41(8):102-112.

Liu Shugen, Li Zeqi, Deng Bin, et al. Occurrence morphology of bitumen in Dengying Formation deep and ultra-deep carbonate reservoirs of the Sichuan Basin and its indicating significance to oil and gas reservoirs[J]. Natural Gas Industry, 2021, 41(8): 102-112.
[35] 张静,张宝民,单秀琴. 古气候与古海洋对碳酸盐岩储集层发育的控制[J]. 石油勘探与开发,2014,41(1):121-128.

Zhang Jing, Zhang Baomin, Shan Xiuqin. Controlling effects of paleo-climate and paleo-ocean on formation of carbonate reservoirs[J]. Petroleum Exploration and Development, 2014, 41(1): 121-128.
[36] 王文之,杨跃明,文龙,等. 微生物碳酸盐岩沉积特征研究:以四川盆地高磨地区灯影组为例[J]. 中国地质,2016,43(1):306-318.

Wang Wenzhi, Yang Yueming, Wen Long, et al. A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin[J]. Geology in China, 2016, 43(1): 306-318.
[37] 刘静江,张宝民,周慧,等. 灰泥丘系统分类及石油地质特征[M]. 北京:石油工业出版社,2016:1-187.

Liu Jingjiang, Zhang Baomin, Zhou Hui, et al. Mud mound systems classifiction and petroleum geological features[M]. Beijing: Petroleum Industry Press, 2016: 1-187.
[38] 邓胜徽,樊茹,李鑫,等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志,2015,39(3):239-254.

Deng Shenghui, Fan Ru, Li Xin, et al. Subdivision and correlation of the Sinian (Ediacaran) system in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 2015, 39(3): 239-254.
[39] Wilson J L. Carbonate facies in geologic history[M]. Berlin: Springer, 2012: 1-411.
[40] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
[41] 张荫本,唐泽尧,陈季高. 粘结岩分类及应用[J]. 天然气勘探与开发,1996,19(4):24-33.

Zhang Yinben, Tang Zeyao, Chen Jigao. Classification and application of bonding rocks[J]. Natural Ctas Exploraiton & Development, 1996, 19(4): 24-33.
[42] 冯增昭. 碳酸盐岩分类[J]. 石油学报,1982,3(1):11-18.

Feng Zengzhao. Classification of carbonate rocks[J]. Acta Petrolei Sinica, 1982, 3(1): 11-18.
[43] 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010:1-288.

Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 1-288.
[44] 熊鹰,姚泾利,李凌,等. 鄂尔多斯盆地东北部奥陶系马五1+2微生物碳酸盐岩沉积特征及储集意义[J]. 沉积学报,2016,34(5):963-972.

Xiong Ying, Yao Jingli, Li Ling, et al. Sedimentary characteristics and reservoir significance of microbial carbonate in Ma51+2 member of Ordovician in northestern Ordos Basin[J]. Acta Sedimentologica Sinica, 2016, 34(5): 963-972.
[45] 马永生,郭彤楼,赵雪凤,等. 普光气田深部优质白云岩储层形成机制[J]. 中国科学:地球科学,2007,37(增刊2):43-52.

Ma Yongsheng, Guo Tonglou, Zhao Xuefeng, et al. Formation mechanism of deep high-quality dolomite reservoir in Puguang gas field[J]. Science China: Earth Sciences, 2007, 37(Suppl.2): 43-52.
[46] Shi C H, Cao J, Selby D, et al. Hydrocarbon evolution of the over-mature Sinian Dengying reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re-Os geochronology[J]. Marine and Petroleum Geology, 2020, 122: 104726.
[47] 沈安江,李杰,龙晓平,等. 四川盆地北缘亢家洞灯影组四段焦沥青Re-Os定年与烃源岩示踪[J]. 岩石学报,2022,38(6):1702-1712.

Shen Anjiang, Li Jie, Long Xiaoping, et al. Re-Os dating and oil-source correlation of the pyrobitumen in the member 4, Dengying Formation of the Kangjiadong paleo-reservoir, northern margin of the Sichuan Basin[J]. Acta Petrologica Sinica, 2022, 38(6): 1702-1712.
[48] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[49] Andrieu S, Brigaud B, Barbarand J, et al. The complex diagenetic history of discontinuities in shallow-marine carbonate rocks: New insights from high-resolution ion microprobe investigation of δ18O and δ13C of early cements[J]. Sedimentology, 2018, 65(2): 360-399.
[50] Jaffrés J B D, Shields G A, Wallmann K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years[J]. Earth-Science Reviews, 2007, 83(1/2): 83-122.
[51] Halverson G P, Wade B P, Hurtgen M T, et al. Neoproterozoic chemostratigraphy[J]. Precambrian Research, 2010, 182(4): 337-350.
[52] Wu A B, Cao J, Zhang J K, et al. Origin of microbial-hydrothermal bedded dolomites in the Permian Lucaogou Formation lacustrine shales, Junggar Basin, NW China[J]. Sedimentary Geology, 2022, 440: 106260.
[53] Tucker M E. Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites[J]. Geology, 1982, 10(1): 7-12.
[54] 王立成,刘成林,张华. 华南地块震旦纪晚期—早寒武世古大陆位置暨灯影组蒸发岩成钾条件分析[J]. 地球学报,2013,34(5):585-593.

Wang Licheng, Liu Chenglin, Zhang Hua. Tectonic and sedimentary settings of evaporites in the Dengying Formation, South China Block: Implications for the potential of potash formation[J]. Acta Geoscientica Sinica, 2013, 34(5): 585-593.
[55] Pagel M, Barbin V, Blanc P, et al. Cathodoluminescence in geosciences: An introduction[M]//Pagel M, Barbin V, Blanc P, et al. Cathodoluminescence in geosciences. Berlin, Heidelberg: Springer, 2000: 1-21.
[56] Jiang L, Shen A J, Wang Z C, et al. U–Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945.
[57] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
[58] Moore C H. Carbonate reservoirs: Porosity, evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001: 293-298.
[59] 王东,王国芝. 四川南江地区灯影组白云岩优质储层的形成与演化[J]. 现代地质,2011,25(4):660-667.

Wang Dong, Wang Guozhi. Formation and evolution of high-quality dolomite reservoir in Dengying Formation of Sinian, Nanjiang area, Sichuan[J]. Geoscience, 2011, 25(4): 660-667.
[60] 沈安江,胡安平,程婷,等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发,2019,46(6):1062-1074.

Shen Anjiang, Hu Anping, Cheng Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074.
[61] 沈安江,佘敏,胡安平,等. 海相碳酸盐岩埋藏溶孔规模与分布规律初探[J]. 天然气地球科学,2015,26(10):1823-1830.

Shen Anjiang, She Min, Hu Anping, et al. Scale and distribution of marine carbonate burial dissolutional pores[J]. Natural Gas Geoscience, 2015, 26(10): 1823-1830.
[62] 马永生,何治亮,赵培荣,等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,2019,40(12):1415-1425.

Ma Yongsheng, He Zhiliang, Zhao Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425.