[1] |
Reynolds A D. Dimensions of paralic sandstone bodies[J]. AAPG Bulletin, 1999, 83(2): 211-229. |
[2] |
Ainsworth R B, Vakarelov B K, Nanson R A. Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management[J]. AAPG Bulletin, 2011, 95(2): 267-297. |
[3] |
于兴河,李胜利,李顺利. 三角洲沉积的结构:成因分类与编图方法[J]. 沉积学报,2013,31(5):782-797.
Yu Xinghe, Li Shengli, Li Shunli. Texture-genetic classifications and mapping methods for deltaic deposits[J]. Acta Sedimentologica Sinica, 2013, 31(5): 782-797. |
[4] |
姜在兴,王俊辉,张元福. 滩坝沉积研究进展综述[J]. 古地理学报,2015,17(4):427-440.
Jiang Zaixing, Wang Junhui, Zhang Yuanfu. Advances in beach-bar research: A review[J]. Journal of Palaeogeography, 2015, 17(4): 427-440. |
[5] |
Boyd R, Dalrymple R, Zaitlin B A. Classification of clastic coastal depositional environments[J]. Sedimentary Geology, 1992, 80(3/4): 139-150. |
[6] |
Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[M]//Broussard M L. Deltas: Models for exploration. Houston: Houston Geological Society, 1975: 87-98. |
[7] |
Bhattacharya J P, Giosan L. Wave-influenced deltas: Geomorphological implications for facies reconstruction[J]. Sedimentology, 2003, 50(1): 187-210. |
[8] |
Dalrymple R W, Choi K. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation[J]. Earth-Science Reviews, 2007, 81(3/4): 135-174. |
[9] |
Peng Y, Olariu C, Steel R J. Recognizing tide- and wave-dominated compound deltaic clinothems in the rock record[J]. Geology, 2020, 48(12): 1149-1153. |
[10] |
Olariu C. Autogenic process change in modern deltas: Lessons for the ancient[M]//Martinius A W, Ravnås R, Howell J A, et al. From depositional systems to sedimentary successions on the norwegian continental margin. Hoboken: Wiley Blackwell, 2014: 149-166. |
[11] |
Nyberg B, Howell J A. Global distribution of modern shallow marine shorelines. Implications for exploration and reservoir analogue studies[J]. Marine and Petroleum Geology, 2016, 71: 83-104. |
[12] |
李小平,柳保军,丁琳,等. 海相三角洲沉积单元划分及其对勘探砂体对比的意义:基于现代珠江三角洲沉积水动力综合研究[J]. 沉积学报,2016,34(3):555-562.
Li Xiaoping, Liu Baojun, Ding Lin, et al. Depositional elements definition of marine delta and significance to sand body correlation in petroleum exploration: From hydrodynamic analysis on modern Pearl River Delta[J]. Acta Sedimentologica Sinica, 2016, 34(3): 555-562. |
[13] |
Tamura T, Saito Y, Lap Nguyen V, et al. Origin and evolution of interdistributary delta plains; insights from Mekong River Delta[J]. Geology, 2012, 40(4): 303-306. |
[14] |
Legler B, Hampson G J, Jackson C A L, et al. Facies relationships and stratigraphic architecture of distal, mixed tide- and wave-influenced deltaic deposits: Lower sego sandstone, western Colorado, U.S.A[J]. Journal of Sedimentary Research, 2014, 84(8): 605-625. |
[15] |
Peng Y, Steel R J, Rossi V M, et al. Mixed-energy process interactions read from a compound-clinoform delta (paleo–orinoco delta, trinidad): Preservation of river and tide signals by mud-induced wave damping[J]. Journal of Sedimentary Research, 2018, 88(1): 75-90. |
[16] |
Rossi V M, Steel R J. The role of tidal, wave and river currents in the evolution of mixed-energy deltas: Example from the Lajas Formation (Argentina)[J]. Sedimentology, 2016, 63(4): 824-864. |
[17] |
Collins D S, Johnson H D, Allison P A, et al. Mixed process, humid-tropical, shoreline-shelf deposition and preservation: Middle Miocene-modern baram delta province, northwest Borneo[J]. Journal of Sedimentary Research, 2018, 88(4): 399-430. |
[18] |
Ainsworth R B, Vakarelov B K, MacEachern J A, et al. Process-driven architectural variability in mouth-bar deposits: A case study from a mixed-process mouth-bar complex, Drumheller, Alberta, Canada[J]. Journal of Sedimentary Research, 2016, 86(5): 512-541. |
[19] |
van Cappelle M, Ravnås R, Hampson G J, et al. Depositional evolution of a progradational to aggradational, mixed-influenced deltaic succession: Jurassic Tofte and Ile formations, southern Halten Terrace, offshore Norway[J]. Marine and Petroleum Geology, 2017, 80: 1-22. |
[20] |
Coleman J M, Wright L D. Modern river deltas: Variability of processes and sand bodies[M]//Broussard M L. Deltas: Models for exploration. Houston: Houston Geological Society, 1975: 99-149. |
[21] |
薛良清, Galloway W E. 扇三角洲、辫状河三角洲与三角洲体系的分类[J]. 地质学报,1991,65(2):141-153.
Xue Liangqing, Galloway W E. Fan-delta, braid delta and the classification of delta systems[J]. Acta Geological Sinica, 1991, 65(2): 141-153. |
[22] |
Orton G J, Reading H G. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size[J]. Sedimentology, 1993, 40(3): 475-512. |
[23] |
Dashtgard S E, Gingras M K, MacEachern J A. Tidally modulated shorefaces[J]. Journal of Sedimentary Research, 2009, 79(11): 793-807. |
[24] |
Yang B C, Dalrymple R W, Chun S S. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: Summer tidal flat - winter shoreface[J]. Sedimentology, 2005, 52(2): 235-252. |
[25] |
MacEachern J A, Bann K L, Bhattacharya J P, et al. Ichnology of deltas: Organism responses to the dynamic interplay of rivers, waves, storms, and tides[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: SEPM Special Publication, 2005, 83:49-85. |
[26] |
Buatois L A, Santiago N, Herrera M, et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline[J]. Sedimentology, 2012, 59(5): 1568-1612. |
[27] |
Rossi V M, Perillo M M, Steel R J, et al. Quantifying mixed-process variability in shallow-marine depositional systems: What are sedimentary structures really telling us?[J]. Journal of Sedimentary Research, 2017, 87(10): 1060-1074. |
[28] |
Ashton A D, Giosan L. Wave-angle control of delta evolution[J]. Geophysical Research Letters, 2011, 38(13): L13405. |
[29] |
Anthony E J. Wave influence in the construction, shaping and destruction of river deltas: A review[J]. Marine Geology, 2015, 361: 53-78. |
[30] |
Dodet G, Bertin X, Bruneau N, et al. Wave-current interactions in a wave-dominated tidal inlet[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1587-1605. |
[31] |
Nardin W, Fagherazzi S. The effect of wind waves on the development of river mouth bars[J]. Geophysical Research Letters, 2012, 39(12): L12607. |
[32] |
Nardin W, Mariotti G, Edmonds D A, et al. Growth of river mouth bars in sheltered bays in the presence of frontal waves[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 872-886. |
[33] |
Geleynse N, Storms J E A, Walstra D J R, et al. Controls on river delta Formation; insights from numerical modelling[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 217-226. |
[34] |
Jerolmack D J, Swenson J B. Scaling relationships and evolution of distributary networks on wave-influenced deltas[J]. Geophysical Research Letters, 2007, 34(23): L23402. |
[35] |
Edmonds D A, Hoyal D C J D, Sheets B A, et al. Predicting delta avulsions: Implications for coastal wetland restoration[J]. Geology, 2009, 37(8): 759-762. |
[36] |
Jerolmack D J. Conceptual framework for assessing the response of delta channel networks to Holocene sea level rise[J]. Quaternary Science Reviews, 2009, 28(17/18): 1786-1800. |
[37] |
Giosan L, Donnelly J P, Vespremeanu E, et al. River delta morphodynamics: Examples from the Danube delta[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: SEPM Special Publication, 2005, 83: 393-411. |
[38] |
Giosan L. Morphodynamic feedbacks on deltaic coasts: Lessons from the wave-dominated Danube delta[C]//Proceedings of the sixth international symposium on coastal engineering and science of coastal sediment process. New Orleans: American Society of Civil Engineers, 2007: 828-841. |
[39] |
Correggiari A, Cattaneo A, Trincardi F. Depositional patterns in the Late Holocene Po delta system[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: SEPM Special Publication, 2005, 83: 365-392. |
[40] |
Nanson R A, Vakarelov B K, Ainsworth R B, et al. Evolution of a Holocene, mixed-process, forced regressive shoreline: The Mitchell River delta, Queensland, Australia[J]. Marine Geology, 2013, 339: 22-43. |
[41] |
Hansen C D, MacEachern J A. Application of the asymmetric delta model to along-strike facies variations in a mixed wave-and river-influenced delta lobe, Upper Cretaceous Basal Belly River Formation, central Alberta[M]//MacEachern J A, Bann K L, Gingras M K, et al. Applied ichnology. Tulsa: SEPM Special Publication, 2007: 255-271. |
[42] |
Li W G, Bhattacharya J P, Zhu Y J, et al. Evaluating delta asymmetry using three-dimensional facies architecture and ichnological analysis, Ferron ‘Notom Delta’, Capital Reef, Utah, USA[J]. Sedimentology, 2011, 58(2): 478-507. |
[43] |
Forzoni A, Hampson G, Storms J. Along-strike variations in stratigraphic architecture of shallow-marine reservoir analogues: Upper Cretaceous Panther Tongue delta and coeval shoreface, Star Point Sandstone, Wasatch Plateau, Central Utah, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(8): 968-989. |
[44] |
Hampson G J, Howell J A. Sedimentologic and geomorphic characterization of ancient wave-dominated deltaic shorelines: Upper Cretaceous Blackhawk Formation, Book Cliffs, Utah, U.S.A.[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: SEPM Special Publication, 2005, 83: 133-154. |
[45] |
Charvin K, Hampson G J, Gallagher K L, et al. Intra-parasequence architecture of an interpreted asymmetrical wave-dominated delta[J]. Sedimentology, 2010, 57(3): 760-785. |
[46] |
纪友亮,刘君龙,王天云,等. 陆相湖盆三角洲—滩坝复合砂体分布模式及编图方法[J]. 古地理学报,2016,18(4):615-630.
Ji Youliang, Liu Junlong, Wang Tianyun, et al. Distributing pattern and mapping method of delta and beach-bar composite sand-bodies in continental lacustrine basin[J]. Journal of Palaeogeography, 2016, 18(4): 615-630. |
[47] |
李维禄,徐怀民,高思宇,等. 三角洲改造背景的浪控滨岸砂体成因类型及展布特征:以塔里木盆地东河塘地区“东河砂岩”为例[J]. 中国海洋大学学报,2017,47(9):86-95.
Li Weilu, Xu Huaimin, Gao Siyu, et al. Genetic types and distribution features of wave-dominated shore deposits with reworked-delta background: A case of ‘Donghe Sandstones’ in Donghetang oil field, Tarim Basin[J]. Periodical of Ocean University of China, 2017, 47(9): 86-95. |
[48] |
陈秀艳,姜在兴,杜伟,等. 东营凹陷沙三中亚段东营三角洲沉积期次成因及对含油性的影响[J]. 沉积学报,2014,32(2):344-353.
Chen Xiuyan, Jiang Zaixing, Du Wei, et al. Origin of depositional cycles and their influence on oil-bearing sandstone of Dongying delta in Mid-Es3, Dongying Depression[J]. Acta Sedimentologica Sinica, 2014, 32(2): 344-353. |
[49] |
李顺利,李竞,陈彬滔,等. 西湖凹陷渐新统花港组大型沿岸砂坝沉积特征及主控因素[J]. 古地理学报,2020,22(3):493-503.
Li Shunli, Li Jing, Chen Bintao, et al. Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu Sag[J]. Journal of Palaeogeography, 2020, 22(3): 493-503. |
[50] |
Li Y Y, Bhattacharya J P, Ahmed S, et al. Re-evaluating the paleogeography of the river-dominated and wave-influenced Ferron Notom Delta, southern Central Utah: An Integration of detailed facies-architecture and paleocurrent analysis[J]. Journal of Sedimentary Research, 2018, 88(2): 214-240. |
[51] |
Ahmed S, Bhattacharya J P, Garza D E, et al. Facies architecture and stratigraphic evolution of a river-dominated delta front, Turonian ferron sandstone, Utah, U.S.A[J]. Journal of Sedimentary Research, 2014, 84(2): 97-121. |
[52] |
Neill C F, Allison M A. Subaqueous deltaic Formation on the Atchafalaya Shelf, Louisiana[J]. Marine Geology, 2005, 214(4): 411-430. |
[53] |
Pellegrini C, Maselli V, Cattaneo A, et al. Anatomy of a compound delta from the post-glacial transgressive record in the Adriatic Sea[J]. Marine Geology, 2015, 362: 43-59. |
[54] |
Amorosi A, Maselli V, Trincardi F. Onshore to offshore anatomy of a Late Quaternary source-to-sink system (Po Plain-Adriatic Sea, Italy)[J]. Earth-Science Reviews, 2016, 153: 212-237. |
[55] |
Hampson G J. Sediment dispersal and quantitative stratigraphic architecture across an ancient shelf[J]. Sedimentology, 2010, 57(1): 96-141. |
[56] |
Hampson G J, Premwichein K. Sedimentologic character of ancient muddy subaqueous-deltaic clinoforms: Down Cliff Clay member, Bridport Sand Formation, Wessex Basin, U.K.[J]. Journal of Sedimentary Research, 2017, 87(9): 951-966. |
[57] |
Vakarelov B K, Ainsworth R B, MacEachern J A. Recognition of wave-dominated, tide-influenced shoreline systems in the rock record: Variations from a microtidal shoreline model[J]. Sedimentary Geology, 2012, 279: 23-41. |
[58] |
Patruno S, Hampson G J, Jackson C A L. Quantitative characterisation of deltaic and subaqueous clinoforms[J]. Earth-Science Reviews, 2015, 142: 79-119. |
[59] |
Rossi V M, Paterson N W, Helland-Hansen W, et al. Mud-rich delta-scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south-western Barents Sea)[J]. Sedimentology, 2019, 66(6): 2234-2267. |
[60] |
Pirmez C, Pratson L F, Steckler M S. Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24141-24157. |
[61] |
Swenson J B, Paola C, Pratson L, et al. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound-clinoform development[J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2): F02013. |
[62] |
Willis B J, Sun T, Ainsworth R B. Contrasting facies patterns between river-dominated and symmetrical wave-dominated delta deposits[J]. Journal of Sedimentary Research, 2021, 91(3): 262-295. |
[63] |
Walsh J P, Nittrouer C A. Understanding fine-grained river-sediment dispersal on continental margins[J]. Marine Geology, 2009, 263(1/2/3/4): 34-45. |
[64] |
Deibert J E, Benda T, Løseth T, et al. Eocene clinoform growth in front of a storm-wave-dominated shelf, Central Basin, Spitsbergen: No significant sand delivery to deepwater areas[J]. Journal of Sedimentary Research, 2003, 73(4): 546-558. |
[65] |
Uroza C A, Steel R J. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway[J]. Sedimentary Geology, 2008, 203(3/4): 229-245. |
[66] |
Bowman A P, Johnson H D. Storm-dominated shelf-edge delta successions in a high accommodation setting: The palaeo-Orinoco Delta (Mayaro Formation), Columbus Basin, South-East Trinidad[J]. Sedimentology, 2014, 61(3): 792-835. |
[67] |
Gomis-Cartesio L E, Poyatos-Moré M, Flint S S, et al. Anatomy of a mixed-influence shelf edge delta, Karoo Basin, South Africa[J]. Geological Society, London, Special Publication, 2017, 444: 393-418. |
[68] |
Porębski S J, Steel R J. Deltas and sea-level change[J]. Journal of Sedimentary Research, 2006, 76(3): 390-403. |
[69] |
李文静,王英民,何敏,等. 珠江口盆地中中新世陆架边缘三角洲的类型及控制因素[J]. 岩性油气藏,2018,30(2):58-66.
Li Wenjing, Wang Yingmin, He Min, et al. Types and controlling factors of shelf margin delta of Middle Miocene in Pearl River Mouth Basin[J]. Lithologic Reservoirs, 2018, 30(2): 58-66. |
[70] |
Peng Y, Steel R J, Olariu C, et al. Rapid subsidence and preservation of fluvial signals in an otherwise wave-reworked delta front succession: Early-mid Pliocene Orinoco continental-margin growth, SE Trinidad[J]. Sedimentary Geology, 2020, 395: 105555. |
[71] |
Dalrymple R W, Baker E K, Harris P T, et al. Sedimentology and stratigraphy of a tide-dominated, foreland-Basin delta (Fly River, Papua New Guinea)[M]//Sidi F H, Nummedal D, Imbert P, et al. Tropical deltas of southeast Asia: Sedimentology, stratigraphy, and petroleum geology. Tulsa: SEPM Special Publication, 2003, 76: 147-173. |
[72] |
侯云东,陈安清,赵伟波,等. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境[J]. 成都理工大学学报(自然科学版),2018,45(4):393-401.
Hou Yundong, Chen Anqing, Zhao Weibo, et al. Analysis on the depositional environment of Carboniferous Benxi Formation tidal-delta sand body complex, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2018, 45(4): 393-401. |
[73] |
李阳,金振奎,朱小二,等. 潮控河口湾岩相类型及沉积模式:以厄瓜多尔Oriente盆地北部区块上白垩统Napo组LU段为例[J]. 沉积学报,2020,38(4):826-837.
Li Yang, Jin Zhenkui, Zhu Xiaoer, et al. Lithofacies and sedimentary model of tidal-dominated estuary: A case study of LU interval from Upper Cretaceous Napo Formation, northern Oriente Basin, Ecuador[J]. Acta Sedimentologica Sinica, 2020, 38(4): 826-837. |
[74] |
Shchepetkina A, Gingras M K, Mángano M G, et al. Fluvio-tidal transition zone: Terminology, sedimentological and ichnological characteristics, and significance[J]. Earth-Science Reviews, 2019, 192: 214-235. |
[75] |
Flaig P P, Hasiotis S T, Prather T J, et al. Characteristics of a Campanian delta deposit controlled by alternating river floods and tides: The Loyd Sandstone, Rangely Anticline, Colorado, U.S.A.[J]. Journal of Sedimentary Research, 2019, 89(12): 1181-1206. |
[76] |
Gugliotta M, Saito Y, Nguyen V L, et al. Sediment distribution and depositional processes along the fluvial to marine transition zone of the Mekong River delta, Vietnam[J]. Sedimentology, 2019, 66(1): 146-164. |
[77] |
Chen S, Steel R J, Dixon J F, et al. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta (Morne L’Enfer Formation) SW Trinidad[J]. Marine and Petroleum Geology, 2014, 57: 208-232. |
[78] |
Li S L, Yu X H, Steel R, et al. Change from tide-influenced deltas in a regression-dominated set of sequences to tide-dominated estuaries in a transgression-dominated sequence set, East China Sea Shelf Basin[J]. Sedimentology, 2018, 65(7): 2312-2338. |
[79] |
吴静,张晓钊,白海军,等. 珠江口盆地阳江凹陷中新统潮控体系及其岩性圈闭勘探意义[J]. 地球科学,2021,46(10):3673-3689.
Wu Jing, Zhang Xiaozhao, Bai Haijun, et al. Miocene tidal control system and its exploration significance of lithologic trap in Yangjiang Sag, Pearl River Mouth Basin[J]. Earth Science, 2021, 46(10): 3673-3689. |
[80] |
Boyd R, Dalrymple R W, Zaitlin B A. Estuarine and incised-valley facies models[M]//Posamentier H W, Walker R G. Facies models revisited. Tulsa: SEPM Special Publication, 2006, 84: 171-235. |
[81] |
Rossi V M, Longhitano S G, Mellere D, et al. Interplay of tidal and fluvial processes in an Early Pleistocene, delta-fed, strait margin (Calabria, southern Italy)[J]. Marine and Petroleum Geology, 2017, 87: 14-30. |
[82] |
Olariu C, Steel R J, Dalrymple R W, et al. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the Lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain[J]. Sedimentary Geology, 2012, 279: 134-155. |
[83] |
Kurcinka C, Dalrymple R W, Gugliotta M. Facies and architecture of river-dominated to tide-influenced mouth bars in the Lower Lajas Formation (Jurassic), Argentina[J]. AAPG Bulletin, 2018, 102(5): 885-912. |
[84] |
La Croix A D, Dashtgard S E. Of sand and mud: Sedimentological criteria for identifying the turbidity maximum zone in a tidally influenced river[J]. Sedimentology, 2014, 61(7): 1961-1981. |
[85] |
Dashtgard S E, MacEachern J A, Frey S E, et al. Tidal effects on the shoreface: Towards a conceptual framework[J]. Sedimentary Geology, 2012, 279: 42-61. |
[86] |
Yang B, Dalrymple R W, Chun S, et al. Tidally modulated storm sedimentation on open-coast tidal flats, southwestern coast of Korea: Distinguishing tidal-flat from shoreface storm deposits[M]//Hampson G J, Steel R J, Burgess P M, et al. Recent advances in models of siliciclastic shallow-marine stratigraphy. Tulsa: SEPM Special Publication, 2008, 90: 161-176. |
[87] |
Wei X J, Steel R J, Ravnås R, et al. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation, northern North Sea[J]. Sedimentary Geology, 2016, 335: 166-179. |
[88] |
Basilici G, De Luca P H V, Oliveira E P. A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian-Ordovician Lagarto and Palmares formations, north-eastern Brazil[J]. Sedimentology, 2012, 59(5): 1613-1639. |
[89] |
Yang B, Gingras M K, Pemberton S G, et al. Wave-generated tidal bundles as an indicator of wave-dominated tidal flats[J]. Geology, 2008, 36(1): 39-42. |
[90] |
Zhang J Y, Rossi V M, Peng Y, et al. Revisiting Late Paleocene Lower Wilcox deltas, Gulf of Mexico: River-dominated or mixed-process deltas?[J]. Sedimentary Geology, 2019, 389: 1-12. |
[91] |
MacEachern J A, Bann K L. The role of ichnology in refining shallow marine facies models[M]//Hampson G J, Steel R J, Burgess P M, et al. Recent advances in models of siliciclastic shallow-marine stratigraphy. Tulsa: SEPM Special Publication, 2008, 90: 73-116. |
[92] |
Collins D S, Johnson H D, Baldwin C T. Architecture and preservation in the fluvial to marine transition zone of a mixed-process humid-tropical delta: Middle Miocene Lambir Formation, Baram Delta province, north-west Borneo[J]. Sedimentology, 2020, 67(1): 1-46. |
[93] |
李洋,朱筱敏,赵东娜,等. 琼东南盆地崖13-1气田陵三段高分辨率层序地层及沉积体系研究[J]. 天然气地球科学,2014,25(7):999-1010.
Li Yang, Zhu Xiaomin, Zhao Dongna, et al. High-resolution sequence stratigraphy and sedimentary system study of the 3rd member of Lingshui Formation in Ya13-1 gasfield, Qiongdongnan Basin[J]. Natural Gas Geoscience, 2014, 25(7): 999-1010. |
[94] |
丁琳,杜家元,罗明,等. 珠江口盆地惠州凹陷新近系珠江组K22陆架砂脊沉积成因分析[J]. 古地理学报,2016,18(5):785-798.
Ding Lin, Du Jiayuan, Luo Ming, et al. Analysis of depositional genesis of K22 shelf sand ridges in the Neogene Zhujiang Formation in Huizhou Sag, Pearl River Mouth Basin[J]. Journal of Paleogeography, 2016, 18(5): 785-798. |