[1] Ohm S E, Karlsen D A, Austin T J F. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea[J]. AAPG Bulletin, 2008, 92(9): 1191-1223.
[2] Grotzinger J, Al-Rawahi Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultanate of Oman[J]. AAPG Bulletin, 2014, 98(8): 1453-1494.
[3] Frolov S V, Akhmanov G G, Bakay E A, et al. Meso-Neoproterozoic petroleum systems of the eastern Siberian sedimentary basins[J]. Precambrian Research, 2015, 259: 95-113.
[4] Salah M G, Alsharhan A S. The Precambrian basement: A major reservoir in the rifted basin, gulf of Suez[J]. Journal of Petroleum Science and Engineering, 1998, 19(3/4): 201-222.
[5] Amthor J E, Ramseyer K, Faulkner T, et al. Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian boundary: The Al Shomou Silicilyte, South Oman Salt Basin[J]. GeoArabia, 2005, 10(2): 89-122.
[6] 马永生,蔡勋育,赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘,2011,18(4):181-192.

Ma Yongsheng, Cai Xunyu, Zhao Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[7] 孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6):641-649.

Sun Longde, Zou Caineng, Zhu Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
[8] 贾承造,庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报,2015,36(12):1457-1469.

Jia Chengzao, Pang Xiongqi. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469.
[9] 何治亮,金晓辉,沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,2016,21(1):3-14.

He Zhiliang, Jin Xiaohui, Yujin Wo, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14.
[10] 何治亮,张军涛,丁茜,等. 深层—超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质,2017,38(4):633-644, 763.

He Zhiliang, Zhang Juntao, Ding Qian, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644, 763.
[11] Jiang L, Cai C F, Worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 2016, 63(7): 2130-2157.
[12] Jiang L, Pan W, Cai C, et al. Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China[J]. Geofluids, 2015, 15(3): 483-498.
[13] Jiang L, Shen A J, Wang Z C, et al. U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945.
[14] Jiang L, Worden R H, Cai C F, et al. Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin, northwest China[J]. AAPG Bulletin, 2018, 102(1): 77-102.
[15] Jiang L, Worden R H, Cai C F, et al. Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 92: 332-351.
[16] Jiang L, Worden R H, Yang C B. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 2018, 223: 127-140.
[17] 魏国齐,李君,佘源琦,等. 中国大型气田的分布规律及下一步勘探方向[J]. 天然气工业,2018,38(4):12-25.

Wei Guoqi, Li Jun, She Yuanqi, et al. Distribution laws of large gas fields and further exploration orientation and targets in China[J]. Natural Gas Industry, 2018, 38(4): 12-25.
[18] Surdam R C, Jiao Z S, MacGowan D B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones[J]. AAPG Bulletin, 1993, 77(9): 1509-1518.
[19] 蔡春芳,梅博文,马亭,等. 塔里木盆地有机酸来源、分布及对成岩作用的影响[J]. 沉积学报,1997,15(3):103-109.

Cai Chunfang, Mei Bowen, Ma Ting, et al. The source, distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinica, 1997, 15(3): 103-109.
[20] Bildstein O, Worden R H, Brosse E. Assessment of anhydrite dissolution as the rate-limiting step during thermochemical sulfate reduction[J]. Chemical Geology, 2001, 176(1/2/3/4): 173-189.
[21] 朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报,2006,22(8):2182-2194.

Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.
[22] 张水昌,朱光有,何坤. 硫酸盐热化学还原作用对原油裂解成气和碳酸盐岩储层改造的影响及作用机制[J]. 岩石学报,2011,27(3):809-826.

Zhang Shuichang, Zhu Guangyou, He Kun. The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms[J]. Acta Petrologica Sinica, 2011, 27(3): 809-826.
[23] Kochnev B B, Pokrovsky B G, Kuznetsov A B, et al. C and Sr isotope chemostratigraphy of Vendian-lower Cambrian carbonate sequences in the central Siberian Platform[J]. Russian Geology and Geophysics, 2018, 59(6): 585-605.
[24] Pokrovsky B G, Mavromatis V, Pokrovsky O S. Co-variation of Mg and C isotopes in Late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?[J]. Chemical Geology, 2011, 290(1/2): 67-74.
[25] Vandeginste V, John C M, Beckert J. Diagenetic geobodies: Fracture-controlled burial dolomite in outcrops from northern Oman[J]. SPE Reservoir Evaluation & Engineering, 2015, 18(1): 84-93.
[26] Schoenherr J, Reuning L, Kukla P A, et al. Halite cementation and carbonate diagenesis of intra-salt reservoirs from the Late Neoproterozoic to early Cambrian Ara Group (South Oman Salt Basin)[J]. Sedimentology, 2009, 56(2): 567-589.
[27] Bergmann K D, Al Balushi S A K, Mackey T J, et al. A 600-million-year carbonate clumped-isotope record from the sultanate of Oman[J]. Journal of Sedimentary Research, 2018, 88(8): 960-979.
[28] Liu D W, Cai C F, Hu Y J, et al. Multistage dolomitization and formation of ultra-deep lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123: 104752.
[29] Ren Y, Zhong D K, Gao C L, et al. Origin of dolomite of the lower Cambrian Longwangmiao Formation, eastern Sichuan Basin, China[J]. Carbonates and Evaporites, 2019, 34(3): 471-490.
[30] Feng M Y, Wu P C, Qiang Z T, et al. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 82: 206-219.
[31] Hu Y J, Cai C F, Pederson C L, et al. Dolomitization history and porosity evolution of a giant, deeply buried Ediacaran gas field (Sichuan Basin, China)[J]. Precambrian Research, 2020, 338: 105595.
[32] Zhang Y G, Yang T, Hohl S V, et al. Seawater carbon and strontium isotope variations through the Late Ediacaran to late Cambrian in the Tarim Basin[J]. Precambrian Research, 2020, 345: 105769.
[33] 魏天媛,蔡春芳,扈永杰,等. 塔里木盆地下寒武统肖尔布拉克组储层成因[J]. 沉积学报,2023,41(2):527-544.

Wei Tianyuan, Cai Chunfang, Hu Yongjie, et al. Origin of reservoirs in the lower Cambrian Xiaoerbulak Formation, Tarim Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 527-544.
[34] 郑剑锋,黄理力,袁文芳,等. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学,2020,31(5):698-709.

Zheng Jianfeng, Huang Lili, Yuan Wenfang, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709.
[35] 郑剑锋,沈安江,杨翰轩,等. 塔里木盆地西北缘震旦系微生物白云岩地球化学、年代学特征及其地质意义[J]. 岩石学报,2021,37(7):2189-2202.

Zheng Jianfeng, Shen Anjiang, Yang Hanxuan, et al. Geochemistry and geochronology characteristics and their geologica significance of microbial dolomite in Upper Sinian, NW Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(7): 2189-2202.
[36] Shang Y X, Gao Z Q, Fan T L, et al. The Ediacaran–Cambrian boundary in the Tarim Basin, NW China: Geological data anomalies and reservoir implication[J]. Marine and Petroleum Ge-ology, 2020, 111: 557-575.
[37] 沈安江,胡安平,郑剑锋,等. 基于U-Pb同位素年龄和团簇同位素(△47)温度约束的构造—埋藏史重建:以塔里木盆地阿克苏地区震旦系奇格布拉克组为例[J]. 海相油气地质,2021,26(3):200-210.

Shen Anjiang, Hu Anping, Zheng Jianfeng, et al. Reconstruction of tectonic-burial evolution based on the constraints of laser in situ U-Pb date and clumped isotopic temperature: A case study from Sinian Qigebulak Formation in Akesu area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 200-210.
[38] 杨翰轩,胡安平,郑剑锋,等. 面扫描和定年技术在古老碳酸盐岩储集层研究中的应用:以塔里木盆地西北部震旦系奇格布拉克组为例[J]. 石油勘探与开发,2020,47(5):935-946.

Yang Hanxuan, Hu Anping, Zheng Jianfeng, et al. Application of mapping and dating techniques in the study of ancient carbonate reservoirs: A case study of Sinian Qigebrak Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(5): 935-946.
[39] Chang B, Li C, Liu D, et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the "dolomite problem"[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014.
[40] Hu Y J, Cai C F, Liu D W, et al. Formation, diagenesis and palaeoenvironmental significance of Upper Ediacaran fibrous dolomite cements[J]. Sedimentology, 2020, 67(2): 1161-1187.
[41] 金民东,谭秀成,李毕松,等. 四川盆地震旦系灯影组白云岩成因[J]. 沉积学报,2019,37(3):443-454.

Jin Mindong, Tan Xiucheng, Li Bisong, et al. Genesis of dolomite in the Sinian Dengying Formation in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(3): 443-454.
[42] Bai Y, Luo P, Wang S, et al. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, lower Cambrian, Aksu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 377-386.
[43] Li Q, Jiang Z X, Hu W X, et al. Origin of dolomites in the lower Cambrian Xiaoerbulak Formation in the Tarim Basin, NW China: Implications for porosity development[J]. Journal of Asian Earth Sciences, 2016, 115: 557-570.
[44] Luo B, Yang Y M, Luo W J, et al. Controlling factors of Dengying Formation reservoirs in the central Sichuan paleo-uplift[J]. Petroleum Research, 2017, 2(1): 54-63.
[45] 沈安江,陈娅娜,潘立银,等. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学,2017,28(8):1176-1190.

Shen Anjiang, Chen Ya’na, Pan Liyin, et al. The facies and porosity origin of reservoirs: Case studies from Longwangmiao Formation of Cambrian, Sichuan Basin, and their implications to reservoir prediction[J]. Natural Gas Geoscience, 2017, 28(8): 1176-1190.
[46] Xu Z H, Lan C J, Zhang B J, et al. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the central to northern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2022, 146: 105924.
[47] Yang X F, Wang X Z, Tang H, et al. Reservoir characteristics and main controlling factors of the Longwangmiao Formation in the Moxi area, central Sichuan Basin, China[J]. Arabian Journal of Geosciences, 2016, 9(3): 217.
[48] Zheng J F, Pan W Q, Shen A J, et al. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 536-547.
[49] Zhou Z, Wang X Z, Yin G, et al. Characteristics and genesis of the (Sinian) Dengying Formation reservoir in central Sichuan, China[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 311-321.
[50] Jiang L, Hu A P, Ou Y L, et al. Diagenetic evolution and effects on reservoir development of the Dengying and Longwangmiao Formations, central Sichuan Basin, southwestern China [J]. Petroleum Science, 2003, 20(6): 3379-3393.
[51] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
[52] Zhu M Y, Zhang J M, Yang A H, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960.
[53] 张满郎,谢增业,李熙喆,等. 四川盆地寒武纪岩相古地理特征[J]. 沉积学报,2010,28(1):128-139.

Zhang Manlang, Xie Zengye, Li Xizhe, et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1): 128-139.
[54] 闫磊,朱光有,王珊,等. 塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选[J]. 石油学报,2021,42(11):1446-1457.

Yan Lei, Zhu Guangyou, Wang Shan, et al. Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1446-1457.
[55] 刘伟,张光亚,潘文庆,等. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报,2011,13(5)529-538.

Liu Wei, Zhang Guangya, Pan Wenqing,et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011, 13(5): 529-538.
[56] 朱永进,沈安江,刘玲利,等. 塔里木盆地晚震旦世—中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报,2020,38(2):398-410.

Zhu Yongjin, Shen Anjiang, Liu Lingli, et al. Tectonic-sedimentary filling history through the later Sinian to the mid-Cambrian in Tarim Basin and its explorational potential[J]. Acta Sedimentologica Sinica, 2020, 38(2): 398-410.
[57] Hood A V S, Wallace M W, Drysdale R N. Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology, 2011, 39(9): 871-874.
[58] Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
[59] Ehrenberg S N, Walderhaug O, Bjørlykke K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.