[1] Moscardelli L, Wood L, Mann P. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1059-1088.
[2] Garziglia S, Migeon S, Ducassou E, et al. Mass-transport deposits on the Rosetta province (NW Nile deep-sea turbidite system, Egyptian margin): Characteristics, distribution, and potential causal processes[J]. Marine Geology, 2008, 250(3/4): 180-198.
[3] Masson D, Harbitz C B, Wynn R B, et al. Submarine landslides: Processes, triggers and hazard prediction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2006, 364(1845): 2009-2039.
[4] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from masstransport complexes using 3D seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151.
[5] Alves M T. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review[J]. Marine and Petroleum Geology, 2015, 67: 262-285.
[6] Moscardelli L, Wood L. New classification system for mass transport complexes in offshore Trinidad[J]. Basin Research, 2008, 20(1): 73-98.
[7] 王大伟,吴时国,吕福亮,等. 南海深水块体搬运沉积体系及其油气勘探意义[J]. 中国石油大学学报(自然科学版),2011,35(5):14-19.

Wang Dawei, Wu Shiguo, Fuliang Lü, et al. Mass transport deposits and its significance for oil & gas exploration in deep-water regions of South China Sea[J]. Journal of China University of Petroleum, 2011, 35(5): 14-19.
[8] 李磊,李彬,王英民,等. 块体搬运沉积体系地震地貌及沉积构型:以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报(自然科学版),2013,44(6):2410-2416.

Li Lei, Li Bin, Wang Yingmin, et al. Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2410-2416.
[9] Maslin M, Owen M, Day S, et al. Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis[J]. Geology, 2004, 32(1): 53-56.
[10] 甘华阳,王家生,胡高韦. 海洋沉积物中的天然气水合物与海底滑坡[J]. 防灾减灾工程学报,2004,24(2):177-181.

Gan Huayang, Wang Jiasheng, Hu Gaowei. Submarine landslide related to natural gas hydrate within benthal deposit[J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(2): 177-181.
[11] Sun Q, Alves M T, Lu X, et al. True volumes of slope failure estimated from a Quaternary mass-transport deposit in the northern South China Sea[J]. Geophysical Research Letters, 2018, 45(6): 2642-2651.
[12] Hampton M A, Lee H J, Locat J. Submarine landslides[J]. Reviews of Geophysics, 1996, 34(1): 33-59.
[13] Callot P, Sempere T, Odonne F, et al. Giant submarine collapse of a carbonate platform at the Turoniane-Coniacian transition: The Ayabacas Formation, southern Peru[J]. Basin Research, 2008, 20: 333-357.
[14] Pirmez C, Marr J, Shipp C, et al. Observations and numerical modeling of debris flows in the Na Kika Basin, gulf of Mexico[C]//Proceedings of the offshore technology conference. Houston: OTC, 2004: 1988-2000.
[15] Canals M, Lastras G, Urgeles R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project[J]. Marine Geology, 2004, 213(1/2/3/4): 9-72.
[16] Gee M J R, Uy H S, Warren J, et al. The Brunei slide: A giant submarine landslide on the north west Borneo margin revealed by 3D seismic data[J]. Marine Geology, 2007, 246(1): 9-23.
[17] 秦雁群,万仑坤,计智锋,等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质,2018,39(1):140-152.

Qin Yanqun, Wan Lunkun, Ji Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152.
[18] Ru K, Pigott J D. Episodic rifting and subsidence in the South China Sea[J]. AAPG Bulletin, 1986, 70(9): 1136-1155.
[19] Franke D, Barckhausen U, Baristeas N, et al. The continent-ocean transition at the southeastern margin of the South China Sea[J]. Marine and Petroleum Geology, 2011, 28(6): 1187-1204.
[20] Zhao F, Alves T M, Wu S G, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea)[J]. Earth and Planetary Science Letters, 2016, 445: 79-91.
[21] Gong C L, Wang Y M, Zhu W L, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2013, 97(2): 285-308.
[22] Zhuo H T, Wang Y M, Shi H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data[J]. Quaternary Science Reviews, 2015, 129: 128-146.
[23] Gong C L, Blum M D, Wang Y M, et al. Can climatic signals be discerned in a deep-water sink?: An answer from the Pearl River source-to-sink sediment-routing system[J]. GSA Bulletin, 2018, 130(3/4): 661-677.
[24] Lin C S, He M, Steel R J, et al. Changes in inner- to outer-shelf delta architecture, Oligocene to Quaternary Pearl River shelf-margin prism, northern South China Sea[J]. Marine Geology, 2018, 404: 187-204.
[25] Lin C S, Jiang J, Shi H S, et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30(Suppl.1): 568-595.
[26] Liu H Y, Lin C S, Zhang Z T, et al. High-resolution sequence architecture and depositional evolution of the Quaternary in the northeastern shelf margin of the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(5): 86-98.
[27] Wang X X, Wang Y M, Tan M X, et al. Deep-water deposition in response to sea-level fluctuations in the past 30 kyr on the northern margin of the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 163: 103317.
[28] Liu H Y, Lin C S, Zhang Z T, et al. Shelf-margin architecture and deposition variability across the mid-Pleistocene climate transition, northeastern South China Sea[J]. Marine Geology, 2022, 443: 106690.
[29] 李廷栋. 青藏高原隆升的过程和机制[J]. 地球学报,1995,16(1):1-9.

Li Tingdong. The uplifting process and mechanism of the Qinhai-Tibet Plateau[J]. Acta Geoscientia Sinica, 1995, 16(1): 1-9.
[30] Wang G C, Cao K, Zhang K X, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Sciences, 2011, 54(1): 29-44.
[31] Métivier F, Gaudemer Y, Tapponnier P, et al. Mass accumulation rates in Asia during the Cenozoic[J]. Geophysical Journal International, 1999, 137(2): 280-318.
[32] Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897.
[33] Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86-102.
[34] Jiang J, Shi H S, Lin C S, et al. Sequence architecture and depositional evolution of the Late Miocene to Quaternary northeastern shelf margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 81: 79-97.
[35] Gong C L, Steel R J, Wang Y M, et al. Shelf-edge delta overreach at the shelf break can guarantee the delivery of terrestrial sediments to deep water at all sea-level stands[J]. AAPG Bulletin, 2019, 103(1): 65-90.
[36] 姚伯初,杨木壮. 南海晚新生代构造运动与天然气水合物资源[J]. 海洋地质与第四纪地质,2008,28(4):93-100.

Yao Bochu, Yang Muzhuang. Tectonic movements in the Late Cenozoic and gas hydrate resources in the South China Sea[J]. Marine Geology & Quaternary Geology, 2008, 28(4): 93-100.
[37] 赵淑娟,吴时国,施和生,等. 南海北部东沙运动的构造特征及动力学机制探讨[J]. 地球物理学进展,2012,27(3):1008-1019.

Zhao Shujuan, Wu Shiguo, Shi Hesheng, et al. Structures and dynamic mechanism related to the Dongsha movement at the northern margin of South China Sea[J]. Progress in Geophysics, 2012, 27(3): 1008-1019.
[38] Xie Z Y, Sun L T, Pang X, et al. Origin of the Dongsha event in the South China Sea[J]. Marine Geophysical Research, 2017, 38(4): 357-371.
[39] 何敏,朱伟林,吴哲,等. 珠江口盆地新构造运动特征与油气成藏[J]. 中国海上油气,2019,31(5):9-20.

He Min, Zhu Weilin, Wu Zhe, et al. Neotectonic movement characteristics and hydrocarbon accumulation of the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2019, 31(5): 9-20.
[40] Lüdmann T, Wong H K, Wang P X. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea[J]. Marine Geology, 2001, 172(3/4): 331-358.
[41] Sømme T O, Helland-Hansen W, Granjeon D. Impact of eustatic amplitude variations on shelf morphology, sediment dispersal, and sequence stratigraphic interpretation: Icehouse versus greenhouse systems[J]. Geology, 2009, 37(7): 587-590.
[42] Granjeon D, Joseph P. Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling[M]//Harbaugh J W, Watney W L, Rankey E C, et al. Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. Tulsa: SEPM Special Publication, 1999: 197-210.
[43] Granjeon D. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys[M]//Martinius A W, Ravnås R, Howell J A, et al. From depositional systems to sedimentary successions on the Norwegian continental margin. Chichester: John Wiley & Sons Ltd, 2014: 453-472.
[44] Harris A D, Covault J A, Madof A S, et al. Three-dimensional numerical modeling of eustatic control on continental‐margin sand distribution[J]. Journal of Sedimentary Research, 2016, 86(12): 1434-1443.
[45] Harris A D, Baumgardner S E, Sun T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51.
[46] Harris A D, Covault J A, Baumgardner S, et al. Numerical modeling of icehouse and greenhouse sea-level changes on a continental margin: Sea-level modulation of deltaic avulsion processes[J]. Marine and Petroleum Geology, 2020, 111: 807-814.
[47] Hawie N, Covault J A, Dunlap D, et al. Slope-fan depositional architecture from high-resolution forward stratigraphic models[J]. Marine and Petroleum Geology, 2018, 91: 576-585.
[48] Hawie N, Covault J A, Sylvester Z. Grain-size and discharge controls on submarine-fan depositional patterns from forward stratigraphic models[J]. Frontier in Earth Science, 2019, 7: 334.
[49] 吴时国,秦志亮,王大伟,等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报,2011,54(12):3184-3195.

Wu Shiguo, Qin Zhiliang, Wang Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3184-3195.
[50] Sun Q L, Xie X N, Piper D J W, et al. Three dimensional seismic anatomy of multi-stage mass transport deposits in the Pearl River Mouth Basin, northern South China Sea: Their ages and kinematics[J]. Marine Geology, 2017, 393: 93-108.
[51] Wang X X, Wang Y M, He M, et al. Genesis and evolution of the mass transport deposits in the middle segment of the Pearl River canyon, South China Sea: Insights from 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 555-574.
[52] Qi K, Gong C L, Fauquembergue K, et al. Did eustatic sea-level control deep-water systems at Milankovitch and timescales?: An answer from Quaternary Pearl River margin[J]. Sedimentary Geology, 2022, 439: 106217.
[53] Neal J, Abreu V. Sequence stratigraphy hierarchy and the accommodation succession method[J]. Geology, 2009, 37(9): 779-782.
[54] Lobo F J, Ridente D. Stratigraphic architecture and spatio-temporal variability of high-frequency (Milankovitch) depositional cycles on modern continental margins: An overview[J]. Marine Geology, 2014, 352: 215-247.
[55] Milliman J D, Farnsworth K L. River discharge to the coastal ocean–A global synthesis[M]. Cambridge: Cambridge University Press, 2011: 384-415.
[56] Hance J J. Development of a database and assessment of seafloor slope stability based on published literature[D]. Austin: University of Texas at Austin, 2003: 1-75.
[57] Madof A S, Harris A D, Connell S D. Nearshore along-strike variability: Is the concept of the systems tract unhinged?[J]. Geology, 2016, 44(4): 315-318.
[58] Burgess P M. Research Focus: The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension[J]. Geology, 2016, 44(4): 335-336.
[59] 冯志强,冯文科,薛万俊,等. 南海北部地质灾害及海底工程地质条件评价[M]. 南京:河海大学出版社,1996:178-200.

Feng Zhiqiang, Feng Wenke, Xue Wanjun, et al. Evaluation of marine geologic hazards and engineering geological conditions in the northern South China Sea[M]. Nanjing: Hehai University Press, 1996: 178-200.
[60] 陈泓君,蔡观强,罗伟东,等. 南海北部陆坡神狐海域峡谷地貌形态特征与成因[J]. 海洋地质与第四纪地质,2012,32(5):19-26.

Chen Hongjun, Cai Guanqiang, Luo Weidong, et al. Features of canyon morphology and their origin in the Shenhu area, northern slope of the South China Sea[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 19-26.
[61] Tucker G E, Slingerland R L. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 12229-12243.
[62] Prince G D, Burgess P M. Numerical modeling of falling-stage topset aggradation: Implications for distinguishing between forced and unforced regressions in the geological record[J]. Journal of Sedimentary Research, 2013, 83(9): 767-781.
[63] Csato I, Granjeon D, Catuneanu O, et al. A three-dimensional stratigraphic model for the Messinian crisis in the Pannonian Basin, eastern Hungary[J]. Basin Research, 2013, 25(2): 121-148.
[64] Gong C L, Li D W, Steel R J, et al. Delta-to-fan source-to-sink coupling as a fundamental control on the delivery of coarse clastics to deepwater: Insights from stratigraphic forward modelling[J]. Basin Research, 2021, 33(6): 2960-2983.
[65] Vail P R, Mitchum R M, Thompson III S. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level[M]//Payton C E. Seismic stratigraphy: Applications to hydrocarbon exploration. Oklahoma: American Association of Petroleum Geologists, 1977: 83-97.
[66] Mitchum R M. Seismic stratigraphic expression of submarine fans[M]//Berg O R, Woolverton G D. Seismic stratigraphy II: An integrated approach to hydrocarbon exploration. Oklahoma: American Association of Petroleum Geologists, 1985: 117-138.
[67] van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//Wilgus C K,Hastings B S,Posamentier H,et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988: 39-45.
[68] Petter A L, Steel R J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen[J]. AAPG Bulletin, 2006, 90(10): 1451-1472.
[69] Jorry S J, Droxler A W, Mallarino G, et al. Bundled turbidite deposition in the central Pandora Trough (gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S19.
[70] Covault J A, Graham S A. Submarine fans at all sea-level stands: Tectono-morphologic and climatic controls on terrigenous sediment delivery to the deep sea[J]. Geology, 2010, 38(10): 939-942.
[71] Beaubouef R T, Friedmann S J. High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western gulf of Mexico: Depositional models and reservoir analogs[M]//Weimer P, Slatt R M, Coleman J, et al. Deep-water reservoirs of the world. Houston: Society of Economic Paleontologists and Mineralogists Foundation 20th Annual Bob F. Perkins Research Conference, 2000: 40-60.
[72] Brami T R, Pirmez C, Archie C, et al. Late Pleistocene deep-water stratigraphy and depositional processes, offshore Trinidad and Tobago[M]// Weimer P, Slatt R M, Coleman J, et al. Deep-water reservoirs of the world. Houston: Society of Economic Paleontologists and Mineralogists Foundation 20th Annual Bob F. Perkins Research Conference, 2000: 104-115.
[73] Pellegrini C, Asioli A, Bohacs K M, et al. The Late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning[J]. Marine and Petroleum Geology, 2018, 96: 16-50.
[74] Burgess P M, Steel R J, Granjeon D. Stratigraphic forward modeling of basin-margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf-edge deltas[J]. SEPM Special Publication, 2008, 90: 35-45.