[1] |
Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22. |
[2] |
Opdyke B N, Wilkinson B H. Carbonate mineral saturation state and cratonic limestone accumulation[J]. American Journal of Science, 1993, 293(3): 217-234. |
[3] |
Wilkinson B H, Owen R M, Carroll A R. Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites[J]. Journal of Sedimentary Research, 1985, 55(2): 171-183. |
[4] |
郭芪恒,金振奎,安益辰,等. 北京下苇甸地区张夏组沉积环境及沉积模式[J]. 沉积学报,2019,37(1):40-50.
Guo Qiheng, Jin Zhenkui, An Yichen, et al. Study on sedimentary environment and patterns of the Cambrian Zhangxia Formation at Xiaweidian, Beijing[J]. Acta Sedimentologica Sinica, 2019, 37(1): 40-50. |
[5] |
郭芪恒,金振奎,史书婷,等. 鲕粒粒度特征及其指示意义:以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报,2020,38(4):737-746.
Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746. |
[6] |
李飞,武思琴,刘柯. 鲕粒原生矿物识别及对海水化学成分变化的指示意义[J]. 沉积学报,2015,33(3):500-511.
Li Fei, Wu Siqin, Liu Ke. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry[J]. Acta Sedimentologica Sinica, 2015, 33(3): 500-511. |
[7] |
李开开,张学丰,贺训云,等. 川东北飞仙关组白云岩化作用对鲕粒滩储层的孔隙改造效应[J]. 石油与天然气地质,2018,39(4):706-718.
Li Kaikai, Zhang Xuefeng, He Xunyun, et al. Modification of dolomitization on pores in oolitic shoal reservoirs of the Feixianguan Formation in the northeastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(4): 706-718. |
[8] |
刘冉,霍飞,王鑫,等. 普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J]. 中国石油勘探,2017,22(6):34-46.
Liu Ran, Huo Fei, Wang Xin, et al. Characteristics and main controlling factors of Lower Triassic Feixianguan Formation carbonate reservoir in Puguang gas field[J]. China Petroleum Exploration, 2017, 22(6): 34-46. |
[9] |
李宏涛. 台内鲕粒滩气藏成藏过程与模式:以川东北河坝地区下三叠统飞仙关组三段为例[J]. 石油勘探与开发,2016,43(5):723-732.
Li Hongtao. Accumulation process and pattern of oolitic shoal gas pools in the platform: A case from member 3 of Lower Triassic Feixianguan Formation in the Heba area, northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 723-732. |
[10] |
梅冥相, Latif K,孟晓庆,等. 鲕粒滩中光合作用生物膜构建的高能核形石:以辽西葫芦岛三道沟剖面寒武系张夏组为例[J]. 地质学报,2020,94(4):999-1016.
Mei Mingxiang, Latif K, Meng Xiaoqing, et al. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao city in the western part of Liaoning province[J]. Acta Geologica Sinica, 2020, 94(4): 999-1016. |
[11] |
杨仁超,樊爱萍,韩作振,等. 核形石研究现状与展望[J]. 地球科学进展,2011,26(5):465-474.
Yang Renchao, Fan Aiping, Han Zuozhen, et al. Status and prospect of studies on oncoid[J]. Advances in Earth Science, 2011, 26(5): 465-474. |
[12] |
Sorby H C. The structure and origin of limestones[J]. Proceedings of the Geological Society of London, 1879, 35: 56-95. |
[13] |
Rankey E C, Reeder S L. Holocene ooids of Aitutaki atoll, cook islands, South Pacific[J]. Geology, 2009, 37(11): 971-974. |
[14] |
Pacton M, Ariztegui D, Wacey D, et al. Going nano: A new step toward understanding the processes governing freshwater ooid formation[J]. Geology, 2012, 40(6): 547-550. |
[15] |
Plee K, Ariztegui D, Martini R, et al. Unravelling the microbial role in ooid formation-results of an in situ experiment in modern freshwater Lake Geneva in Switzerland[J]. Geobiology, 2008, 6(4): 341-350. |
[16] |
Davies P J, Bubela B, Ferguson J. The formation of ooids[J]. Sedimentology, 1978, 25(5): 703-730. |
[17] |
Royal Society. Ocean acidification due to increasing atmospheric carbon dioxide: London. The Royal Society, Policy Document, 2005, 12/05, 57 p. |
[18] |
Duguid S M A, Kyser T K, James N P, et al. Microbes and ooids[J]. Journal of Sedimentary Research, 2010, 80(3/4): 236-251. |
[19] |
Trower E J, Cantine M D, Gomes M L, et al. Active ooid growth driven by sediment transport in a high-energy shoal, little ambergris cay, Turks and Caicos islands[J]. Journal of Sedimentary Research, 2018, 88(9): 1132-1151. |
[20] |
Folk R L, Lynch F L. Organic matter, putative nannobacteria and the formation of ooids and hardgrounds[J]. Sedimentology, 2001, 48(2): 215-229. |
[21] |
Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora[J]. Geobiology, 2013, 11(5): 420-436. |
[22] |
Tang D J, Shi X Y, Shi Q, et al. Organomineralization in Mesoproterozoic giant ooids[J]. Journal of Asian Earth Sciences, 2015, 107: 195-211. |
[23] |
Tan Q, Shi Z J, Tian Y M, et al. Origin of ooids in ooidal-muddy laminites: A case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin, South China[J]. Geological Journal, 2017, 53(5): 1716-1727. |
[24] |
Diaz M R, Swart P K, Eberli G P, et al. Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 2015, 62(7): 2090-2112. |
[25] |
Diaz M R, Eberli G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556. |
[26] |
Diaz M R, Eberli G P, Blackwelder P, et al. Microbially mediated organomineralization in the formation of ooids[J]. Geology, 2017, 45(9): 771-774. |
[27] |
梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报,2012,30(1):20-32.
Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30(1): 20-32. |
[28] |
Siahi M, Hofmann A, Master S, et al. Carbonate ooids of the mesoarchaean pongola supergroup, South Africa[J]. Geobiology, 2017, 15(6): 750-766. |
[29] |
Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 2006, 23(7): 545-550. |
[30] |
Brehm U, Palinska K A, Krumbein W E. Laboratory cultures of calcifying biomicrospheres generate ooids: A contribution to the origin of oolites[J]. Carnets De Géologie, 2004, CG2004(L03): 1-6. |
[31] |
宋文天,刘建波. 碳酸盐鲕粒包壳结构研究综述[J]. 古地理学报,2020,22(1):147-160.
Song Wentian, Liu Jianbo. A review of cortical structures of carbonate ooids[J]. Journal of Palaeogeography, 2020, 22(1): 147-160. |
[32] |
Rao V P, Milliman J D. Relict ooids off northwestern India: Inferences on their genesis and Late Quaternary sea level[J]. Sedimentary Geology, 2017, 358: 44-50. |
[33] |
Sandberg P A. New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy[J]. Sedimentology, 1975, 22(4): 497-537. |
[34] |
Simone L. Ooids: A review[J]. Earth-Science Reviews, 1980, 16: 319-355. |
[35] |
周瑶琪,张晗,张振凯. 海相碳酸盐鲕粒形成过程的模拟实验研究[J]. 中国石油大学学报(自然科学版),2017,41(3):23-30.
Zhou Yaoqi, Zhang Han, Zhang Zhenkai. Experiment study of synthesis for marine carbonate ooids genesis[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(3): 23-30. |
[36] |
Sumner D Y, Grotzinger J P. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids[J]. Journal of Sedimentary Petrology, 1993, 63(5): 974-982. |
[37] |
段雄,时志强,金鑫,等. 巨鲕的微生物成因:来自重庆石柱地区下寒武统的证据[J]. 古地理学报,2015,17(2):241-248.
Duan Xiong, Shi Zhiqiang, Jin Xin, et al. Microbial cause for giant ooids: Evidence from the Lower Cambrian in Shizhu area, Chongqing[J]. Journal of Palaeogeography, 2015, 17(2): 241-248. |
[38] |
Trower E J, Lamb M P, Fischer W W. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates[J]. Earth and Planetary Science Letters, 2017, 468: 112-118. |
[39] |
Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. |