[1] |
Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082. |
[2] |
胡修棉,薛伟伟,赖文,等. 造山带沉积盆地与大陆动力学[J]. 地质学报,2021,95(1):139-158.
Hu Xiumian, Xue Weiwei, Lai Wen, et al. Sedimentary basins in orogenic belt and continental geodynamics[J]. Acta Geologica Sinica, 2021, 95(1): 139-158. |
[3] |
刘静,张金玉,葛玉魁,等. 构造地貌学:构造—气候—地表过程相互作用的交叉研究[J]. 科学通报,2018,63(30):3070-3088.
Liu Jing, Zhang Jinyu, Ge Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 2018, 63(30): 3070-3088. |
[4] |
林旭,刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质,2019,41(2):499-520.
Lin Xu, Liu Jing. A review of mountain-basin coupling of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 2019, 41(2): 499-520. |
[5] |
陈淑慧,侯元立,邵磊,等. 台湾始新统—中新统沉积物源与沉积环境[J]. 沉积学报,2020,38(2):319-330.
Chen Shuhui, Hou Yuanli, Shao Lei, et al. Eocene-Miocene sediment source and environmental study of Taiwan[J]. Acta Sedimentologica Sinica, 2020, 38(2): 319-330. |
[6] |
段知非,李超,毕磊,等. 崇明岛H12孔百年来长江入海沉积物来源变化及原因[J]. 沉积学报,2020,38(6):1204-1214.
Duan Zhifei, Li Chao, Bi Lei, et al. Provenance tracing of sediment in Changjiang Estuary in the past 150 years and the implications: Case study in core H12 at Chongming Island[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1204-1214. |
[7] |
Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65. |
[8] |
Xiang F, Zhu L D, Wang C S, et al. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 2007, 85(3/4): 249-258. |
[9] |
Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. |
[10] |
Kong P, Zheng Y, Caffee M W. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06017. |
[11] |
Zhang Y F, Li C A, Wang Q L, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590. |
[12] |
林旭,刘静,吴中海,等. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报,2020,94(10):3024-3035.
Lin Xu, Liu Jing, Wu Zhonghai, et al. Study of provenance indicators of detrital zircon in main rivers around the Bohai Bay Basin[J]. Acta Geologica Sinica, 2020, 94(10): 3024-3035. |
[13] |
姚檀栋,邬光剑,徐柏青,等. “亚洲水塔” 变化与影响[J]. 中国科学院院刊,2019,34(11):1203-1209.
Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1203-1209. |
[14] |
张信宝,刘彧,王世杰,等. 黄河、长江的形成演化及贯通时间[J]. 山地学报,2018,36(5):661-668.
Zhang Xinbao, Liu Yu, Wang Shijie, et al. On the chronology of the Yellow Rivers and the Yangtze Rivers[J]. Mountain Research, 2018, 36(5): 661-668. |
[15] |
Yue W, Jin B F, Zhao B C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze delta[J]. Sedimentary Geology, 2018, 364: 42-52. |
[16] |
Liu X B, Chen J, Maher B A, et al. Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties[J]. Geomorphology, 2018, 303: 162-171. |
[17] |
Fu X W, Zhu W L, Geng J H, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600. |
[18] |
Yang C F, Vigier N, Yang S Y, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793. |
[19] |
Yang S Y, Jiang S Y, Ling H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources[J]. Science in China Series D: Earth Sciences, 2007, 50(10): 1556-1565. |
[20] |
Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the Late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 2012, 45: 57-64. |
[21] |
He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203. |
[22] |
Wang P, Zheng H B, Liu S F, et al. Late Cretaceous drainage reorganization of the middle Yangtze River[J]. Lithosphere, 2018, 10(3): 392-405. |
[23] |
林旭,刘静,彭保发,等. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质,2017,39(6):1091-1110.
Lin Xu, Liu Jing, Peng Baofa, et al. A review of low tem-perature thermochronology on bedrock and detritus from rivers around the Tibetan Plateau[J]. Seismology and Geology, 2017, 39(6): 1091-1110. |
[24] |
Li Y W, Zhao J X, Li C A, et al. Cadmium and clay mineral analysis of Late Pliocene-Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 2021, 598: 1-14. |
[25] |
Jiang H J, Li C A, Kang C G, et al. Provenance discrimination of upper Yangtze River Basin sediments: New insights from heavy mineral signatures and detrital magnetite geochemistry[J]. Quaternary International, 2020, 568: 79-89. |
[26] |
Chappell J, Zheng H B, Fifield K. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 79-94. |
[27] |
Vezzoli G, Garzanti E, Limonta M, et al. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology, 2016, 261: 177-192. |
[28] |
Zheng H B, Clift P D, He M Y, et al. Formation of the First Bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39. |
[29] |
Yan Y, Carter A, Huang C Y, et al. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03001. |
[30] |
Wei C Y, Voinchet P, Zhang Y F, et al. Chronology and provenance of the Yichang Gravel Layer deposits in the Jianghan Basin, middle Yangtze River valley, China: Implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 2020, 550: 39-54. |
[31] |
He M Y, Zheng H B, Huang X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69. |
[32] |
Fan D D, Li C X, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1718-1727. |
[33] |
Foster G L F, Carter A. Insights into the patterns and locations of erosion in the Himalaya—A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth and Planetary Science Letters, 2007, 257(3/4): 407-418. |
[34] |
Malusà M G, Wang J G, Garzanti E, et al. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology[J]. Lithos, 2017, 290-291: 48-59. |
[35] |
Jepson G, Carrapa B, George S W M, et al. Resolving mid-to Upper-crustal exhumation through apatite petrochronology and thermochronology[J]. Chemical Geology, 2021, 565: 120071. |
[36] |
Deng B, Chew D, Mark C, et al. Late Cenozoic drainage reorganization of the Paleo-Yangtze River constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. GSA Bulletin, 2021, 133(1/2): 199-211. |
[37] |
Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite–Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493. |
[38] |
Gillespie J, Glorie S, Khudoley A, et al. Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia)[J]. Lithos, 2018, 314-315: 140-155. |
[39] |
Shen C B, Donelick R A, O'Sullivan P B, et al. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology, 2012, 281: 194-207. |
[40] |
苏建超,李长安,吴中海,等. 江汉盆地周缘主要河流沉积物碎屑磷灰石的微量元素特征及其物源判别指标分析[J]. 地球学报,2021,42(5):641-650.
Su Jianchao, Li Chang’an, Wu Zhonghai, et al. Detrital apatite trace element characteristics of main rivers around Jianghan Basin and an analysis of their provenance discriminant indicators[J]. Acta Geoscientica Sinica, 2021, 42(5): 641-650. |
[41] |
林旭,刘静,吴中海,等. 渤海钻孔物源示踪和河流沉积物扩散研究:碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报,2021,27(2):304-316.
Lin Xu, Liu Jing, Wu Zhonghai, et al. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 2021, 27(2): 304-316. |
[42] |
刘海金, 龚志军, 林旭.渤海主要汇入河流碎屑磷灰石地球化学特征及成因[J]. 海洋地质与第四纪地质,2021,41(4): 74-86.
Liu Haijin, Gong Zhijun, Lin Xu. Geochemical characteristics and genesis of detrital apatites from the surrounding rivers into the Bohai Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 74-86. |
[43] |
杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展,2006,21(6):648-655.
Yang Shouye. Advances in sedimentary geochemistry and tracing applications of Asian river[J]. Advances in Earth Science, 2006, 21(6): 648-655. |
[44] |
石学法,乔淑卿,杨守业,等. 亚洲大陆边缘沉积学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):319-336.
Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336. |
[45] |
张信宝,文安邦, Walling D E,等. 大型水库对长江上游主要干支流河流输沙量的影响[J]. 泥沙研究,2011(4):59-66.
Zhang Xinbao, Wen Anbang, Walling D E, et al. Effects of large-scale hydropower reservoirs on sediment loads in upper Yangtze River and its major tributaries[J]. Journal of Sediment Research, 2011(4): 59-66. |
[46] |
Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. |
[47] |
Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): Q02008. |
[48] |
Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146. |
[49] |
Belousova E A, Griffin W L, O’Reilly S Y, et al. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69. |
[50] |
O'Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. |
[51] |
张宏飞,高山. 地球化学[M]. 北京:地质出版社,2012:130-136.
Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geological Press, 2012: 130-136. |
[52] |
黄湘通,郑洪波, Chappell J,等. 长江流域河流沉积物宇宙成因核素10Be特征与侵蚀速率估算[J]. 第四纪研究,2013,33(4):671-683.
Huang Xiangtong, Zheng Hongbo, Chappell J, et al. Characteristics of cosmogenic nuclide 10Be in the Yangtze Riverine sediments and estimations of erosion rate[J]. Quaternary Sciences, 2013, 33(4): 671-683. |
[53] |
He M Y, Zheng H B, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140. |
[54] |
王中波,杨守业,王汝成,等. 长江河流沉积物磁铁矿化学组成及其物源示踪[J]. 地球化学,2007,36(2):176-184.
Wang Zhongbo, Yang Shouye, Wang Rucheng, et al. Magnetite compositions of Changjiang River sediments and their tracing implications[J]. Geochimica, 2007, 36(2): 176-184. |
[55] |
秦蕾蕾,董先勇,杜泽东,等. 金沙江下游水沙变化特性及梯级水库拦沙分析[J]. 泥沙研究,2019,44(3):24-30.
Qin Leilei, Dong Xianyong, Du Zedong, et al. Processes of water-sediment and deposition in cascade reservoirs in the lower reach of Jinsha River[J]. Journal of Sediment Research, 2019, 44(3): 24-30. |
[56] |
Zhou Y J, Li D F, Lu J Y, et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River Basin of the Yangtze River, southwestern China[J]. CATENA, 2020, 193: 104593. |
[57] |
Yang H F, Yang S L, Xu K H, et al. Human impacts on sediment in the Yangtze River: A review and new perspectives[J]. Global and Planetary Change, 2018, 162: 8-17. |